CN108061684B - 一种用于确定开槽混凝土梁疲劳断裂能量的方法 - Google Patents

一种用于确定开槽混凝土梁疲劳断裂能量的方法 Download PDF

Info

Publication number
CN108061684B
CN108061684B CN201711346327.4A CN201711346327A CN108061684B CN 108061684 B CN108061684 B CN 108061684B CN 201711346327 A CN201711346327 A CN 201711346327A CN 108061684 B CN108061684 B CN 108061684B
Authority
CN
China
Prior art keywords
micro
length
crack
stress
concrete beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711346327.4A
Other languages
English (en)
Other versions
CN108061684A (zh
Inventor
林文福
毛文森
邹国锁
杨理桂
张再源
郝各贵
普斌
马锐
陈明坤
杨委
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Construction and Investment Holding Group Co Ltd
Original Assignee
Yunnan Construction and Investment Holding Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Construction and Investment Holding Group Co Ltd filed Critical Yunnan Construction and Investment Holding Group Co Ltd
Priority to CN201711346327.4A priority Critical patent/CN108061684B/zh
Publication of CN108061684A publication Critical patent/CN108061684A/zh
Application granted granted Critical
Publication of CN108061684B publication Critical patent/CN108061684B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种用于确定开槽混凝土梁疲劳断裂能量的方法,步骤S1:确定宏观裂纹开口位移δmacro;步骤S2:确定微观裂纹开口位移δmicro;步骤S3:确定应力强度因子修正值
Figure DDA0001509023480000011
步骤S4:确定桥接区域长度b;步骤S5:确定断裂能量GF

Description

一种用于确定开槽混凝土梁疲劳断裂能量的方法
技术领域
本发明涉及一种用于确定开槽混凝土梁疲劳断裂能量的方法,特别涉及一种用于确定开槽混凝土梁疲劳断裂能量的应力强度因子修正值的方法。
背景技术
混凝土结构部件在使用过程中,由于受疲劳、断裂、腐蚀以及蠕变变形等因素影响,导致其使用寿命缩短。尤其当混凝土存在瑕疵或缺陷时,在载荷作用下,内部缺陷或微观裂缝会逐渐演变成宏观裂缝,进而导致混凝土材料发生断裂。影响混凝土材料发生断裂的主要因素有应力集中、加载速率、温度、热冲击等等。如果混凝土材料存在裂纹,裂纹尖端的应力增加,就会导致混凝土材料发生断裂失效。断裂失效具体由参数应力强度因子来表示,该参数表示了紧邻裂纹尖端部分的应力分布状态,同时,该参数也是混凝土疲劳断裂能量模型的重要参数之一。
然而,现有技术中关于应力强度因子的确定方法复杂,且过分依赖于样本实验,准确度不高,进而导致确定混凝土疲劳断裂能量的模型缺乏精度和稳定性。
发明内容
本发明提供了一种用于确定开槽混凝土梁疲劳断裂能量的方法,所要解决的技术问题是改善应力强度因子的确定方法,提高其精度和稳定性,进而提高混凝土疲劳断裂能量模型的精度和稳定性。
1.本发明提出一种用于确定开槽混凝土梁疲劳断裂能量的方法,所述开槽混凝土梁开设有V 形槽,所述V形槽处于混凝土梁长度方向的中间位置,由表面开口向内延伸,所述V形槽朝向混凝土梁的底部具有裂纹尖端,V形槽底部夹角在0.1°~5°之间,其特征在于,
步骤S1:确定宏观裂纹开口位移δmacro:在任意位置x处的宏观裂纹开口位移δmacro表示如下:
其中,c为总裂纹长度,即c=a+b+l,a为宏观裂纹长度,b为桥接区域长度,l为微观裂纹临界长度,E为混凝土弹性模量,D为梁的厚度,σa为外部载荷作用应力,σb为使裂纹趋向于闭合的桥接应力,几何因数
Figure GDA0002205243750000012
为:
几何因数为:
Figure GDA0002205243750000015
步骤S2:确定微观裂纹开口位移δmicro
其中,λ1对应于微观裂纹补角β*的特征值,
Figure GDA0002205243750000022
为微观裂纹尖端处的应力强度因子经验值,μmicro和νmicro是剪切模量,参数A由下式给出:
A=[-(λ1+1)(1+νmicro)Rcos(λ1+1)β*sinβ*-(λ1+1)(1+νmicro)cos(λ1-1)β*sinβ*-4cos(λ1-1)β*sinβ* +(λ1+1)(1+νmicro)Rsin(λ1+1)β*cosβ*+4sin(λ1-1)β*cosβ*+(λ1-1)(1+νmicro)sin(λ1-1)β*cosβ*] ,
其中,β*为微观裂纹补角,R为比例系数;
步骤S3:确定应力强度因子修正值
Figure GDA0002205243750000023
Figure GDA0002205243750000024
其中,Emicro和Emacro分别是微观和宏观弹性模量,KI为应力强度因子经验值,满足
步骤S4:确定桥接区域长度b:
Figure GDA0002205243750000026
其中,da,max为最大骨料粒径;
步骤S5:确定断裂能量GF
Figure GDA0002205243750000027
附图说明
图1示出了开槽混凝土梁的示意图;
图2示出了裂纹开口的示意图;
图3示出了特征值和微观裂纹半角的关系;
图4示出了系数B1/D1和微观裂纹半角的关系;
图5示出了桥接区域长度和da,max/D的关系。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
本发明提出了一种用于确定开槽混凝土梁疲劳断裂能量的方法,该方法以线性弹性断裂力学为基础,通过修正与宏观和微观裂纹开口位移相关的应力强度因子的值来实现。其中,修正应力强度因子基于在中尺度聚集桥接而产生的桥接应力和在微尺度产生的微观裂纹。
图1示出了一种开槽混凝土梁的相关参数和载荷加载形式。该开槽混凝土梁开设有V 形槽,本实施方式中该V形槽处于混凝土梁长度方向的中间位置,由表面开口向内延伸,V 形槽朝向混凝土梁的底部具有裂纹尖端,V形槽底部夹角在0.1°~5°之间。其中,a为裂纹长度,c为总裂纹长度,D为梁的厚度,S为梁的长度,P为载荷。
步骤S1:确定宏观裂纹开口位移δmacro
混凝土材料宏观性能受到宏观裂纹和桥接区域的影响,其中,桥接区域存在于裂纹尖端附近,其尺寸和粗骨料尺寸成一定比例关系。图2示出了桥接机理,其中,在任意位置x 处的宏观裂纹开口位移δmacro表示如下方程(1):
Figure GDA0002205243750000031
其中,c为总裂纹长度,即c=a+b+l,a为宏观裂纹长度(可直接通过测量得到),b为桥接区域长度,l为微观裂纹临界长度,E为混凝土弹性模量,D为梁的厚度,
Figure GDA0002205243750000032
为几何因数。
根据现行叠加原理,裂纹表面的有效应力σ=σab,其中,σa为外部载荷作用应力,σb为使裂纹趋向于闭合的桥接应力。将裂纹表面的有效应力σ代入方程(1)中得到方程(2):
Figure GDA0002205243750000034
其中,几何因数
Figure GDA0002205243750000035
Figure GDA0002205243750000036
表示如下方程(3)和方程(4):
步骤S2:确定微观裂纹开口位移δmicro
在向开槽混凝土梁加载过程中,在水泥浆和石料的交界处会产生微观裂纹,且该微观裂纹会扩展至特定的临界长度,一旦达到该临界长度,这些微观裂纹就会和宏观裂纹合并,进而导致裂纹长度增加。本发明中,通过使用艾里应力函数Φ(属于本领域公知技术,本发明暂不描述),采用反推法得出沿着裂纹尖端的裂纹开口位移。对于无应力的微观裂纹表面,其上下表面的边界条件方程为方程(5):
Figure GDA0002205243750000039
其中,
Figure GDA0002205243750000041
为上表面边界应力,为下表面边界应力,β*为微观裂纹补角,然后,将微观应力场(属于本领域公知技术,本发明暂不描述)代入上述边界条件方程得到如下特征方程(6):
λ1Sin(2β*)+sin(2λ1β*)=0
本实施方式中,V形槽底部夹角在0.1°~5°之间,也即微观裂纹非常尖锐,这时微观裂纹补角β*为π值,特征方程简化为:sin(2λnπ)=0,特征方程的根为特征值
Figure GDA0002205243750000043
当特征值取0.5时,出现裂纹尖端奇点。微观裂纹尖端附近的位移场简化为如下方程(7)和方程(8):
Figure GDA0002205243750000045
其中,μmicro和νmicro是剪切模量,通过求解方程(6),可以得到用于表示不同微观裂纹半角(β=π-β*)的特征值λ1(如图3所示)。另外,如图3所示,特征值随着微观裂纹半角的增大而增大。通过边界条件方程可得出系数B1和D1的关系,例如B1=RD1,R 为比例系数(参见图4)。
通过如下变换方程(9):
V=Vrsin(θ)+V0cos(θ)
将垂直于载荷方向(V)的位移分量变换为直角坐标系,可得到裂纹开口位移。将θ=+β*和θ=-β*带入上述方程(9),可得到沿裂纹上表面(V+)和下表面(V-)的位移场方程(10)和方程(11):
Figure GDA0002205243750000046
Figure GDA0002205243750000047
微观裂纹开口位移δmicro表示为方程(12):
δmicro=V+-V-
将方程(8)、(10)和(11)代入上述方程(12),同时,定义系数其中,KI为应力强度因子经验值,微观裂纹开口位移δmicro简化为方程(13):
Figure GDA0002205243750000051
其中,λ1对应于微观裂纹补角β*的特征值,
Figure GDA0002205243750000052
为微观裂纹尖端处的应力强度因子经验值,μmicro和νmicro是剪切模量,参数A由下式方程(14)给出:
A=[-(λ1+1)(1+νmicro)Rcos(λ1+1)β*sinβ*-(λ1+1)(1+νmicro)cos(λ1-1)β*sinβ*-4cos(λ1-1)β*sinβ* +(λ1+1)(1+νmicro)Rsin(λ1+1)β*cosβ*+4sin(λ1-1)β*cosβ*+(λ1-1)(1+νmicro)sin(λ1-1)β*cosβ*]
由上式可知,参数A随着微观裂纹半角β的变化而变化。
步骤S3:确定桥接区域长度b。
表1示出了材料特性和几何参数,图5示出了相关实验结果,以此为基础,对桥接区域长度b进行校准。实验结果表明,混凝土断裂性能受到样本尺寸da,max/D和最大骨料粒径da,max的影响,据此得出方程(15):
Figure GDA0002205243750000053
表1
Figure GDA0002205243750000054
通过线性拟合的方法,得到图5所示的实验结果,可得到方程(16):
Figure GDA0002205243750000055
其中,da,max为最大骨料粒径。
步骤S4:确定应力强度因子修正值
Figure GDA0002205243750000056
应力强度因子修正值
Figure GDA0002205243750000057
用于表征非线性特性,其等同于在x处的裂纹开口位移。根据连续性条件,在汇合点x(x=c-l/2)处的裂纹开口位移为方程(17):
Figure GDA0002205243750000061
将方程(2)、(13)代入方程(17),得到应力强度因子修正值
Figure GDA0002205243750000062
如下方程(18):
其中,σa为外部载荷作用应力,σb为桥接应力,l为微观裂纹临界长度,λ1为对应于微观裂纹半角β的特征值,D为梁的厚度,c为总裂纹长度,即c=a+b+l,Emicro和Emacro分别是微观和宏观弹性模量,由前述方程(14)可知,参数A随着微观裂纹半角β的变化而变化。
将方程
Figure GDA0002205243750000064
代入上式,应力强度因子修正值
Figure GDA0002205243750000065
简化为方程(19)和方程(20):
Figure GDA0002205243750000067
其中,KI为应力强度因子经验值,从中可以发现,应力强度因子修正值
Figure GDA0002205243750000068
和应力强度因子经验值KI成比例关系,比例系数α表征了其微观属性。
本实施方式中,V形槽底部夹角在0.1°~5°之间,也即微观裂纹非常尖锐(即β*≈180°),特征值λ1取0.5,参数B1=(1/3)D1,应力强度因子修正值变为方程(21) 和方程(22):
代入应力强度因子经验值KI后改写为:
Figure GDA00022052437500000611
因此,在已知不同尺寸的材料特性、桥接应力和微观裂纹临界长度的情况下,即可得到应力强度因子修正值
Figure GDA00022052437500000612
桥接应力σb、微观裂纹临界长度l和不同尺寸的材料特性的获得方法属于本领域的公知技术,本发明暂不描述。
步骤S5:确定断裂能量GF
断裂能量是一个描述混凝土断裂现象的重要参数。现有技术中,通常的方法是:在裂纹沿直线扩展的情况中,裂纹能量GF和断裂韧性KIC相关,表示为方程(23):
Figure GDA0002205243750000071
而在本发明中,断裂能量以过程区域参数的形式重新定义,采用方程(22)在极限载荷下计算出的应力强度因子修正值代替断裂韧性KIC,得到方程(24):
Figure GDA0002205243750000073
其中,σa为最大载荷下的外加应力,σb最大载荷下的桥接应力,a为最大载荷下的裂纹长度,c为总裂纹长度,即c=a+b+l,E为混凝土的弹性模量,其中,桥接区域长度b由方程(16)得出。
最后,本发明申请人针对三种不同尺寸的开槽混凝土梁,分别进行了实验,实验结果如表2所示。
表2
Figure GDA0002205243750000074
从表2中可以看出,由本发明提供的模型计算得到的断裂能量值和实验值相吻合,验证了本发明应力强度因子修正值以及断裂能量模型的有效性。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种用于确定开槽混凝土梁疲劳断裂能量的方法,所述开槽混凝土梁开设有V形槽,所述V形槽处于混凝土梁长度方向的中间位置,由表面开口向内延伸,所述V形槽朝向混凝土梁的底部具有裂纹尖端,V形槽底部夹角在0.1°~5°之间,其特征在于,
步骤S1:确定宏观裂纹开口位移δmacro:在任意位置x处的宏观裂纹开口位移δmacro表示如下:
Figure FDA0002205243740000011
其中,c为总裂纹长度,即c=a+b+l,a为宏观裂纹长度,b为桥接区域长度,l为微观裂纹临界长度,E为混凝土弹性模量,D为梁的厚度,σa为外部载荷作用应力,σb为使裂纹趋向于闭合的桥接应力,几何因数
Figure FDA0002205243740000012
为:
Figure FDA0002205243740000013
几何因数为:
Figure FDA0002205243740000015
步骤S2:确定微观裂纹开口位移δmicro
Figure FDA0002205243740000016
其中,λ1对应于微观裂纹补角β*的特征值,为微观裂纹尖端处的应力强度因子经验值,μmicro和νmicro是剪切模量,参数A由下式给出:
A=[-(λ1+1)(1+νmicro)Rcos(λ1+1)β*sinβ*-(λ1+1)(1+νmicro)cos(λ1-1)β*sinβ*-4cos(λ1-1)β*sinβ*+(λ1+1)(1+νmicro)Rsin(λ1+1)β*cosβ*+4sin(λ1-1)β*cosβ*+(λ1-1)(1+νmicro)sin(λ1-1)β*cosβ*],
其中,β*为微观裂纹补角,R为比例系数;
步骤S3:确定应力强度因子修正值
Figure FDA0002205243740000018
Figure FDA0002205243740000019
其中,Emicro和Emacro分别是微观和宏观弹性模量,KI为应力强度因子经验值,满足
Figure FDA00022052437400000110
步骤S4:确定桥接区域长度b:
Figure FDA0002205243740000021
其中,da,max为最大骨料粒径;
步骤S5:确定断裂能量GF
Figure FDA0002205243740000022
CN201711346327.4A 2017-12-15 2017-12-15 一种用于确定开槽混凝土梁疲劳断裂能量的方法 Expired - Fee Related CN108061684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711346327.4A CN108061684B (zh) 2017-12-15 2017-12-15 一种用于确定开槽混凝土梁疲劳断裂能量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711346327.4A CN108061684B (zh) 2017-12-15 2017-12-15 一种用于确定开槽混凝土梁疲劳断裂能量的方法

Publications (2)

Publication Number Publication Date
CN108061684A CN108061684A (zh) 2018-05-22
CN108061684B true CN108061684B (zh) 2020-01-10

Family

ID=62138987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711346327.4A Expired - Fee Related CN108061684B (zh) 2017-12-15 2017-12-15 一种用于确定开槽混凝土梁疲劳断裂能量的方法

Country Status (1)

Country Link
CN (1) CN108061684B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918253B (zh) * 2018-08-01 2021-02-02 无锡洲翔成套焊接设备有限公司 测量落锤撕裂试验材料真实断裂能的方法
CN110726625A (zh) * 2019-11-14 2020-01-24 中北大学 一种岩石类材料断裂过程区长度的确定方法
CN113324848B (zh) * 2021-05-20 2022-07-15 山东大学 一种沥青混合料小梁试件低温弯曲应变试验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262701A (zh) * 2011-08-02 2011-11-30 北京航空航天大学 基于线弹性断裂力学及声发射参数的在役16锰钢承力件疲劳裂纹扩展阶段评估***
CN203479643U (zh) * 2013-09-06 2014-03-12 南京理工大学 Ⅲ型裂纹断裂韧性的测试试件
CN103760036A (zh) * 2014-01-08 2014-04-30 黄河水利委员会黄河水利科学研究院 一种钢纤维混凝土断裂试验起裂荷载的测试方法
CN105825030A (zh) * 2016-04-01 2016-08-03 长沙理工大学 老化钢筋混凝土桥梁疲劳寿命评估方法
CN106055784A (zh) * 2016-05-30 2016-10-26 东南大学 一种钢桥细节疲劳裂纹扩展评估方法
CN106872300A (zh) * 2017-02-06 2017-06-20 太原理工大学 基于声发射检测的镁合金搅拌摩擦焊接头疲劳裂纹扩展特性研究方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222468A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. Crack resistant layer with good beam fatigue properties and method of selecting same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262701A (zh) * 2011-08-02 2011-11-30 北京航空航天大学 基于线弹性断裂力学及声发射参数的在役16锰钢承力件疲劳裂纹扩展阶段评估***
CN203479643U (zh) * 2013-09-06 2014-03-12 南京理工大学 Ⅲ型裂纹断裂韧性的测试试件
CN103760036A (zh) * 2014-01-08 2014-04-30 黄河水利委员会黄河水利科学研究院 一种钢纤维混凝土断裂试验起裂荷载的测试方法
CN105825030A (zh) * 2016-04-01 2016-08-03 长沙理工大学 老化钢筋混凝土桥梁疲劳寿命评估方法
CN106055784A (zh) * 2016-05-30 2016-10-26 东南大学 一种钢桥细节疲劳裂纹扩展评估方法
CN106872300A (zh) * 2017-02-06 2017-06-20 太原理工大学 基于声发射检测的镁合金搅拌摩擦焊接头疲劳裂纹扩展特性研究方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A multiscale approach for modeling fatigue crack growth in concrete;K.M. Simon et al.;《International Journal of Fatigue》;20170106;第98卷;第1-13页 *
浅谈混凝土的施工温度引起的裂缝防治;肖达勇 等;《公路交通科技 应用技术版》;20151231(第3期);第110-111页 *

Also Published As

Publication number Publication date
CN108061684A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN108061684B (zh) 一种用于确定开槽混凝土梁疲劳断裂能量的方法
Mirsayar On fracture of kinked interface cracks–The role of T-stress
Liu et al. An improved semi-analytical solution for stress at round-tip notches
Ayatollahi et al. Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite
Ayatollahi et al. Tensile fracture in notched polycrystalline graphite specimens
Mirsayar et al. On fracture initiation angle near bi-material notches–Effects of first non-singular stress term
Livieri Use of J-integral to predict static failures in sharp V-notches and rounded U-notches
Carpinteri et al. Brittle failures at rounded V-notches: a finite fracture mechanics approach
CN103884610B (zh) 一种复合材料ii型开裂门槛值与s-n曲线测定方法
Gómez et al. Fracture loads for ceramic samples with rounded notches
Gates et al. Fatigue crack growth behavior in the presence of notches and multiaxial nominal stress states
Akhavan-Safar et al. The role of T-stress and stress triaxiality combined with the geometry on tensile fracture energy of brittle adhesives
CN108801808B (zh) 一种混凝土抗剪强度试验方法
Needleman et al. Crack-tip stress and deformation fields in a solid with a vertex on its yield surface
Samborsky et al. Static and fatigue testing of thick adhesive joints for wind turbine blades
Kim et al. Electrochemical reactions for steel beams strengthened with CFRP sheets
Mirsayar A modified maximum tangential stress criterion for determination of the fracture toughness in bi-material notches–Part 1: Theory
Jones et al. Thermal considerations in the patching of metal sheets with composite overlays
Liu et al. Failure criteria for grouted concrete block masonry under biaxial compression
Xu et al. Saint-Venant torsion of a circular bar with a non-radial crack incorporating surface elasticity
Watanabe Analytical research on method for applying interfacial fracture mechanics to evaluate strength of cementitious adhesive interfaces for thin structural finish details
Kazarinov Limiting state of plate with hole
Ståhle et al. On buckling and fracture of thin elastic-plastic foils
Guo et al. The three-stage model based on strain strength distribution for the tensile failure process of rock and concrete materials
Xu et al. Experiment and numerical simulation on axial compressive performance of autoclaved fly ash solid brick masonry columns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Lin Yongfu

Inventor after: Yang Wei

Inventor after: Mao Wensen

Inventor after: Zou Guosuo

Inventor after: Yang Ligui

Inventor after: Zhang Zaiyuan

Inventor after: Hao Gegui

Inventor after: Pu bin

Inventor after: Ma Rui

Inventor after: Chen Mingkun

Inventor before: Lin Wenfu

Inventor before: Yang Wei

Inventor before: Mao Wensen

Inventor before: Zou Guosuo

Inventor before: Yang Ligui

Inventor before: Zhang Zaiyuan

Inventor before: Hao Gegui

Inventor before: Pu bin

Inventor before: Ma Rui

Inventor before: Chen Mingkun

CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Economic and Technological Development Zone Information Industry Base in Yunnan province Kunming city forest road 650000 No. 188

Patentee after: YUNNAN CONSTRUCTION AND INVESTMENT HOLDING GROUP Co.,Ltd.

Address before: 650000 Yunnan Kunming economic and Technological Development Zone Information Industry Base Linxi Lu 188

Patentee before: YUNNAN CONSTRUCTION AND INVESTMENT HOLDING GROUP Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110

Termination date: 20201215