CN108090635A - A kind of pavement performance Forecasting Methodology based on Cluster Classification - Google Patents

A kind of pavement performance Forecasting Methodology based on Cluster Classification Download PDF

Info

Publication number
CN108090635A
CN108090635A CN201810116585.1A CN201810116585A CN108090635A CN 108090635 A CN108090635 A CN 108090635A CN 201810116585 A CN201810116585 A CN 201810116585A CN 108090635 A CN108090635 A CN 108090635A
Authority
CN
China
Prior art keywords
time sequence
road
cluster
function
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810116585.1A
Other languages
Chinese (zh)
Other versions
CN108090635B (en
Inventor
赵永利
陈安琪
李靖
刘国强
潘园园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810116585.1A priority Critical patent/CN108090635B/en
Publication of CN108090635A publication Critical patent/CN108090635A/en
Application granted granted Critical
Publication of CN108090635B publication Critical patent/CN108090635B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a kind of pavement performance Forecasting Methodology based on Cluster Classification, this method includes:(1) Road Detection data are collected, are recorded as the first historical time sequence;(2) the first historical time sequence is cleaned, rejects the data for having conserved section, be then recorded as the second historical time sequence;(3) according to road surface index measuring similarity, according to Clustering Model, the second historical time sequence is subjected to Cluster Classification;(4) weight of each classification time series in the second historical time sequence and the time sequence function of each index in each classification time series are calculated respectively;(5) according to the weight and time sequence function of each classification time series, all time sequence functions for clustering each indexs of classification are calculated;(6) pavement performance integrated forecasting function is determined.The present invention improves the accuracy of pavement performance prediction.

Description

Road performance prediction method based on cluster classification
Technical Field
The invention relates to a road performance prediction method, in particular to a road performance prediction method based on cluster classification.
Background
And the road maintenance scheme is made according to the maintenance decision result, and the final scheme of the maintenance decision is determined by the road performance prediction result. Therefore, the accurate road performance prediction model can provide an effective and scientific maintenance decision, so that the road maintenance is more targeted and scientific.
At the present stage, the prediction method of the road surface performance is to firstly investigate the road condition and then predict the road surface performance according to the investigation data by using a road surface performance prediction model. However, in a road, some road sections are not usually maintained, some road sections are maintained, and the service performance of different road sections in the same road may be greatly different. When road surface performance prediction is carried out, if data of a section which is maintained is not removed, noise of detected data is increased, and the error of a prediction result is large. If the road sections with different road performances are studied together and processed uniformly, the information is not concentrated enough, and a lot of key information is lost. The loss of the key information can reduce the accuracy of performance prediction, so that the decision of maintenance measures is influenced, and finally, the pavement diseases cannot be treated in a targeted manner.
Disclosure of Invention
The invention aims to: in order to overcome the defects of the prior art, the invention provides a road performance prediction method based on cluster classification, and the method solves the problem of low accuracy of road performance prediction.
The technical scheme is as follows: the invention relates to a road performance prediction method based on cluster classification, which comprises the following steps:
(1) Collecting road detection data, and recording the road detection data as a first historical time sequence;
(2) Cleaning the first historical time sequence, removing data of the maintained road section, and recording the data as a second historical time sequence;
(3) According to the road index similarity measurement, according to a clustering model, clustering and classifying the second historical time sequence;
(4) Respectively calculating the weight of each category time sequence in the second historical time sequence and the time sequence function of each index in each category time sequence;
(5) Calculating the time sequence function of each index of all cluster categories according to the weight of each category time sequence and the time sequence function;
(6) And determining a road performance comprehensive prediction function.
Preferably, in the step (3), the road surface indexes include a road surface running quality index RQI, a road surface rutting condition index RDI, and a road surface damage condition index PCI.
Preferably, in step (3), the clustering model is based on euler distance:
wherein x is ik Is the k-th component, x, of the feature vector i jk Is the kth component of the feature vector j and m is the total number of components.
Preferably, in step (5), the weight calculation formula is:
α i =x i /X
wherein x is i And X is the number of all the unserviced sections in the second time sequence.
Preferably, in step (5), the RQI time series function of each type of time series is calculated as:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,Q i And q is i Are respectively RQI i (t) coefficients and indices;
the RDI time series function calculation formula of each type of time series is as follows:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,D i And d i Are respectively RDI i (t) coefficients and indices;
the PCI time sequence function calculation formula of each type of time sequence is as follows:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,C i And c i Are respectively PCI i The coefficient and the index of (t).
Preferably, in step (5), the RQI time-series functions of all cluster categories are:
wherein the content of the first and second substances,n is the total number of cluster classifications;
the RDI time series function for all cluster categories is:
wherein the content of the first and second substances,n is the total number of cluster classifications;
the PCI time series function for all cluster categories is:
wherein the content of the first and second substances,n is the total number of cluster classifications.
Has the advantages that: the method eliminates the data of the maintained road sections, divides the road sections into different categories by using cluster analysis, captures the differences of samples of different categories, respectively studies the road performance of different road sections, and improves the accuracy of road performance prediction.
Drawings
FIG. 1 is a flow chart of the method of the present invention;
FIG. 2 is a graph of experimental data comparing the method of use of the present invention with the conventional method.
Detailed Description
Example 1
In order to accurately predict the road performance, the invention needs to eliminate the data of the maintained road sections and classify the non-maintained road sections, as shown in fig. 1.
Step 1, collecting road detection data, and recording the data as a first historical time sequence.
And 2, cleaning the first historical time sequence, checking data consistency, processing invalid values and missing values, eliminating data of the maintained road section, and recording the processed first historical time sequence as a second historical time sequence.
And 3, dividing the second historical time sequence into a first category time sequence, a … … and an Nth category time sequence according to the road running quality index RQI, the road rut condition index RDI and the road damage condition index PCI similarity measurement and the clustering model, wherein N is more than 1.
Different clustering methods have different classification results, and the Euclidean distance is the most common method and is suitable for the condition that the standards of all vectors are unified, so that the similarity is reflected by selecting the method. The clustering model is based on Euler distance:wherein x is ik Is the k-th component, x, of the feature vector i jk Is the kth component of the feature vector j and m is the total number of components.
Step 4, respectively calculating the weight alpha of each category time sequence i
The weights are calculated as follows: alpha is alpha i =x i and/X. Wherein x is i All the number of the segments in the ith category time sequence, and X is the number of all the unserved segments in the second category time sequence.
Step 5, respectively calculating RQI, RDI and PCI time sequence function RQI in each category time sequence i (t)、RDI i (t)、PCI i (t) of (d). According to the weight alpha of each class i And RQI i And (t) calculating RQI time series functions RQI (t) of all cluster types through weighted average. And similarly, respectively obtaining the RDI and the PCI time series functions RDI (t) and PCI (t) of all the cluster types.
The time sequence function of the RQI in the ith category and the tth year (t is more than or equal to 1) is as follows:
the class i year-t (t ≧ 1) RDI time series function is:
the ith type and t (t is more than or equal to 1) year PCI time sequence function is as follows:
wherein Q is i And q is i Are respectively RQI i (t) coefficients and indices; d i And d i Are respectively RDI i (t) coefficients and indices; c i And c i Are respectively PCI i The coefficient and the exponent of (t).
The RQI time series function for all the uncured sections is:
the RDI time series function for all the sections not maintained is:
the PCI time series function for all the sections that are not maintained is:
wherein the content of the first and second substances,
and 6, determining a road performance comprehensive prediction function PQI (t) by using the RQI (t), the RDI (t) and the PCI (t).
The road performance prediction model is as follows:
PQI(t)=[0.4×RQI(t)+0.15×RDI(t)+0.35×PCI(t)]/0.9。
of these, 0.4,0.15 and 0.35 are the values given by the specification.
Example 2
The steps of the invention when used on a specific road include:
first, since a road is divided into a plurality of sections, detection data of the plurality of sections in the road is collected and recorded as a first historical time series,
and performing data cleaning on the first historical time sequence, checking data consistency, and processing invalid values and missing values. Then, the sections that have been maintained are removed according to the maintenance data of the past year, as shown in table 1.
Section of cured road needing to be removed
The remaining detection data is recorded as a second historical time series.
And classifying the second historical time sequence by utilizing a clustering model according to the second historical time sequence and according to the similarity measurement of the road surface damage condition index PCI, the road surface rutting condition index RDI and the road surface running quality index RQI. The three segments with similar indexes are classified into one category. All the sections of the uncured section were classified into 9 categories as shown in table 2.
Calculating the weight alpha of each category according to a weight formula i As shown in table 3.
Clustering categories Weight α i
First kind 0.11
Second class 0.2
Class III 0.05
Class IV 0.15
Fifth class 0.01
Class six 0.25
Class seven 0.01
Class VIII 0.2
Ninth class 0.02
The time series function of RQI, RDI and PCI in each category is calculated as follows.
Wherein, RQI i (t)、RDI i (t) and PCI i And (t) is respectively RQI, RDI and PCI corresponding to all road sections of the ith class in the t (t is more than or equal to 1) th year. Q i And q is i Are respectively RQI i (t) coefficients and indices; d i And d i Are respectively RDI i (t) coefficients and indices; c i And c i Are respectively PCI i The coefficient and the index of (t). These parameters were determined by regression based on the road survey data over the years, as shown in table 4.
Parameters of time series function of performance index for each road
Cluster classification Q i q i D i d i C i C i
First kind 95.331 0.001 91.7142 0.015 97.9669 0.00227
Second class 95.1956 0.000671 96.9709 0.0387 100.3 0.00726
Class III 95.3232 0.00139 96.5424 0.0333 100.3 0.00548
Class IV 95.4014 0.00187 99.3507 0.0564 99.5128 0.00495
Fifth class 96.4148 0.00738 104.1 0.0876 101.7 0.0116
Class six 95.227 0.0009 95.163 0.0307 99.0654 0.00343
Class seven 105 0.053 94.8778 0.0132 100.8 0.0038
Class VIII 95.5087 0.00165 96.922 0.065 100.2 0.00662
Ninth class 95.9858 0.00336 97.0159 0.0368 104.2 0.0327
According to the weight alpha of each cluster category i And Q i Weighted average calculation
According to the weight alpha of each cluster category i And q is i Weighted average calculation
Determine RQI time series functions for all cluster classes:
similarly, determining the RDI time sequence functions and the PCI time sequence functions of all the sections which are not maintained:
RDI(t)=96.32×e -0.042t 、PCI(t)=99.7×e -0.0057t
and substituting the time-series functions into the comprehensive road performance prediction model according to the calculated time-series functions of RQI, RDI and PCI to finally determine the comprehensive road performance prediction function of the damaged road:
PQI(t)=42.42e -0.0018t +16.05e -0.042t +38.77e -0.0057t
at present, according to the existing method, when a road performance comprehensive prediction function is calculated, a maintained road section is not removed, so that PCI, RDI and RQI of a perfect road section are all calculated, the PQI index is higher, and the actual situation cannot be truly reflected. In addition, in the existing method, the road sections are not classified, and the arithmetic mean value of PCI, RDI and RQI is directly adopted, so that a lot of effective information is hidden, and the difference between the prediction result and the actual situation is large.
The PQI (t) calculated by the prior art method and the method of the present invention are compared as shown in fig. 2. As a result, the PQI index predicted by the existing method is almost unchanged, and is still about 95 in the 25 th year, which is seriously inconsistent with the actual situation. Therefore, compared with the existing method, the method can accurately and effectively predict the road performance comprehensive function PQI (t) and improve the prediction accuracy.

Claims (6)

1. A road performance prediction method based on cluster classification is characterized by comprising the following steps:
(1) Collecting road detection data, and recording the road detection data as a first historical time sequence;
(2) Cleaning the first historical time sequence, removing data of the maintained road section, and recording the data as a second historical time sequence;
(3) According to the similarity measurement of the road indexes, carrying out cluster classification on the second historical time sequence according to a cluster model;
(4) Respectively calculating the weight of each category time sequence in the second historical time sequence and the time sequence function of each index in each category time sequence;
(5) Calculating the time sequence function of each index of all clustering categories according to the weight of each category time sequence and the time sequence function;
(6) And determining a road performance comprehensive prediction function.
2. The method for predicting road performance based on cluster classification as claimed in claim 1, wherein in step (3), the road indexes include a road running quality index RQI, a road rutting condition index RDI, and a road damage condition index PCI.
3. The road use performance prediction method based on cluster classification as claimed in claim 1, wherein in step (3), the cluster model is a euler distance-based cluster model:
wherein,x ik Is the k-th component, x, of the feature vector i jk Is the kth component of the feature vector j and m is the total number of components.
4. The cluster classification-based road use performance prediction method according to claim 1, wherein in the step (5), the weight calculation formula is as follows:
α i =x i /X
wherein x is i And X is the number of all the unserviced sections in the second time sequence.
5. The cluster classification-based road use performance prediction method according to claim 1, wherein in the step (5), the RQI time series function calculation formula of each type of time series is as follows:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,Q i And q is i Are respectively RQI i (t) coefficients and indices;
the RDI time series function calculation formula of each type of time series is as follows:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,D i And d i Are respectively RDI i (t) coefficients and indices;
the PCI time sequence function calculation formula of each type of time sequence is as follows:
wherein i is the ith class for classifying the second historical time sequence, t is the number of years and t is not less than 1,C i And c i Are respectively PCI i The coefficient and the index of (t).
6. The cluster classification-based road use performance prediction method according to claim 1, wherein in step (5), the RQI time-series functions of all cluster classes are:
wherein the content of the first and second substances,n is the total number of cluster classifications;
the RDI time series function for all cluster categories is:
wherein, the first and the second end of the pipe are connected with each other,n is the total number of cluster classifications;
the PCI time series function for all cluster categories is:
wherein the content of the first and second substances,n is the total number of cluster classifications.
CN201810116585.1A 2018-02-06 2018-02-06 Road performance prediction method based on cluster classification Active CN108090635B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810116585.1A CN108090635B (en) 2018-02-06 2018-02-06 Road performance prediction method based on cluster classification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810116585.1A CN108090635B (en) 2018-02-06 2018-02-06 Road performance prediction method based on cluster classification

Publications (2)

Publication Number Publication Date
CN108090635A true CN108090635A (en) 2018-05-29
CN108090635B CN108090635B (en) 2021-10-29

Family

ID=62193855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810116585.1A Active CN108090635B (en) 2018-02-06 2018-02-06 Road performance prediction method based on cluster classification

Country Status (1)

Country Link
CN (1) CN108090635B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947755A (en) * 2019-03-05 2019-06-28 南京道润交通科技有限公司 Pavement Condition detection data method of quality control, storage medium, electronic equipment
CN111177895A (en) * 2019-12-13 2020-05-19 中公高科养护科技股份有限公司 Method and system for establishing prediction model of technical condition of three-fold-line-shaped pavement
CN113822387A (en) * 2021-11-24 2021-12-21 佛山市交通科技有限公司 Road surface damage condition index prediction method, system, equipment and medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091480A (en) * 2013-01-07 2013-05-08 河北工业大学 Entropy weight-based underground road bituminous pavement service performance evaluation method
CN104268213A (en) * 2014-09-24 2015-01-07 长安大学 Maintenance road segment dividing method based on multisource detection data
CN106251625A (en) * 2016-08-18 2016-12-21 上海交通大学 Three-dimensional urban road network global state Forecasting Methodology under big data environment
CN106249601A (en) * 2016-09-29 2016-12-21 广东华路交通科技有限公司 A kind of road section length division methods based on Ordered Clustering Analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091480A (en) * 2013-01-07 2013-05-08 河北工业大学 Entropy weight-based underground road bituminous pavement service performance evaluation method
CN104268213A (en) * 2014-09-24 2015-01-07 长安大学 Maintenance road segment dividing method based on multisource detection data
CN106251625A (en) * 2016-08-18 2016-12-21 上海交通大学 Three-dimensional urban road network global state Forecasting Methodology under big data environment
CN106249601A (en) * 2016-09-29 2016-12-21 广东华路交通科技有限公司 A kind of road section length division methods based on Ordered Clustering Analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周育名、***、马旺宇: "灰色聚类法在沥青路面性能评价中的应用研究", 《华东公路》 *
曾峰、张肖宁、李智: "应用聚类分析法确定沥青路面预防性养护方案", 《华南理工大学学报( 自然科学版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947755A (en) * 2019-03-05 2019-06-28 南京道润交通科技有限公司 Pavement Condition detection data method of quality control, storage medium, electronic equipment
CN111177895A (en) * 2019-12-13 2020-05-19 中公高科养护科技股份有限公司 Method and system for establishing prediction model of technical condition of three-fold-line-shaped pavement
CN111177895B (en) * 2019-12-13 2023-10-20 中公高科养护科技股份有限公司 Method and system for establishing prediction model of tri-fold line road surface technical condition
CN113822387A (en) * 2021-11-24 2021-12-21 佛山市交通科技有限公司 Road surface damage condition index prediction method, system, equipment and medium
CN113822387B (en) * 2021-11-24 2022-04-01 佛山市交通科技有限公司 Road surface damage condition index prediction method, system, equipment and medium

Also Published As

Publication number Publication date
CN108090635B (en) 2021-10-29

Similar Documents

Publication Publication Date Title
CN109977808B (en) Wafer surface defect mode detection and analysis method
CN109146705B (en) Method for detecting electricity stealing by using electricity characteristic index dimension reduction and extreme learning machine algorithm
CN114445387A (en) Fiberboard quality classification method based on machine vision
CN108090635B (en) Road performance prediction method based on cluster classification
CN111914090B (en) Method and device for enterprise industry classification identification and characteristic pollutant identification
CN109816031B (en) Transformer state evaluation clustering analysis method based on data imbalance measurement
CN113838054B (en) Mechanical part surface damage detection method based on artificial intelligence
CN111626821B (en) Product recommendation method and system for realizing customer classification based on integrated feature selection
CN111161814A (en) DRGs automatic grouping method based on convolutional neural network
CN108847022B (en) Abnormal value detection method of microwave traffic data acquisition equipment
CN113239720B (en) Subway vehicle running gear fault diagnosis method based on deep migration learning
CN113918642A (en) Data filtering, monitoring and early warning method based on power Internet of things equipment
CN114548199A (en) Multi-sensor data fusion method based on deep migration network
CN114548272A (en) Centrifugal pump cavitation state identification method
CN107480441B (en) Modeling method and system for children septic shock prognosis prediction
CN114487129B (en) Flexible material damage identification method based on acoustic emission technology
CN115454990A (en) Oil paper insulation data cleaning method based on improved KNN
CN115375026A (en) Method for predicting service life of aircraft engine in multiple fault modes
CN111832730B (en) Reliability characterization and state identification method for uncertain oil state
CN117078960A (en) Near infrared spectrum analysis method and system based on image feature extraction
CN110020686B (en) Road surface anomaly detection method based on crowd sensing data
CN117037841A (en) Acoustic signal hierarchical cavitation intensity identification method based on hierarchical transition network
CN113523904A (en) Cutter wear detection method
CN110555457A (en) Engine lubricating oil wear signal characteristic processing system and method
CN115630280A (en) Rolling bearing fault diagnosis method based on CEEMD multi-scale diffusion entropy and PSO-ELM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant