CN108062861B - 一种智能交通监控*** - Google Patents

一种智能交通监控*** Download PDF

Info

Publication number
CN108062861B
CN108062861B CN201711485166.7A CN201711485166A CN108062861B CN 108062861 B CN108062861 B CN 108062861B CN 201711485166 A CN201711485166 A CN 201711485166A CN 108062861 B CN108062861 B CN 108062861B
Authority
CN
China
Prior art keywords
dynamic vehicle
optical flow
center position
time
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711485166.7A
Other languages
English (en)
Other versions
CN108062861A (zh
Inventor
潘彦伶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing anzida Technology Co.,Ltd.
Original Assignee
Beijing Anzida Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Anzida Technology Co ltd filed Critical Beijing Anzida Technology Co ltd
Priority to CN201711485166.7A priority Critical patent/CN108062861B/zh
Publication of CN108062861A publication Critical patent/CN108062861A/zh
Application granted granted Critical
Publication of CN108062861B publication Critical patent/CN108062861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/259Fusion by voting

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种智能交通监控***,其包括摄像头、无线传输模块和后端监控服务平台;所述摄像头用于采集监控路段的视频图像;所述无线传输模块用于将采集到的视频图像发送至所述的后端监控服务平台;所述后端监控服务平台用于对视频图像中的动态车辆进行检测和跟踪。该发明通过对交通监控***采集的实时路况信息进行处理和数据分析,实现对动态车辆追踪,完成对交通状态进行优化的任务,为缓解交通堵塞、运输效率低下等交通问题提供有效支撑。

Description

一种智能交通监控***
技术领域
本发明属于视频监控领域,尤其涉及一种智能交通监控***。
背景技术
近年来,随着交通需求与车辆数目的不断增加,交通***日益复杂。国内大中城市普遍存在交通堵塞、运输效率低下的问题。解决城市交通问题的一个可行途径就是引入有效与合理的管理技术,建立实用高效的智能交通监控***。智能交通监控***将获取的交通信息进行分析,得出有效的指挥手段,通过对交通***中硬件设施的调控,完成对交通状态进行优化的任务。由此可见研究如何快速准确的获取交通信息具有重大的意义。获取交通信息的一大重要课题就是解决动态视频中,对车辆的追踪问题。
发明内容
针对上述问题,本发明提供一种智能交通监控***。
本发明的目的采用以下技术方案来实现:
一种智能交通监控***,包括摄像头、无线传输模块和后端监控服务平台;
摄像头用于采集监控路段的视频图像;
无线传输模块用于将采集到的视频图像发送至后端监控服务平台;
后端监控服务平台用于对视频图像中的动态车辆进行检测和跟踪。
本发明的有益效果为:本发明提出的一种智能交通监控***,通过对交通监控***采集的实时路况信息进行处理和数据分析,实现动态车辆追踪,完成对交通状态进行优化的任务,为缓解交通堵塞、运输效率低下等交通问题提供有效支撑。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明的原理图;
图2是本发明后端监控服务平台的框架结构图;
图3是本发明跟踪定位子模块的框架结构图。
附图标记:摄像头1;无线传输模块2;后端监控服务平台3;目标获取子模块31;初始化子模块32;跟踪定位子模块33;外观特征评估单元331;运动特征评估单元332;定位单元333;目标尺度更新及选择单元334。
具体实施方式
结合以下实施例对本发明作进一步描述。
参见图1,一种智能交通监控***,包括摄像头1、无线传输模块2和后端监控服务平台3;
摄像头1用于采集监控路段的视频图像;
无线传输模块2用于将采集到的视频图像发送至后端监控服务平台3;
后端监控服务平台3用于对视频图像中的动态车辆进行检测和跟踪。
优选地,参见图2,后端监控服务平台3包括目标获取子模块31、初始化子模块32和跟踪定位子模块33;目标获取子模块31用于从视频图像中选取一帧图像作为起始帧图像,并人工标记出初始帧图像中动态车辆;初始化子模块32用于对起始帧图像进行初始化操作;跟踪定位子模块33根据初始化子模块32的初始化结果,对动态车辆进行检测和跟踪。
对起始帧图像进行初始化操作具体包括:
(1)从起始帧图像中动态车辆所在的目标区域内随机采样一定数量的局部图像块作为正训练样本,从目标区域附近的背景区域内随机采样一定数量的局部图像块作为负训练样本;
从正训练样本和负训练样本中提取起始帧图像的图像特征,该图像特征包括:正训练样本的颜色特征、梯度特征及其相对于动态车辆中心的空间位置偏移信息和负训练样本的颜色特征及梯度特征;
根据得到的图像特征构建一个决策树为I的霍夫森林检测器;
(2)从起始帧图像中动态车辆所在的目标区域内随机采样一定数量的局部图像块作为光流跟踪块,并对光流跟踪块的初始位置进行随机初始化。
优选地,参见图3,跟踪定位子模块33包括外观特征评估单元331、运动特征评估单元332、定位单元333和目标尺度更新及选择单元334;
当t时刻的视频图像到来时,外观特征评估单元331用于对通过霍夫森林检测器后的t时刻的视频图像中动态车辆的中心位置坐标进行霍夫投票,根据投票结果的累积值得到外观特征可信度值;
运动特征评估单元332用于根据动态车辆在空时域的运动信息,对光流跟踪块进行处理,输出t时刻时的视频图像中动态车辆的中心位置坐标的运动特征可信度值;
定位单元333用于根据获得的外观特征可信度值和运动特征可信度值对t时刻时的视频图像中动态车辆的中心位置坐标进行估计,得到动态车辆的中心位置估计坐标;
目标尺度更新及选择单元334用于根据定位单元333得到的估计坐标,实现对动态车辆区域的尺度更新同时从更新后的t时刻的视频图像中重新选取正训练样本和负训练样本和光流跟踪块,根据重新选取的正训练样本和负训练样本对霍夫森林检测器进行更新。
优选地,对动态车辆的中心位置坐标进行霍夫投票,根据投票结果的累积值得到外观特征可信度值,具体包括:
(1)载入t时刻时的视频图像,从该视频图像中随机采样一定数量的局部图像块,并将每个局部图像块通过霍夫森林检测器,霍夫森林检测器中的决策树判断局部图像块是否属于动态车辆,当决策树判定局部图像块属于动态车辆时,则对动态车辆中心位置坐标进行霍夫投票,并累积投票结果,其中对视频图像坐标(m,n)处的累积投票值计算公式如下:
Figure BDA0001534597950000031
式中,
Figure BDA0001534597950000032
为t时刻时支持动态车辆中心位置坐标位于坐标(m,n)处的累积投票值,A为感兴趣区域,感兴趣区域是指目标区域及其目标区域附近的背景区域,I表示霍夫森林检测器中决策树的总数,Li(s′,r′)表示中心坐标是(s′,r′)的局部图像块经过第i个决策树模型所到达的叶子节点,p(m,n)|Li(s′,r′))表示中心坐标是(s′,r′)的局部图像块经过第i个决策树模型的条件下,动态车辆中心位置坐标位于(m,n)处的概率;
(2)计算所有可能为动态车辆中心位置坐标的累积投票值,利用下式计算所有可能为动态车辆中心位置坐标点的外观特征可信度值:
Figure BDA0001534597950000033
其中,
Figure BDA0001534597950000034
为t时刻时动态车辆中心位置坐标位于(m,n)处的外观特征可信度值,
Figure BDA0001534597950000035
为t时刻动态车辆中心位置坐标位于(m,n)处的累积投票值,A为感兴趣区域,
Figure BDA0001534597950000036
为所有可能为动态车辆中心位置坐标点的累积投票值构成的集合。
有益效果:外观特征评估单元331是基于霍夫森林模型实现的,根据上一时刻视频帧训练得到的霍夫森林检测器对下一时刻视频图像中的动态车辆的中心位置坐标进行累积投票,该做法降低了目标尺度变化或者姿态变化对外观特征可信度的影响,提高了对目标追踪的准确度,有利于后续动态车辆进行精确定位。
优选地,对光流跟踪块进行处理,输出t时刻时的视频图像中动态车辆的中心位置坐标的运动特征可信度值,具体包括:
(1)根据从所述初始化子模块32得到的光流跟踪块,利用Lucas-Kanade光流算法得到每个光流跟踪块在t时刻时光流跟踪块的中心位置,利用中值滤波滤除前向-后向光流误差较大的光流跟踪块,得到t时刻时有效光流跟踪块中心位置的集合
Figure BDA0001534597950000041
和有效光流跟踪块相对于动态车辆中心的偏移量集合
Figure BDA0001534597950000042
其中,k为第k个有效光流跟踪块,M为有效光流跟踪块的个数,(νk tk t)为t时刻时第k个有效光流跟踪块中心位置坐标;dνk表示第k个有效光流跟踪块中心位置坐标的水平方向的偏移量,dωk表示第k个有效光流跟踪块中心位置坐标的垂直方向的偏移量;
(2)利用下式计算t时刻时动态车辆中心位置坐标位于(m,n)处的光流特征累积投票值:
Figure BDA0001534597950000043
Figure BDA0001534597950000044
其中,
Figure BDA0001534597950000045
为t时刻动态车辆的中心位置位于坐标(m,n)处的光流特征累积投票值;θk为第k个有效光流跟踪块的权重,M为有效光流跟踪块的个数;(νkk)为第k个有效光流跟踪块的中心位置坐标;(dνk,dωk)为第k个有效光流块的中心位置相对于动态车辆中心位置坐标的偏移量;σ2为一个常数参量,且σ2=4;λ为一个常数参量,w为目标区域的宽,h为目标区域的高;
4)利用下式,得到t时刻时,动态车辆的中心位置位于(m,n)处的运动特征可信度值:
Figure BDA0001534597950000046
式中,
Figure BDA0001534597950000047
为t时候时动态车辆的中心位置位于(m,n)处的运动特征可信度值,
Figure BDA0001534597950000048
表示t时刻时动态车辆的中心位置位于坐标(m,n)处的光流特征累积投票值,A为感兴趣区域,
Figure BDA0001534597950000049
所有可能为动态车辆中心位置坐标点处的光流特征累积投票值构成的集合。
有益效果:通过运动特征评估单元332来描述动态车辆在空时域运动信息,该做法中θk充分利用了局部图像块的空间位置信息对动态车辆的中心位置进行约束,即使得靠近运动目标的中心位置的局部图像块的权重更大,有效降低了来自背景区域的局部图像块对动态车辆的中心位置估计所带来的不利影响。同时通过计算每个有效光流跟踪块均对动态车辆的中心位置的相对权值,并进行累加,最后得到了运动特征可信度值,不仅能够反映出动态车辆在视频帧之间的时空关联性,同时解决了由于目标尺度变化或者目标姿态变化时的目标定位问题,使得后续对运动目标的定位更加精准可靠。
优选地,对动态车辆的中心位置坐标进行估计,具体包括:
(1)利用下式,计算t时刻的模糊综合可信度值,
Figure BDA0001534597950000051
式中,
Figure BDA0001534597950000052
为t时刻,动态车辆中心位置位于坐标(m,n)处的模糊综合可信度值,
Figure BDA0001534597950000053
为t时刻,动态车辆中心位置位于(m,n)处的外观特征可信度值,
Figure BDA0001534597950000054
为t时刻时,动态车辆中心位置位于(m,n)处的运动特征可信度值,κ为权重因子;
(2)根据步骤(1),估计t时刻的视频图像中动态车辆的中心位置坐标,得到t时刻时动态车辆的中心位置估计坐标
Figure BDA0001534597950000055
Figure BDA0001534597950000056
有益效果:利用模糊综合可信度值计算公式计算模糊综合可信度值,该算法使得模糊综合可信度图变得更尖锐,减小了在进行定位时的不确定性,不仅增加了目标跟踪的成功率,同时也有效提高了跟踪的准确性。
优选地,目标尺度更新及选择单元334用于根据定位单元333得到的估计坐标,实现对动态车辆区域的尺度更新同时从更新后的t时刻的视频图像中重新选取正训练样本和负训练样本和光流跟踪块,根据重新选取的正训练样本和负训练样本对霍夫森林检测器进行更新,具体包括:
(1)根据定位单元333得到的t时刻时动态车辆中心位置的估计坐标
Figure BDA0001534597950000057
确定t时刻时视频图像中的有效光流跟踪块中心坐标构成的集合:
Figure BDA0001534597950000058
其中,ε为常量参数,(s′k,r′k)为集合C中第k个有效光流跟踪块t时刻的中心坐标,
Figure BDA0001534597950000059
为t时刻动态车辆中心坐标的估计坐标,G为支持t时刻时动态车辆中心位置的估计坐标是
Figure BDA00015345979500000510
的有效光流跟踪块中心坐标构成的集合;‖■‖2为向量的长度,C为t时刻时有效光流跟踪块中心位置坐标构成的集合,E为t时刻时有效光流跟踪块相对于动态车辆中心的偏移量构成的集合;
(2)根据得到的集合G,利用下式计算第k个有效光流跟踪块所估计出的目标尺度变化率;
Figure BDA00015345979500000511
其中,vk为第k个有效光流跟踪块所估计出的目标尺度变化率,‖dsk,drk2表示第k个有效光流跟踪块相对于目标中心的偏移向量的长度,(s′k,r′k)为t时刻时第k个有效光流跟踪块中心坐标,(s′k,r′k)∈G,
Figure BDA0001534597950000061
为t时刻时动态车辆的中心位置坐标的估计坐标。
(3)计算集合G中所有有效光流跟踪块的目标尺度变化率,得到目标尺度变化率的集合{vk},根据得到的集合{vk},利用下式计算t时刻目标区域尺度的估计值:
Figure BDA0001534597950000062
其中,
Figure BDA0001534597950000063
为t时刻目标区域尺度的估计值,
Figure BDA0001534597950000064
为(t-1)时刻目标区域尺度的估计值,M为有效光流跟踪块的个数,η为一个常数,取0<η<1,vk为第k个有效光流跟踪块所估计出的目标尺度变化率;
(4)根据步骤(3)得到的目标区域尺度的估计值,对当前帧的目标区域进行更新;
(5)如果动态车辆中心位置坐标的模糊综合可信度值Fw>μ1,其中μ1为常量,且0<μ1<1,则分别从当前更新后的目标区域内以及目标区域附近区域随机采样若干局部图像块作为新的霍夫森林训练样本;从当前目标区域内随机采样若干局部图像块作为新的光流跟踪块;当下一时刻视频图像到来时,重新训练霍夫森林检测器,重复执行上述步骤,进而实现对动态车辆的跟踪检测。
有益效果:在对目标区域尺度进行更新时,通过定义集合G,ε的取值能够控制支持当前动态车辆的中心位置估计的有效光流跟踪块的大小,有利于对目标区域尺度的准确估计,同时对目标区域尺度进行估计时,考虑了t-1时刻目标区域尺度的估计值,该做法能够有效地抑制t时刻时所估计的目标尺度变化率中的噪声对目标区域尺度估计的影响,提高了目标区域尺度估计的准确度。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种智能交通监控***,其特征是,包括摄像头、无线传输模块和后端监控服务平台;
所述摄像头用于采集监控路段的视频图像;
所述无线传输模块用于将采集到的视频图像发送至所述的后端监控服务平台;
所述后端监控服务平台用于对视频图像中动态车辆进行检测和跟踪;
所述后端监控服务平台包括目标获取子模块、初始化子模块和跟踪定位子模块;所述目标获取子模块用于从视频图像中选取一帧图像作为起始帧图像,并人工标记出初始帧图像中动态车辆;所述初始化子模块用于对起始帧图像进行初始化操作;所述跟踪定位子模块根据所述初始化子模块的初始化结果,对动态车辆进行检测和跟踪;
所述跟踪定位子模块包括外观特征评估单元、运动特征评估单元、定位单元和目标尺度更新及选择单元;
所述外观特征评估单元用于对通过霍夫森林检测器后的t时刻的视频图像中动态车辆中心位置坐标进行霍夫投票,根据投票结果得到外观特征可信度值;
所述运动特征评估单元用于根据动态车辆在空时域的运动信息,对光流跟踪块进行处理,输出t时刻的视频图像中动态车辆中心位置坐标的运动特征可信度值;
所述定位单元用于根据获得的外观特征可信度值和运动特征可信度值对t时刻时的视频图像中动态车辆中心位置坐标进行估计,得到动态车辆中心位置的估计坐标;
所述目标尺度更新及选择单元用于根据定位单元得到的估计坐标,实现对目标区域的尺度更新同时从更新后的t时刻的视频图像中重新选取正训练样本、负训练样本和光流跟踪块,根据重新选取的正训练样本和负训练样本对霍夫森林检测器进行更新;
所述的对光流跟踪块进行处理,输出t时刻时的视频图像中动态车辆的中心位置坐标的运动特征可信度值,具体包括:
(1)根据从所述初始化子模块得到的光流跟踪块,利用Lucas-Kanade光流算法得到每个光流跟踪块在t时刻时光流跟踪块的中心位置,利用中值滤波滤除前向-后向光流误差较大的光流跟踪块,得到t时刻时有效光流跟踪块中心位置的集合
Figure FDA0002619019220000021
和有效光流跟踪块相对于动态车辆中心的偏移量集合
Figure FDA0002619019220000022
其中,k为第k个有效光流跟踪块,M为有效光流跟踪块的个数,(vk t,ωk t)为t时刻时第k个有效光流跟踪块中心位置坐标;dvk表示第k个有效光流跟踪块中心位置坐标的水平方向的偏移量,dωk表示第k个有效光流跟踪块中心位置坐标的垂直方向的偏移量;
(2)利用下式计算t时刻时动态车辆中心位置坐标位于(m,n)处的光流特征累积投票值:
Figure FDA0002619019220000023
Figure FDA0002619019220000024
其中,
Figure FDA0002619019220000025
为t时刻动态车辆的中心位置位于坐标(m,n)处的光流特征累积投票值;θk为第k个有效光流跟踪块的权重,M为有效光流跟踪块的个数;(vk,ωk)为第k个有效光流跟踪块的中心位置坐标;(dvk,dωk)为第k个有效光流块的中心位置相对于动态车辆中心位置坐标的偏移量;σ2为一个常数参量,且σ2=4;λ为一个常数参量,w为目标区域的宽,h为目标区域的高;
4)利用下式,得到t时刻时,动态车辆的中心位置位于(m,n)处的运动特征可信度值:
Figure FDA0002619019220000026
式中,
Figure FDA0002619019220000027
为t时候时动态车辆的中心位置位于(m,n)处的运动特征可信度值,
Figure FDA0002619019220000028
表示t时刻时动态车辆的中心位置位于坐标(m,n)处的光流特征累积投票值,A为感兴趣区域,
Figure FDA0002619019220000029
所有可能为动态车辆中心位置坐标点处的光流特征累积投票值构成的集合。
2.根据权利要求1所述的一种智能交通监控***,其特征是,所述对起始帧图像进行初始化操作具体包括:
(1)从起始帧图像中动态车辆所在的目标区域内随机采样一定数量的局部图像块作为正训练样本,从目标区域附近的背景区域内随机采样一定数量的局部图像块作为负训练样本;
(2)从正训练样本和负训练样本中提取起始帧图像的图像特征,该图像特征包括:正训练样本的颜色特征、梯度特征及其相对于动态车辆中心的空间位置偏移信息和负训练样本的颜色特征及梯度特征;根据得到的图像特征构建一个决策树为I的霍夫森林检测器;
(3)从目标区域内随机采用一定数量的局部图像块作为光流跟踪块,并对光流跟踪块的初始位置进行随机初始化。
3.根据权利要求1所述的一种智能交通监控***,其特征是,所述对动态车辆中心位置坐标进行霍夫投票,根据投票结果得到外观特征可信度值,具体包括:
(1)载入t时刻时的视频图像,从所述视频图像中随机采样一定数量的局部图像块,并将每个局部图像块通过霍夫森林检测器,霍夫森林检测器中的决策树判断局部图像块是否属于动态车辆,当决策树判定局部图像块属于动态车辆时,则对动态车辆中心位置坐标进行霍夫投票,并累积投票结果,其中对视频图像坐标(m,n)处的累积投票值计算公式如下:
Figure FDA0002619019220000031
式中,
Figure FDA0002619019220000032
为t时刻时支持动态车辆中心位置坐标位于坐标(m,n)处的累积投票值,A为感兴趣区域,感兴趣区域是指目标区域及其目标区域附近的背景区域,I表示霍夫森林检测器中决策树的总数,Li(s′,r′)表示中心坐标是(s′,r′)的局部图像块经过第i个决策树模型所到达的叶子节点,p((m,n)|Li(s′,r′))表示中心坐标是(s′,r′)的局部图像块经过第i个决策树模型的条件下,动态车辆中心位置坐标位于(m,n)处的概率;
(2)计算所有可能为动态车辆中心位置坐标的累积投票值,利用下式计算所有可能为动态车辆中心位置坐标点的外观特征可信度值:
Figure FDA0002619019220000033
其中,
Figure FDA0002619019220000034
为t时刻时动态车辆中心位置坐标位于(m,n)处的外观特征可信度值,
Figure FDA0002619019220000035
为t时刻动态车辆中心位置坐标位于(m,n)处的累积投票值,A为感兴趣区域,
Figure FDA0002619019220000041
为所有可能为动态车辆中心位置坐标点处的累积投票值构成的集合。
CN201711485166.7A 2017-12-29 2017-12-29 一种智能交通监控*** Active CN108062861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711485166.7A CN108062861B (zh) 2017-12-29 2017-12-29 一种智能交通监控***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711485166.7A CN108062861B (zh) 2017-12-29 2017-12-29 一种智能交通监控***

Publications (2)

Publication Number Publication Date
CN108062861A CN108062861A (zh) 2018-05-22
CN108062861B true CN108062861B (zh) 2021-01-15

Family

ID=62140952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711485166.7A Active CN108062861B (zh) 2017-12-29 2017-12-29 一种智能交通监控***

Country Status (1)

Country Link
CN (1) CN108062861B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114677774B (zh) * 2022-03-30 2023-10-17 深圳市捷顺科技实业股份有限公司 道闸控制方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831618A (zh) * 2012-07-20 2012-12-19 西安电子科技大学 基于霍夫森林的视频目标跟踪方法
CN103345840A (zh) * 2013-05-28 2013-10-09 南京正保通信网络技术有限公司 一种交叉道路口横穿道路事件视频检测方法
WO2013182298A1 (en) * 2012-06-08 2013-12-12 Eth Zurich Method for annotating images
CN103593679A (zh) * 2012-08-16 2014-02-19 北京大学深圳研究生院 一种基于在线机器学习的视觉人手跟踪方法
CN104112282A (zh) * 2014-07-14 2014-10-22 华中科技大学 一种基于在线学习跟踪监控视频中多个运动目标的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182298A1 (en) * 2012-06-08 2013-12-12 Eth Zurich Method for annotating images
CN102831618A (zh) * 2012-07-20 2012-12-19 西安电子科技大学 基于霍夫森林的视频目标跟踪方法
CN103593679A (zh) * 2012-08-16 2014-02-19 北京大学深圳研究生院 一种基于在线机器学习的视觉人手跟踪方法
CN103345840A (zh) * 2013-05-28 2013-10-09 南京正保通信网络技术有限公司 一种交叉道路口横穿道路事件视频检测方法
CN104112282A (zh) * 2014-07-14 2014-10-22 华中科技大学 一种基于在线学习跟踪监控视频中多个运动目标的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Hough Forest-based Association Framework with Occlusion Handling for Multi-Target Tracking;Jun Xiang, Nong Sang, Jianhua Hou, Rui Huang, and Changxin Gao;《IEEE SIGNAL PROCESSING LETTERS》;20160229;第23卷(第2期);第257-261页 *
Trend-sensitive hough forests for action detection;Kensho Hara ,Takatsugu Hirayama,Kenji Mase;《 2014 IEEE International Conference on Image Processing》;20150129;第1495-1475页 *
交通环境下基于改进霍夫森林的目标检测与跟踪;张文婷;《中国优秀硕士学位论文全文数据库信息科技辑》;20160131;全文 *
基于多特征与改进霍夫森林的行人检测方法;尤玮;《中国优秀硕士学位论文全文数据库信息科技辑》;20150228;全文 *
基于改进霍夫森林框架的多目标跟踪算法;高庆吉,霍璐,牛国臣;《计算机应用》;20160810;第36卷(第8期);第2311-2315页 *
多特征融合匹配的霍夫森林多目标跟踪;梁付新,刘洪彬,常发亮;《西安电子科技大学学报(自然科学版)》;20170629;第45卷(第1期);第130-132页 *

Also Published As

Publication number Publication date
CN108062861A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN104303193B (zh) 基于聚类的目标分类
WO2019101220A1 (zh) 基于深度学习网络和均值漂移的船只自动跟踪方法及***
CN110781836A (zh) 人体识别方法、装置、计算机设备及存储介质
CN109099929B (zh) 基于场景指纹的智能车定位装置及方法
US7403664B2 (en) Traffic event detection in compressed videos
CN110569754A (zh) 图像目标检测方法、装置、存储介质及设备
US20130265424A1 (en) Reconfigurable clear path detection system
WO2014082480A1 (zh) 一种人数及人群运动方向的计算方法及装置
CN108804992B (zh) 一种基于深度学习的人群统计方法
CN109711256B (zh) 一种低空复杂背景无人机目标检测方法
CN108288047A (zh) 一种行人/车辆检测方法
CN111898491B (zh) 一种车辆逆向行驶的识别方法、装置及电子设备
CN114241511B (zh) 一种弱监督行人检测方法、***、介质、设备及处理终端
CN108052887A (zh) 一种融合slam/gnss信息的疑似违法用地自动识别***及方法
CN110796074A (zh) 一种基于时空数据融合的行人再识别方法
CN111208479B (zh) 一种降低深度网络检测中虚警概率的方法
US20210406604A1 (en) Training of an object recognition neural network
US20220366570A1 (en) Object tracking device and object tracking method
CN113111722A (zh) 基于改进Mask R-CNN的自动驾驶目标识别方法
CN110717408A (zh) 一种基于tof相机的人流计数方法
CN116977937A (zh) 一种行人重识别的方法及***
CN108062861B (zh) 一种智能交通监控***
CN113536946A (zh) 一种基于摄像头关系的自监督行人重识别方法
CN111160115B (zh) 一种基于孪生双流3d卷积神经网络的视频行人再识别方法
CN112183287A (zh) 一种移动机器人在复杂背景下的人数统计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201230

Address after: 102600 1304, 13th floor, building 13, yard 25, Xinyuan street, Daxing District, Beijing

Applicant after: Beijing anzida Technology Co.,Ltd.

Address before: 234000 Caocan Town, Yongqiao District, Suzhou City, Anhui Province

Applicant before: Pan Yanling

GR01 Patent grant
GR01 Patent grant