CN108103284A - 一种改善1Cr13钢制膜合盖零件氮化层组织的方法 - Google Patents

一种改善1Cr13钢制膜合盖零件氮化层组织的方法 Download PDF

Info

Publication number
CN108103284A
CN108103284A CN201711209853.6A CN201711209853A CN108103284A CN 108103284 A CN108103284 A CN 108103284A CN 201711209853 A CN201711209853 A CN 201711209853A CN 108103284 A CN108103284 A CN 108103284A
Authority
CN
China
Prior art keywords
improving
steel membrane
membrane closing
layer tissue
closing lids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711209853.6A
Other languages
English (en)
Other versions
CN108103284B (zh
Inventor
施国梅
张凡云
刘永
王蔓
薛怡然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Shenyang Liming Aero Engine Co Ltd
Original Assignee
AECC Shenyang Liming Aero Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Shenyang Liming Aero Engine Co Ltd filed Critical AECC Shenyang Liming Aero Engine Co Ltd
Priority to CN201711209853.6A priority Critical patent/CN108103284B/zh
Publication of CN108103284A publication Critical patent/CN108103284A/zh
Application granted granted Critical
Publication of CN108103284B publication Critical patent/CN108103284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明的目的在于提供一种改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于,按照以下步骤进行:①检查:对来件进行工序检查;②真空退氮:加热前真空室内压强抽至6.7×10‑2Pa,加热、保温一定时间,加热、保温过程中,真空室内压强不大于6.7×10‑2Pa,保温结束后充氩气,冷至80℃以下出炉;③检验:检查渗层组织和硬度。该方法能够在不降低材料力学性能的前提下,使氮化层中原有的网状或脉状氮化物分解,使氮元素向基体方向扩散,达到减少零件渗层中网状或脉状氮化物的目的,且退氮后零件硬度满足HR15N≥88的要求,可以作为出现缺陷后的补救措施。

Description

一种改善1Cr13钢制膜合盖零件氮化层组织的方法
技术领域
本发明属于热处理技术领域,特别提供一种减少1Cr13钢制膜合盖零件氮化层网状或脉状氮化物的工艺方法。
背景技术
1Cr13马氏体-铁素体型不锈钢经调质和氮化处理后既能获得比较好的强度和韧性配合,还能显著提高工作表面硬度、耐磨性、疲劳强度和热稳定性,一般常被用作氮化零件。但是由于工艺、设备或操作等因素,造成渗层中出现网状或脉状氮化物,使氮化零件脆性大并且渗层组织不满足评级标准或检验要求。
目前,现有技术只能针对结构钢氮化层网状或脉状氮化物进行改善,不能有效地改善氮化物形态和分布。对于1Cr13不锈钢由于铬元素含量高,退氮过程中氮元素的活动或扩散能力较弱,因此,1Cr13不锈钢零件氮化层组织的改善成为一项技术难题。
发明内容
本发明是在不降低材料力学性能的前提下,通过采用适当的真空退氮热处理工艺,使氮化层中原有的网状或脉状氮化物分解,使氮元素向基体方向扩散,达到减少零件渗层中网状或脉状氮化物的目的,且退氮后零件硬度满足HR15N≥88的要求,可以作为出现缺陷后的补救措施。
本发明能够显著减少1Cr13不锈钢制膜合盖零件氮化层中的网状或脉状氮化物,降低零件脆性,具体技术方案如下:
一种改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于,按照以下步骤进行:
①检查:对来件进行工序检查;
②真空退氮:加热前真空室内压强抽至6.7×10-2Pa,加热、保温一定时间,加热、保温过程中,真空室内压强不大于6.7×10-2Pa,保温结束后充氩气,冷至80℃以下出炉;
③检验:检查渗层组织和硬度。
本发明所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:所述1Cr13钢制膜合盖零件由1Cr13马氏体-铁素体不锈钢制成,其化学成分和重量百分比为:C0.08~0.15%、Cr 12.00~14.00%、Mn≤0.60%、 Si≤0.60%、Ni≤0.60%、S≤0.03%、P≤0.03%、余量为Fe。
作为优选的技术方案:步骤②中,退氮处理在580℃~620℃温度下保温 5h~8h,590℃温度下保温6h。研究结果表明,不同于结构钢制零件的氮化组织,1Cr13钢制零件只有加热到一定高的温度,并保温足够的时间,氮化物才能有效地分解,所以加热温度和保温时间成为退氮热处理的关键。
作为优选的技术方案:步骤②中,保温结束后充氩气0.2~0.4MPa(最优选为0.3MPa)。
本发明采用适当的真空退氮工艺参数,可以有效地减少1Cr13不锈钢制膜合盖零件氮化层中的网状或脉状氮化物,该方法不仅对加工余量较大的零件有效,同样适用于加工余量小或表面不便机械加工的零件。该热处理制度下氮化物容易分解,表面氮浓度降低,氮向内扩散,零件扩散层硬度梯度下降变得平缓,改善零件的脆性,防止表面氧化脱碳。退氮温度低于零件回火温度,不影响其基体性能。且本发明工艺简单,易于操作,可以作为出现缺陷后的补救措施。
附图说明
图1为1Cr13不锈钢制膜合盖零件氮化后的渗层形貌(苦味酸腐蚀);
图2为590℃/6h退氮后氮化层形貌(苦味酸腐蚀);
图3为590℃/6h退氮前后氮化层深度对比,左为退氮前,右为退氮后。
具体实施方式
本发明实施例所述1Cr13钢制膜合盖零件由1Cr13马氏体-铁素体不锈钢制成,其化学成分和重量百分比为:C 0.08~0.15%、Cr 12.00~14.00%、 Mn≤0.60%、Si≤0.60%、Ni≤0.60%、S≤0.03%、P≤0.03%、余量为Fe。用金相显微镜及显微硬度计等设备进行组织性能分析测试。为了避免渗层氧化脱碳,选用真空炉作为试验设备。
实施例
一种改善1Cr13不锈钢制膜合盖零件氮化层组织的方法,按照以下步骤进行:
①检查:对来件进行工序检查,试样表面应清洁,无多余物。
②真空退氮:加热前真空室内压强抽至6.7×10-2Pa,加热、保温一定时间(具体请见表1),加热、保温过程中,真空室内压强不大于6.7×10-2Pa,保温结束后充氩气0.3MPa冷至80℃以下出炉。
③检验:检查渗层组织和硬度,渗氮面硬度HR15N≥88;渗氮层组织优于半连续细网状氮化物。
组织观察:应用金相显微镜观察试样的渗层组织。
渗层硬度梯度测试:应用显微硬度计测试渗层的硬度梯度。
表1氮化层硬度
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于,按照以下步骤进行:
①检查:对来件进行工序检查;
②真空退氮:加热前真空室内压强抽至6.7×10-2Pa,加热、保温一定时间,加热、保温过程中,真空室内压强不大于6.7×10-2Pa,保温结束后充氩气,冷至80℃以下出炉;
③检验:检查渗层组织和硬度。
2.按照权利要求1所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:所述1Cr13钢制膜合盖零件由1Cr13马氏体-铁素体不锈钢制成,其化学成分和重量百分比为:C 0.08~0.15%、Cr 12.00~14.00%、Mn≤0.60%、Si≤0.60%、Ni≤0.60%、S≤0.03%、P≤0.03%、余量为Fe。
3.按照权利要求1所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:步骤②中,退氮处理在580℃~620℃温度下保温5h~8h。
4.按照权利要求1或3所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:步骤②中,退氮处理在590℃温度下保温6h。
5.按照权利要求1所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:步骤②中,保温结束后充氩气0.2~0.4MPa。
6.按照权利要求1或5所述改善1Cr13钢制膜合盖零件氮化层组织的方法,其特征在于:步骤②中,保温结束后充氩气0.3MPa。
CN201711209853.6A 2017-11-28 2017-11-28 一种改善1Cr13钢制膜合盖零件氮化层组织的方法 Active CN108103284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711209853.6A CN108103284B (zh) 2017-11-28 2017-11-28 一种改善1Cr13钢制膜合盖零件氮化层组织的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711209853.6A CN108103284B (zh) 2017-11-28 2017-11-28 一种改善1Cr13钢制膜合盖零件氮化层组织的方法

Publications (2)

Publication Number Publication Date
CN108103284A true CN108103284A (zh) 2018-06-01
CN108103284B CN108103284B (zh) 2020-01-21

Family

ID=62207726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711209853.6A Active CN108103284B (zh) 2017-11-28 2017-11-28 一种改善1Cr13钢制膜合盖零件氮化层组织的方法

Country Status (1)

Country Link
CN (1) CN108103284B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215670A (zh) * 2007-01-04 2008-07-09 江苏省交通工程有限公司 一种船闸蘑菇头和蘑菇头帽及其加工方法
CN101890622A (zh) * 2010-08-18 2010-11-24 重庆长征重工有限责任公司 电液锤锤杆的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215670A (zh) * 2007-01-04 2008-07-09 江苏省交通工程有限公司 一种船闸蘑菇头和蘑菇头帽及其加工方法
CN101890622A (zh) * 2010-08-18 2010-11-24 重庆长征重工有限责任公司 电液锤锤杆的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏怡兴: "渗氮层中"白层"的真空处理消除工艺", 《材料工程》 *

Also Published As

Publication number Publication date
CN108103284B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
Sarraf et al. Repairing the cracks network of hard chromium electroplated layers using plasma nitriding technique
Kulka et al. An alternative method of gas boriding applied to the formation of borocarburized layer
Chen et al. Phase transformations in the nitrocarburizing surface of carbon steels revisited by microstructure and property characterizations
Talha et al. Long term and electrochemical corrosion investigation of cold worked AISI 316L and 316LVM stainless steels in simulated body fluid
CN105714236A (zh) 真空脉冲渗碳马氏体不锈钢的方法
Alsaran et al. A repair process for fatigue damage using plasma nitriding
Nanesa et al. Influence of cryogenic process parameters on microstructure and hardness evolution of AISI D2 tool steel
CN108103284A (zh) 一种改善1Cr13钢制膜合盖零件氮化层组织的方法
CN109371212A (zh) 一种大变形增强快速离子渗氮方法
CN109778109A (zh) 一种解决碳氮共渗质量不合格的方法
CN109022728A (zh) 一种亚稳态奥氏体不锈钢的高温淬火-深过冷-低温配分热处理方法及不锈钢
KR100905271B1 (ko) 내열강의 가스질화방법
Hudáková et al. Microstructure and microhardness of powder boronized Vanadis 6 steel
Rakhadilov et al. Structural-phase transformations in 0.34 C–1CRr–1Ni–1Mo–Fe steel during plasma electrolytic hardening
JP3064909B2 (ja) 浸炭硬化食器類およびその製法
CN107858632A (zh) 一种高钴基合金材料零件渗氮方法
RU2790841C1 (ru) Способ обработки поверхности жаропрочной нержавеющей стали
RU2796338C1 (ru) Способ обработки поверхности детали из жаропрочной нержавеющей стали
Cornelissen et al. Bending fatigue performance of gas-and plasma-carburized steels
JP2004052023A (ja) 窒化処理方法
CN107937864B (zh) 压缩机用35CrMoV齿轮高承载能力的深层离子氮化工艺
CN112281112B (zh) 一种孔芯活塞杆的热处理工艺
Doñu Ruiz et al. Characterization and Fracture Toughness on AISI 8620 with hard coatings
Hwang et al. Effects of surface hardening and residual stress on the fatigue characteristics of nitrided SACM 645 steel
Gegner et al. SIMS and XRD Measurements for the Critical Review of Carbon Diffusivity Derivation from Hardness Profiles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant