CN108060126A - 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合 - Google Patents

一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合 Download PDF

Info

Publication number
CN108060126A
CN108060126A CN201610975744.4A CN201610975744A CN108060126A CN 108060126 A CN108060126 A CN 108060126A CN 201610975744 A CN201610975744 A CN 201610975744A CN 108060126 A CN108060126 A CN 108060126A
Authority
CN
China
Prior art keywords
cell
signal path
stem cell
mescenchymal stem
forskolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610975744.4A
Other languages
English (en)
Other versions
CN108060126B (zh
Inventor
胡敏
李燕皎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Keats Institute Of Regenerative Medicine Co Ltd
Original Assignee
Yunnan Keats Institute Of Regenerative Medicine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Keats Institute Of Regenerative Medicine Co Ltd filed Critical Yunnan Keats Institute Of Regenerative Medicine Co Ltd
Priority to CN201610975744.4A priority Critical patent/CN108060126B/zh
Priority to US16/347,627 priority patent/US11674122B2/en
Priority to PCT/CN2017/109488 priority patent/WO2018082690A1/zh
Publication of CN108060126A publication Critical patent/CN108060126A/zh
Application granted granted Critical
Publication of CN108060126B publication Critical patent/CN108060126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/135Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/09Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from epidermal cells, from skin cells, from oral mucosa cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts

Abstract

本发明公开了一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合。所述方法对分化的细胞进行定向诱导制备得到间充质干细胞,所述定向诱导包括抑制TGF‑β的信号通路,抑制PKC的活性,激活WNT/β‑catenin的信号通路以及激活cAMP的信号通路。本发明通过分阶段调控相应的信号通路和/或酶的活性将分化的细胞诱导为间充质干细胞,本发明通过采用小分子化合物组合分阶段调控相应的靶点,能够将分化的细胞重编程为间充质干细胞,各步骤可实现精准质控,便于标准化操作和规模化生产。本发明提供的方法供体来源广泛,患者本人即可作为供体,可在较短时间内获得基础研究、临床治疗或组织工程生产所需的间充质干细胞。

Description

一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的 组合
技术领域
本发明涉及细胞生物学,组织工程和再生医学领域,尤其涉及一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合。
背景技术
间充质干细胞是一类具有多向分化潜能的成体干细胞,广泛存在于人体骨髓、脂肪、外周血液中,与胚胎干细胞或iPS细胞相比,间充质干细胞具有更高的安全性、稳定性与低免疫原性,在骨与关节损伤、肿瘤、肝硬化、糖尿病、退行性疾病、神经损伤、老年痴呆及红斑狼疮等疾病的临床研究或临床治疗中已有较成熟的应用,具有巨大的产业价值,但存在数量稀少、来源有限、难以富集、获取过程复杂、受供体健康状态限制、细胞易老化、无法大量传代扩增等局限,因而未能广泛应用。胚胎干细胞与iPS细胞可经过诱导获得间充质干细胞,但由于胚胎干细胞与iPS细胞本身均存在伦理问题或安全隐患,因此未能广泛应用。
目前利用细胞转分化技术已经可以通过诱导分化的细胞如皮肤成纤维细胞获得其它类型的功能体细胞,如肌细胞、神经元、干细胞等。其中,采用小分子化合物及其组合诱导的直接转分化技术具备以下特点:①不导入外源性转录因子,不改变源细胞的基因结构,具有良好的安全性与稳定性,无免疫原性;②诱导***较为稳定,易于质控,成本低廉;③诱导过程短,效率高,便于规模化生产。因此有望成为再生医学种子细胞研发及生产的基础技术。
传统的细胞转分化需要通过导入特定的外源性基因实现,有时还需要相应的小分子化合物或信号分子协同作用。文献已有较多采用特定外源性基因把某一分化的细胞诱导为另一功能性分化的细胞的报道。如文献已有采用BMP-2,BMP-7,LMP3单独或协同作用使皮肤成纤维细胞转分化为在体外、体内都具有骨形成作用的成骨细胞的报道。但导入外源性基因存在致瘤风险,并可能使目标细胞产生免疫原性,因而难以推广应用。2013年,邓宏魁报道仅采用小分子化合物或其组合可以实现鼠皮肤成纤维细胞重编程为神经细胞的转分化过程,并证实该细胞转分化技术具有诱导过程短、诱导***稳定、易于质控、成本低、无外源性基因***导致的致瘤风险、获得的目标细胞具有良好的安全性与稳定性且无免疫原性,具有潜在的临床应用价值与产业化前景。此后,申请号为201410075246.5的中国专利申请提供了一种把分化的细胞诱导转分化为神经干细胞的方法及其应用。具体地,该申请涉及采用组蛋白去乙酰化酶(HDACs)抑制剂、糖原合成酶激酶(GSK-3)抑制剂和转化生长因子β(TGF-β)信号通路抑制剂的组合,在正常生理低氧环境下诱导成纤维细胞、上皮细胞等分化的细胞转分化为具有良好多能性及传代稳定性的神经干细胞。申请号为201610213644.8的中国专利申请提供了一种诱导成纤维细胞转分化为心肌细胞的诱导培养基、方法及其应用,所述诱导培养基包含基础培养基和诱导小分子组合,所述诱导小分子组合为6TCFOW或SCFOV,其中6为E615 41、T为苯环丙胺、C为CHIR99021、F为毛喉素、O为Dorsomorphin、W为IWR-1、S为SB431542、V为丙戊酸。该申请诱导培养基能够将成纤维细胞诱导转分化为心肌细胞。目前,通过采用单纯小分子化合物或其组合诱导人类分化的细胞如皮肤成纤维细胞获得施旺细胞(THOMA EC,et al,2014)、神经细胞(HU W,et al,2015)、胰岛细胞(ShengDing,et al,2015)的成果已陆续见诸报道。
由于人类与小鼠存在约25%的基因差异,而将上述在小鼠细胞实验中获得成功的专利申请技术方案应用于人类细胞同类重编程的可行性不高;另一方面,由于采用同类细胞通过转分化获得不同目标细胞的具体理论基础与技术手段并不相同,采用上述技术方案并不能获得未见报道的其它类型分化的细胞。申请人采用上述报道的技术方案分别重复试验,既未能把应用于小鼠细胞的重编程技术方案成功应用于人的同类细胞重编程,也未能把人类分化的细胞诱导重编程为间充质干细胞。多种分化的细胞如皮肤成纤维细胞具有来源丰富、易于获取并易于在体外长期大量扩增培养的优点。目前利用细胞转分化技术已经可以把分化的细胞如皮肤成纤维细胞直接诱导为成肌细胞、神经元、肝细胞、成骨细胞等多种不同类型的功能细胞;或先诱导为多能干细胞后,再进一步定向诱导为相应的功能细胞。上述采用细胞转分化技术从某种特定分化的细胞如皮肤成纤维细胞直接或间接诱导获得的功能细胞已经不再保持源细胞的分子特征与功能,但获得了相应目标细胞的典型分子特征与细胞功能。目前,上述诱导性功能细胞已逐渐应用于疾病模型研究、临床治疗研究与组织工程研究。
传统的细胞转分化需要通过导入特定的外源性基因实现,有时还需要相应的小分子化合物、细胞因子或重组蛋白协同作用。文献已有较多采用特定外源性基因把某一分化的细胞诱导为另一功能性分化的细胞的报道。如文献已有采用BMP-2,BMP-7,LMP3单独或协同作用使皮肤成纤维细胞转分化为在体外、体内都具有骨形成作用的成骨细胞的报道。但导入外源性基因存在致瘤风险,并可能使目标细胞产生免疫原性,难以推广应用。2013年,邓宏魁报道仅采用小分子化合物或其组合可以实现鼠皮肤成纤维细胞重编程为神经细胞的转分化过程,并证实该细胞转分化技术具有诱导过程短、诱导***稳定、易于质控、成本低、无外源性基因***导致的致瘤风险、获得的目标细胞具有良好的安全性与稳定性且无免疫原性,具有潜在的临床应用价值与产业化前景。此后,申请号为201410075246.5的中国专利申请提供了一种把分化的细胞诱导转分化为神经干细胞的方法及其应用。具体地,该申请涉及采用组蛋白去乙酰化酶(HDACs)抑制剂、糖原合成酶激酶(GSK-3)抑制剂和转化生长因子β(TGF-β)信号通路抑制剂的组合,在正常生理低氧环境下诱导成纤维细胞、上皮细胞等分化的细胞转分化为具有良好多能性及传代稳定性的神经干细胞。申请号为201610213644.8的中国专利申请提供了一种诱导成纤维细胞转分化为心肌细胞的诱导培养基、方法及其应用,所述诱导培养基包含基础培养基和诱导小分子组合,所述诱导小分子组合为6TCFOW或SCFOV,其中6为E61541、T为苯环丙胺、C为CHIR99021、F为毛喉素、O为Dorsomorphin、W为IWR-1、S为SB431542、V为丙戊酸。该申请诱导培养基能够将成纤维细胞诱导转分化为心肌细胞。目前,通过采用单纯小分子化合物或其组合诱导人类分化的细胞如皮肤成纤维细胞获得施旺细胞(THOMA EC,et al,2014)、神经细胞(HU W,et al,2015)、胰岛细胞(Shen g Ding,et al,2015)的成果已陆续见诸报道。
由于人类与小鼠存在约25%的基因差异,而将上述在小鼠细胞实验中获得成功的专利申请技术方案应用于人的同类细胞转分化可行性不高;另一方面,由于诱导同类细胞转分化获得不同目标细胞的具体理论基础与技术手段并不相同,申请人采用上述报道的技术方案分别重复试验,既未能把应用于小鼠细胞的转分化技术方案成功应用于人的同类细胞转分化,也未能把人类分化的细胞诱导转分化为间充质干细胞。
发明内容
本发明提供了一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合。本发明通过利用小分子化合物组合按时序分阶段处理分化的细胞快速稳定程序化地获得大量间充质干细胞或其产物。
本发明第一方面,提供一种诱导分化的细胞制备间充质干细胞的方法,所述方法对分化的细胞进行定向诱导制备得到间充质干细胞,所述定向诱导包括抑制TGF-β的信号通路,抑制PKC的活性,激活WNT/β-catenin的信号通路以及激活cAMP的信号通路。
所述定向诱导还包括激活RA的信号通路和/或抑制DNMT的活性和/或抑制HMT的活性和/或抑制组蛋白去甲基化酶的活性和/或抑制JNK的信号通路和/或抑制ROCK的信号通路和/或抑制赖氨酸脱乙酰基酶活性,最终制备得到间充质干细胞。
所述定向诱导前对分化的细胞进行预处理,所述预处理包括抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路;或所述预处理包括抑制赖氨酸脱乙酰基酶(Lysine deacetylases inhibitors,KDACIs)的活性,抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路。
进一步地,所述定向诱导阶段过程中可添加抗坏血酸和/或细胞生长因子BMP4和/或PDGF-AB和/或碱性成纤维细胞生长因子b-FGF蛋白与细胞或细胞产物接触,提高诱导率。
进一步地,所述TGF-β的信号通路特指I型TGF-β受体参与的信号通路,所述cAMP的信号通路为EPAC/RAP1信号通路。
所述分化的细胞可以采用小分子化合物组合调控相应的信号通路(如cAMP、TGF-β、WNT/β-catenin、JNK、ROCK和RA信号通路等)和/或酶(如DNMT、HMT、PKC和赖氨酸脱乙酰基酶等)。
所述分化的细胞进行上述预处理3-10天得到细胞产物,所述细胞产物采用TGF-β信号通路抑制剂,PKC信号通路抑制剂,WNT/β-catenin信号通路激活剂以及cAMP的信号通路激活剂定向诱导处理2-20天;或所述细胞产物采用TGF-β信号通路抑制剂,PKC抑制剂,WNT/β-catenin信号通路激活剂,cAMP的信号通路激活剂,以及RA信号通路的激活剂,DNMT抑制剂,HMT抑制剂,组蛋白去甲基化酶的抑制剂,JNK信号通路的抑制剂,ROCK信号通路的抑制剂和赖氨酸脱乙酰基酶的抑制剂中的至少一种进行定向诱导处理2-20天。
所述分化的细胞来源于哺乳动物如人,所述分化的细胞包括成纤维细胞,上皮细胞,脂肪细胞或血液细胞,优选地所述分化的细胞是成纤维细胞。
本发明第二方面,还提供一种由所述方法制备得到的间充质干细胞,在本发明提供的实施方案中,所述的间充质干细胞具备标准的间充质干细胞的特性,所述间充质干细胞能够进行上万亿次的扩增,可大量生产,纯度高,具有良好的产业化前景。
采用本发明提供的方法获得的间充质干细胞具有良好的多胚层多向分化潜能,传代稳定,扩增效率高,其工艺按时序分阶段流程化操作,便于精准操作与***质控,易于标准化规模化生产。本发明能够不受供体来源限制地特异性或个体化获得大量间充质干细胞,有望开发成可用于骨与关节损伤、肿瘤、肝硬化、糖尿病、退行性疾病、神经损伤、老年痴呆及红斑狼疮等疾病基础研究或临床治疗的模型、技术或药物。
本发明第三方面,还提供所述间充质干细胞及其产物的应用,间充质干细胞及其产物可用于基础研究、临床治疗、组织工程产品研发与生产,还可用于制备该间充质干细胞的小分子化合物组合。
本发明第四方面,还提供一种调控靶点的组合,所述调控靶点的组合用于调控上述信号通路和/或调控酶活性,调控的靶点为TGF-β受体、PKC、WNT/β-catenin、cAMP、JNK、ROCK、DNMT、HMT、赖氨酸脱乙酰基酶和组蛋白去甲基化酶。
所述调控靶点的组合包括抑制TGF-β的信号通路,抑制PKC的活性,激活WNT/β-catenin的信号通路以及激活cAMP的信号通路。
所述调控靶点的组合还进一步包括激活RA的信号通路和/或抑制DNMT的活性和/或抑制HMT的活性和/或抑制组蛋白去甲基化酶的活性和/或抑制JNK的信号通路和/或抑制ROCK的信号通路和/或抑制赖氨酸脱乙酰基酶。
所述调控靶点的组合按时序分阶段进行调控,第一阶段:抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路;或第一阶段:抑制赖氨酸脱乙酰基酶(Lysine deacetylases inhibitors,KDACIs)的活性,抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路。
第二阶段:抑制TGF-β的信号通路,抑制PKC的活性,激活WNT/β-catenin的信号通路以及激活cAMP的信号通路,或第二阶段:在抑制TGF-β的信号通路,抑制PKC的活性,激活WNT/β-catenin的信号通路和激活cAMP的信号通路的基础上,同时激活RA的信号通路和/或抑制DNMT的活性和/或抑制HMT的活性和/或抑制组蛋白去甲基化酶的活性和/或抑制JNK的信号通路和/或抑制ROCK的信号通路和/或抑制赖氨酸脱乙酰基酶。
本发明第五方面,还提供一种小分子化合物组合,所述小分子化合物作用于上述调控靶点,不同的小分子化合物作用于各自相应的调控靶点。
本发明第六方面,还提供一种所述调控靶点的组合或所述小分子化合物的组合在细胞重编程中的应用,用于在体内动员诱导或体外诱导制备的间充质干细胞或以其为源头细胞的再生医学种子细胞、组织工程种子细胞(如肝细胞、成骨细胞、软骨细胞等)及其产物,可用于基础研究、临床治疗及组织工程产品研发与生产。
本发明的方法在适合产生诱导性间充质干细胞的条件下进行,所述条件包括例如培养液的成分、浓度,培养温度,培养时间及其他条件。基于现有技术的充分教导并结合本发明的示例性说明,本领域技术人员不需要过度实验即能够容易地确定上述培养条件。关键在于选择所需抑制或激活的细胞信号通路,并确定作用细胞信号通路的顺序。另外,小分子化合物或其组合的浓度及其他条件也可在本发明提供的范围基础上做适应性调整。
本发明的机理如下:本发明通过对分化的细胞进行组蛋白乙酰化和甲基化的处理,激活重编程的内源性转录因子,再通过抑制TGF-beta信号通路、激活WNT/β-catenin信号通路、激活cAMP信号通路、激动RA信号通路和抑制PKC活性等的协同作用,实现分化的细胞去分化,重编程为间充质干细胞。
本发明采用的小分子化合物组合包括以下组分:TGF-β信号通路抑制剂,WNT/β-catenin信号通路激动剂和cAMP信号通路激动剂和PKC抑制剂。
进一步地,所述小分子化合物组合还包括RA信号通路激动剂,DNMT抑制剂,HMT抑制剂,组蛋白去甲基化酶抑制剂,ascorbate(抗坏血酸),JNK信号通路抑制剂,ROCK信号通路抑制剂和赖氨酸脱乙酰基酶抑制剂中的至少一种。
作为优选,所述小分子化合物组合包括按时序分阶段使用的第一阶段接触活化成分和第二阶段接触诱导成分,所述第一阶段接触活化成分包括TGF-β通路抑制剂,WNT/β-catenin信号通路激动剂和cAMP信号通路激动剂中的至少两种,所述第二阶段接触诱导成分包括TGF-β信号通路抑制剂,WNT/β-catenin信号通路激动剂和cAMP信号通路激动剂和PKC抑制剂。
进一步地,所述第一阶段接触活化成分包括赖氨酸脱乙酰基酶抑制剂,TGF-β信号通路抑制剂,WNT/β-catenin信号通路激动剂和cAMP信号通路激动剂中的至少两种;所述第二阶段接触诱导成分还包括RA信号通路激动剂,DNMT抑制剂,HMT抑制剂,组蛋白去甲基化酶抑制剂,ascorbate(抗坏血酸),JNK信号通路抑制剂,ROCK信号通路抑制剂和赖氨酸脱乙酰基酶抑制剂中的至少一种。
进一步地,所述TGF-β信号通路为I型TGF-β受体参与的信号通路,所述cAMP信号通路为EPAC/RAP1信号通路。
所述赖氨酸脱乙酰基酶抑制剂包括sodium phenylbutyrate,butyrate,sodiumbutyrate,MC1568,CI994(Tacedinaline),chidamide,CAY10683(SantacruzaMate A),CUDC-907,M344(Histone Deacetylase Inhibitor III),LAQ824(NVP-LAQ824,Dacinostat),Pracinostat(SB939),VPA,Scriptaid,Apicidin,LBH-589(Panobinostat),MS-275,SAHA(Vorinostat),Trichostatin(TSA),Psammaplin A,PCI-24781(Abexinostat),Rocilinostat(ACY-1215),Mocetinostat(MGCD0103),4-Phenylbutyrate(4PB),splitomicin,SRT1720,resveratrol,Sirtinol,APHA,CI-994,Depudecin,FK-228,HC-Toxin,ITF-2357(Givinostat),Chidamide,RGFP 966,PHOB,BG45,Nexturastat A,TMP269,CAY10603,MGCD-0103,Niltubacin,PXD-101(Belinostat),Pyroxamide,Tubacin,EX-527,BATCP,Cambinol,MOCPAC,PTACH,MC1568,NCH51和TC-H106中的至少一种;
所述TGF-β受体抑制剂包括616452,LY2109761,Pirfenidone,Repsox(E-616452),SB431542,A77-01,Tranilast,Galunisertib(LY2157299),A8301,GW788388,ITD-1,SD208,SB525334,LY364947,ASP3029,D4476和SB505124中的至少一种;
所述PKC抑制剂包括Go6983,Ro31-8220Mesylate,Go6976和BisindolylmaleimideI(GF109203X)的至少一种;
所述WNT/β-catenin信号通路激动剂包括MAY-262611,CHIR98014,CHIR99021,LiCl,Li2CO3,TD114-2,AZD2858,AZD1080,BIO,Kenpaullone,TWS119,LY2090314,CBM1078,SB216763和AR-A014418中的至少一种;
所述cAMP激动剂包括EPAC/RAP1激动剂,8-Bromo-cAMP,Dibutyryl-Camp和Sp-8-Br-cAMPs中的至少一种;
所述EPAC/RAP1激动剂包括Forskolin,IBMX,Prostaglandin E2(PGE2),NKH477,8-pCPT-2′-O-Me-cAMP,GSK256066,Apremilast(CC-10004)Roflumilast,Cilomilast,Rolipram和Milrinone中的至少一种;
所述RA信号通路激动剂包括TTNPB,Bexarotene,Ch55,Tamibarotene,Retinol,AM580,ATRA,13-cis RA,Vitamin A及Vitamin A衍生物中的至少一种;
ROCK抑制剂包括:Y-27632,Y-27632 2HCl,Thiazovivin,Ripasudil(K-115),Fasudil,Fasudil(HA-1077)HCl,GSK429286A,RKI-1447和PKI-1313中的至少一种;
所述JNK抑制剂包括SP600125,JNK Inhibitor IX,AS601245,AS602801和JNK-IN-8中的至少一种;
所述DNMT抑制剂包括RG108,Thioguanine,5-Aza-2'-deoxycytidine(Decitabine),SGI-1027,Zebularine,和5-Azacytidine(AZA)中的至少一种;
所述HMT抑制剂包括EPZ004777,EPZ5676,GSK503,BIX 01294和SGC 0946中的至少一种;
所述组蛋白去甲基化酶抑制剂包括parnate(tranylcypromine),Tranylcypromine(2-PCPA)HCl SP2509,4SC-202,ORY-1001(RG-6016),GSKJ1和GSK-LSD1中的至少一种。
作为优选,所述小分子化合物组合采用下列任一项:
VPA+CHIR99021+Repsox+Forskolin+Go6983;
VPA+CHIR99021+SB431542+Forskolin+Go6983;
BIO+SB431542+Forskolin+Go6983;
CHIR99021+Repsox+Forskolin+Go6983+Rolipram;
CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
CHIR99021+SB431542+Forskolin+Go6983+Rolipram;
BIO+SB431542+Forskolin+Go6983+Rolipram;
VPA+CHIR99021+Repsox+Forskolin+Go6983+NaB;
CHIR99021+Repsox+Forskolin+Go6983+NaB;
VPA+BIO+SB431542+Rolipram+Go6983;
BIO+SB431542+Rolipram+SP600125+Go6983;
VPA+BIO+SB431542+Forskolin+Go6983;
VPA+CHIR99021+SB431542+Rolipram+Go6983;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+8-pCPT-2′-O-Me-cAMP;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SB431542;
VPA+CHIR99021+SB431542+Forskolin+Go6983+Tranilast;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SB431542+A8301;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542+A8301;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
VPA+CHIR99021+Repsox+Rolipram+Go6983;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Parnate;
VPA+BIO+Repsox+Forskolin+Go6983;
CHIR99021+Repsox+Forskolin+Go6983;
CHIR99021+Repsox+Rolipram+Go6983;
CHIR99021+SB431542+Forskolin+Go6983;
CHIR99021+SB431542+Rolipram+Go6983;
CHIR99021+Repsox+Forskolin+SP600125+Go6983;
CHIR99021+Repsox+Forskolin+SP600125+Parnate+Go6983;
BIO+Repsox+Forskolin+Go6983+Rolipram;
BIO+Repsox+Forskolin+Go6983;
BIO+Repsox+Forskolin+Go6983+SP600125;
BIO+SB431542+Rolipram+Go6983;
BIO+SB431542+Rolipram+Go6983+SP600125;
BIO+SB431542+Rolipram+Go6983+SP600125+Parnate;
VPA+BIO+SB431542+Rolipram+Go6983+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+AM580;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+AM580+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+5-Aza-2'-deoxycytidine+Parnate。
作为进一步优选,第一阶段接触活化成分可采用下列中的任一项:
CHIR99021+Repsox;
BIO+Repsox;
BIO+SB431542;
CHIR99021+SB431542;
BIO+SB431542;
VPA+SB431542;
VPA+Repsox;
VPA+CHIR99021+Repsox;
VPA+CHIR99021+SB431542;
VPA+BIO+Repsox;
VPA+BIO+SB431542;
CHIR99021+Repsox+Forskolin;
CHIR99021+Repsox+Rolipram;
BIO+Repsox+Rolipram;
BIO+SB431542+Rolipram;
BIO+SB431542+Forskolin;
BIO+Repsox+Forskolin;
CHIR99021+SB431542+Rolipram;
CHIR99021+SB431542+Forskolin;
VPA+CHIR99021+Repsox+Forskolin;
VPA+BIO+Repsox+Forskolin;
VPA+CHIR99021+Repsox+Rolipram;
VPA+CHIR99021+SB431542+Forskolin;
VPA+SB431542+Rolipram;
VPA+Repsox+Rolipram;
VPA+SB431542+Forskolin;
VPA+Repsox+Forskolin;
CHIR99021+Repsox+Forskolin+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Parnate;
VPA+CHIR99021+Repsox+Parnate;
CHIR99021+Repsox+Parnate;
BIO+Repsox+Parnate;
BIO+SB431542+Parnate;
CHIR99021+SB431542+Parnate;
VPA+SB431542+Parnate;
VPA+Repsox+Parnate;
VPA+Repsox+Forskolin+Parnate;
CHIR99021+Repsox+Parnate;
VPA+Repsox+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Parnate;
第二阶段接触诱导成分可采用下列中的任一项:
VPA+CHIR99021+Repsox+Forskolin+Go6983;
VPA+CHIR99021+SB431542+Forskolin+Go6983;
BIO+SB431542+Forskolin+Go6983;
CHIR99021+Repsox+Forskolin+Go6983+Rolipram;
CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
CHIR99021+SB431542+Forskolin+Go6983+Rolipram;
BIO+SB431542+Forskolin+Go6983+Rolipram;
VPA+CHIR99021+Repsox+Forskolin+Go6983+NaB;
CHIR99021+Repsox+Forskolin+Go6983+NaB;
VPA+BIO+SB431542+Rolipram+Go6983;
BIO+SB431542+Rolipram+SP600125+Go6983;
VPA+BIO+SB431542+Forskolin+Go6983;
VPA+CHIR99021+SB431542+Rolipram+Go6983;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+8-pCPT-2′-O-Me-cAMP;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SB431542;
VPA+CHIR99021+SB431542+Forskolin+Go6983+Tranilast;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SB431542+A8301;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542+A8301;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Rolipram+SB431542;
VPA+CHIR99021+Repsox+Rolipram+Go6983;
VPA+CHIR99021+Repsox+Forskolin+Go6983+Parnate;
VPA+BIO+Repsox+Forskolin+Go6983;
CHIR99021+Repsox+Forskolin+Go6983;
CHIR99021+Repsox+Rolipram+Go6983;
CHIR99021+SB431542+Forskolin+Go6983;
CHIR99021+SB431542+Rolipram+Go6983;
CHIR99021+Repsox+Forskolin+SP600125+Go6983;
CHIR99021+Repsox+Forskolin+SP600125+Parnate+Go6983;
BIO+Repsox+Forskolin+Go6983+Rolipram;
BIO+Repsox+Forskolin+Go6983;
BIO+Repsox+Forskolin+Go6983+SP600125;
BIO+SB431542+Rolipram+Go6983;
BIO+SB431542+Rolipram+Go6983+SP600125;
BIO+SB431542+Rolipram+Go6983+SP600125+Parnate;
VPA+BIO+SB431542+Rolipram+Go6983+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+SP600125+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+AM580;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+5-Aza-2'-deoxycytidine;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+5-Aza-2'-deoxycytidine+SP600125+AM580+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+5-Aza-2'-deoxycytidine+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+SP600125+Y27632+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+Parnate;
VPA+CHIR99021+Repsox+Forskolin+Go6983+TTNPB+EPZ004777+AM580+Y27632+ascorbate+5-Aza-2'-deoxycytidine+Parnate。
本发明的一些实施方案,具体小分子化合物的有效浓度如下,以下给出的浓度范围只是参考,可在此基础上做适应性修改,如果其他小分子替代以下小分子,浓度也可以做适应性调整。
Forskolin浓度为2μM~20μM;Repsox浓度为2~15uM;CHIR99021浓度为1μM~10μM;VPA浓度为0.5mM~1.5mM;TTNPB浓度为3μM~8μM;AM580浓度为0.03~0.08μM;EPZ004777浓度为3~8μM;Go6983浓度为1~15μM;Y-27632浓度为3~15μM,L-Ascorbinacid 2-phosphate浓度为0.15~0.25mM;SP600125浓度为1~15μM;5-Aza-2'-deoxycytidine浓度为0.5~15μM。
本发明获得的间充质干细胞具有标准间充质干细胞的分子特性,所述间充质干细胞能够进行上万亿次的扩增,可大量生产,纯度高,具有良好的产业化前景。也可利用本发明方法或者在本发明方法的基础上做适应性调整,诱导分化的细胞制备其它类型细胞,如果利用本发明提供的小分子化合物组合制备除MSC之外的其他细胞,可以根据实际需要进行调整相应小分子化合物的浓度,以及在小分子化合物组合上作调整。
本领域已有大量文献报道了适用于不同信号通路的小分子,并且本领域技术人员仍然在不断开发这样的分子。在本发明中,对使用的小分子化合物在结构或分类等方面没有特别的限制,但要求能实现对赖氨酸脱乙酰基酶,TGF-β,PKC,DNMT,HMT,JNK,ROCK,WNT/β-catenin,cAMP,RA(Retinoic acid)的抑制或激活功能。因此,本发明涵盖可实现相应的对赖氨酸脱乙酰基酶,TGF-β,PKC,DNMT,HMT,组蛋白去甲基化酶,JNK,ROCK,WNT/β-catenin,cAMP,RA(Retinoic acid)的抑制或激活功能所有分子,并涵盖可对上述靶点实现相应抑制或激活功能的替代方案。
与现有技术相比,本发明具有以下技术效果:本发明通过分阶段调控相应的信号通路和/或酶的活性将分化的细胞诱导为MSC,易于精准质控,标准化操作;所需样本量少,便于采集,来源广泛;便于规模化生产或个性化制备间充质干细胞及相关产品,可广泛应用于基础医学研究、临床治疗及组织工程产品研发,具有产业化前景。
附图说明
图1为通过小分子化合物诱导人源皮肤成纤维细胞向间充质干细胞重编程的细胞形态图;
图2为对重编程获得的间充质干细胞,进行标准的间充质干细胞表面标志物的流式方法检测结果图;
图3为对重编程的间充质干细胞分化多能性的检测结果图;
图4为检测重编程的间充质干细胞对T细胞的免疫抑制能力图;
图5为在免疫缺陷小鼠体内移植重编程的间充质干细胞,治疗小鼠股骨缺损的结果图;
图6为重编程获得的间充质干细胞的长期传代的细胞增值能力和干性的检测结果图。
图7为对重编程的间充质干细胞的成瘤性检测结果图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步详细说明,但本发明并不局限于以下实验方案。
实施例1
1、皮肤成纤维细胞的分离
1.1从供者身上获取直径约1cm的皮肤组织块,贴壁法分离皮肤成纤维细胞,分离的细胞培养于基础培养液里,所述基础培养液:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM。
1.2细胞传代大量扩增,细胞代数在第6代和第12代间,用于进行向间充质干细胞的转分化诱导。启动分化的前一天(Day-1),接种细胞密度1~2.5×104/cm2培养于37℃,5%CO2的培养箱中。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4-6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6~10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM~8μM)+AM580(0.03~0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、第三阶段提高向间充质干细胞转分化的效率
随后更换为第三阶段培养液,作用时间3-8天,在37℃,5%CO2环境下培养细胞。第三阶段培养液是指,BMP4(10~20ng/mL)+PDGF-AB(100~250ng/m L)+b-FGF(10~50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
5、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例2
1、皮肤成纤维细胞的分离,同实施例1。
2、启动转分化时(Day0),完全更换基础培养液为如下培养液,培养细胞4-6天,培养时间6~12天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM~8μM)+AM580(0.03~0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
3、随后更换为如下培养液,作用时间3-8天,在37℃,5%CO2环境下培养细胞。给阶段培养液为:BMP4(10~20ng/m L)+PDGF-AB(100~250ng/m L)+b-FGF(10~50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例3
1、皮肤成纤维细胞的分离,同实施例1。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4~6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6-10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM~8μM)+AM580(0.03~0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25m M),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例4
1、皮肤成纤维细胞的分离,同实施例1。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4-6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6~10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM-8μM)+AM580(0.03-0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3-15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25mM)+SP600125(1~15μM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、第三阶段提高向间充质干细胞转分化的效率
随后更换为第三阶段培养液,作用时间3-8天,在37℃,5%CO2环境下培养细胞。第三阶段培养液是指,BMP4(10~20ng/m L)+PDGF-AB(100~250ng/mL)+b-FGF(10-50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
5、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例5
1、皮肤成纤维细胞的分离,同实施例1。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4-6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用,在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6~10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM-8μM)+AM580(0.03-0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25m M)+SP600125(8~12μM)+5-Aza-2'-deoxycytidine(1μM~15μM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、第三阶段提高向间充质干细胞转分化的效率
随后更换为第三阶段培养液,作用时间3~8天,在37℃,5%CO2环境下培养细胞。第三阶段培养液是指,BMP4(10~20ng/m L)+PDGF-AB(100~250ng/m L)+b-FGF(10~50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
5、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例6
1、皮肤成纤维细胞的分离,同实施例1。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4-6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6~10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM~8μM)+AM580(0.03~0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25m M)+SP600125(8~12μM)+5-Aza-2'-deoxycytidine(1μM~15μM)+Parnate((1μM~10μM)),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、第三阶段提高向间充质干细胞转分化的效率
随后更换为第三阶段培养液,作用时间3-8天,在37℃,5%CO2环境下培养细胞。第三阶段培养液是指,BMP4(10~20ng/m L)+PDGF-AB(100~250ng/m L)+b-FGF(10~50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
5,诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
实施例7
1、皮肤成纤维细胞的分离,同实施例1。
2、皮肤成纤维细胞的活化
2.1启动转分化时(Day0),完全更换基础培养液为第一阶段培养液,培养细胞4-6天,第一阶段培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~25μM)+Repsox(2~15uM)+BIO(1μM~10μM)+VPA(0.5mM~1.5mM),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%~20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。在37℃,5%CO2环境下培养细胞。
3、皮肤成纤维细胞的定向诱导
通过上述第2步骤的处理后,完全更换为第二阶段培养液进行细胞培养,培养时间6~10天,在37℃,5%CO2环境下培养细胞。所述的第二阶段培养液是:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)+forskolin(2μM~20μM)+Repsox(2~15uM)+CHIR99021(1μM~10μM)+VPA(0.5mM~1.5mM)+TTNPB(3μM~8μM)+AM580(0.03~0.08μM)+EPZ004777(3~8μM)+G06983(1~15μM)+Y-27632(3~15μM)+L-Ascorbin acid 2-phosphate(0.15~0.25m M)+SP600125(8~12μM)+5-Aza-2'-deoxycytidine(1μM~15μM)+Parnate((1μM~10μM)),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
4、第三阶段——提高向间充质干细胞转分化的效率
随后更换为第三阶段培养液,作用时间3-8天,在37℃,5%CO2环境下培养细胞。第三阶段培养液是指,BMP4(10~20ng/m L)+PDGF-AB(100~250ng/m L)+b-FGF(10~50ng/mL)+10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco),该培养***中10%胎牛血清也可以被血清替代品(invitrogen)以10%-20%的浓度替代;100U/ml青霉素(Sigma)和100μg/ml链霉素(Sigma)可以不使用。
5、诱导的间充质干细胞的维持培养和扩增
随后更换为常规的间充质干细胞培养液或者市售商业化间充质干细胞培养液(赛业),对诱导的细胞进行维持培养和传代扩增。所述的常规的间充质干细胞培养液是指:10%胎牛血清(Hyclone)+100U/ml青霉素(Sigma)+100μg/ml链霉素(Sigma)+高糖DMDM培养基(Gibco)。
上述实施例诱导人皮肤成纤维细胞制备(重编程为)间充质干细胞,人源皮肤成纤维细胞向间充质干细胞转分化的细胞形态图见图1,获得的间充质干细胞的检测结果见表1、图2~图7;
图1中A图为皮肤成纤维细胞;B图为实施例1中的方法重编程获得的间充质干细胞;C图为重编程的间充质干细胞的生长曲线,重编程的间充质干细胞分别来源于两个成年人个体,细胞在培养皿中贴壁培养,生长到90%的汇合度的时候进行传代或者3天进行一次传代,重编程的细胞具备快速的增值能力;D图为细胞的克隆形成率,克隆形成率越高说明细胞增值活力越好,其中Hu Fib代表未经处理的皮肤成纤维细胞,Hu MSC代表体内分离的间充质干细胞,Hu iMSC代表重编程的间充质干细胞;
表1
表1中检测了三株不同成年人个体来源的未经处理的皮肤成纤维细胞,分别是HuFib01,HuFib02和HuFib03,以及重编程的间充质干细胞Hu iMSC01和Hu iMSC02,标准的间充质干细胞表面标志物的鉴定中CD29,CD90,CD73和CD105为阳性表达,CD24,CD45和CD34为阴性表达,重编程的间充质干细胞满足此细胞鉴定的要求,未经处理的皮肤成纤维细胞也具备同样的表达标志物的特征;
图2为鉴定间充质干细胞的另一表面标志物CD140a图,与未经处理的成纤维细胞HuFib相比,Hu iMSC和Hu MSC的流式图有表达的偏移;
图3为对重编程的间充质干细胞分化多能性的检测结果图,使用标准的三系方法对来自于实施例1(A图)和实施例6(B图)中的Hu iMSC和作为阴性对照的HuFib进行成骨,成软骨和成脂肪的诱导,第21天,进行对应的染色检测,成骨分化使用茜素红染色,成软骨分化使用阿尔辛蓝染色,脂肪分化使用油红O染色;
图4为检测重编程的间充质干细胞对T细胞的免疫抑制作用,与Hu Fib相比,HuiMSC与Hu MSC有相似的免疫抑制能力;
图5为在免疫缺陷小鼠体内移植重编程的间充质干细胞,治疗小鼠股骨缺损的结果图。细胞移植28天后,使用microCT检测移植部位的缺损修复情况,A图为空白对照组;B图为MSC阳性对照组,C图为重编程的间充质干细胞组。与空白对照相比,间充质干细胞组对股骨缺损有明显的修复作用。
图6为对重编程获得的间充质干细胞的长期传代的细胞增值能力和干性的检测结果图,A图为对Hu iMSC传代7代的生长曲线,生长到90%的汇合度的时候进行传代或者3天进行一次传代;C图为对P7代的Hu iMSC进行3系诱导,21天后进行检测;B图为从成年人体内分离的皮肤成纤维细胞(在含10%血清的高糖培养液培养条件下,连续10代内的生长曲线,以此为原料,结合Hu iMSC的扩增能力,可以大量生产和制备间充质干细胞。
图7为对重编程的间充质干细胞的成瘤性检测结果图;以0.6~1×105/只的细胞数量在Nod-SCID小鼠皮下移植Hu iMSC,移植30只小鼠,一个月后未见成瘤。
应理解,在本发明范围内中,本发明的上述各技术特征在和下文(如实施例)中具体描述的各种技术特征之间可以互相结合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。

Claims (11)

1.一种诱导分化的细胞制备间充质干细胞的方法,其特征在于,所述方法对分化的细胞进行定向诱导,最终制备得到间充质干细胞,所述定向诱导包括抑制TGF-β的信号通路,抑制PKC的活性,激活WNT/β-catenin的信号通路以及激活cAMP的信号通路。
2.如权利要求1所述的诱导分化的细胞制备间充质干细胞的方法,其特征在于,所述定向诱导还包括激活RA的信号通路和/或抑制DNMT的活性和/或抑制HMT的活性和/或抑制组蛋白去甲基化酶的活性和/或抑制JNK的信号通路和/或抑制ROCK的信号通路和/或抑制赖氨酸脱乙酰基酶活性,最终制备得到间充质干细胞。
3.如权利要求1或2所述的诱导分化的细胞制备间充质干细胞的方法,其特征在于,所述定向诱导前对分化的细胞进行预处理,所述预处理包括抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路;或所述预处理包括抑制赖氨酸脱乙酰基酶(Lysine deacetylases inhibitors,KDACIs)的活性,抑制TGF-β的信号通路,激活WNT/β-catenin的信号通路和激活cAMP的信号通路。
4.如权利要求1~3任一所述的诱导分化的细胞制备间充质干细胞的方法,其特征在于,所述TGF-β的信号通路特指I型TGF-β受体参与的信号通路,所述cAMP的信号通路为EPAC/RAP1的信号通路。
5.如权利要求3所述的诱导分化的细胞制备间充质干细胞的方法,其特征在于,分化的细胞通过所述预处理3-10天得到细胞产物,所述细胞产物采用TGF-β信号通路抑制剂,PKC信号通路抑制剂,WNT/β-catenin信号通路激活剂以及cAMP的信号通路激活剂定向诱导处理2-20天;或所述细胞产物采用TGF-β信号通路抑制剂,PKC抑制剂,WNT/β-catenin信号通路激活剂,cAMP的信号通路激活剂,以及RA信号通路的激活剂,DNMT抑制剂,HMT抑制剂,组蛋白去甲基化酶的抑制剂,JNK信号通路的抑制剂,ROCK信号通路的抑制剂和赖氨酸脱乙酰基酶的抑制剂中的至少一种进行定向诱导处理2-20天。
6.如权利要求1~5任一所述的诱导分化的细胞制备间充质干细胞的方法,其特征在于,所述分化的细胞来源于哺乳动物如人,所述分化的细胞包括成纤维细胞,上皮细胞,脂肪细胞或血液细胞。
7.一种调控靶点的组合,其特征在于,所述调控靶点的组合用于调控权利要求1~5任一所述的信号通路和/或酶活性,所述调控靶点为TGF-β受体,PKC,WNT/β-catenin、cAMP、JNK、ROCK、DNMT、HMT、RAR、赖氨酸脱乙酰基酶和组蛋白去甲基化酶中的至少一种。
8.一种小分子化合物组合,其特征在于,所述小分子化合物作用于权利要求7所述的调控靶点。
9.一种间充质干细胞,其特征在于,所述间充质干细胞由权利要求1~5任一所述的方法制备所得。
10.一种如权利要求9所述的间充质干细胞及其产物的应用。
11.一种调控靶点的组合或小分子化合物的组合在细胞重编程中的应用。
CN201610975744.4A 2016-11-07 2016-11-07 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合 Active CN108060126B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610975744.4A CN108060126B (zh) 2016-11-07 2016-11-07 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合
US16/347,627 US11674122B2 (en) 2016-11-07 2017-11-06 Method for inducing differentiated cell into Mesenchymal Stem Cell, and combinations of regulatory targets thereof
PCT/CN2017/109488 WO2018082690A1 (zh) 2016-11-07 2017-11-06 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610975744.4A CN108060126B (zh) 2016-11-07 2016-11-07 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合

Publications (2)

Publication Number Publication Date
CN108060126A true CN108060126A (zh) 2018-05-22
CN108060126B CN108060126B (zh) 2020-09-08

Family

ID=62075745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610975744.4A Active CN108060126B (zh) 2016-11-07 2016-11-07 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合

Country Status (3)

Country Link
US (1) US11674122B2 (zh)
CN (1) CN108060126B (zh)
WO (1) WO2018082690A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423719A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 调控Jak-Stat通路使细胞分化、去分化、年轻化的技术及其应用
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN112608883A (zh) * 2020-12-25 2021-04-06 武汉睿健医药科技有限公司 一种光感受器神经元细胞的化学诱导方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411077B (zh) * 2020-03-26 2022-02-25 浙江大学 小分子物质在制备体外维持肌腱干细胞表型的试剂中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441384A (zh) * 2014-09-26 2016-03-30 北京大学 一种制备动物和人类原始多潜能干细胞的方法,试剂盒及用途
WO2016081032A2 (en) * 2014-07-11 2016-05-26 The Texas A&M University System Mesenchymal stem cells derived from induced pluripotent stem cells
WO2016148253A1 (ja) * 2015-03-18 2016-09-22 小野薬品工業株式会社 ナイーブ型多能性幹細胞の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894060B (zh) 2014-03-03 2018-11-06 中国科学院上海生命科学研究院 诱导体细胞转分化为神经干细胞的方法及其应用
CN105861428B (zh) 2016-04-07 2019-04-09 浙江大学 一种诱导成纤维细胞转分化为心肌细胞的诱导培养基及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081032A2 (en) * 2014-07-11 2016-05-26 The Texas A&M University System Mesenchymal stem cells derived from induced pluripotent stem cells
CN105441384A (zh) * 2014-09-26 2016-03-30 北京大学 一种制备动物和人类原始多潜能干细胞的方法,试剂盒及用途
WO2016148253A1 (ja) * 2015-03-18 2016-09-22 小野薬品工業株式会社 ナイーブ型多能性幹細胞の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423719A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 调控Jak-Stat通路使细胞分化、去分化、年轻化的技术及其应用
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN110423719B (zh) * 2018-05-01 2024-02-27 云南济慈再生医学研究院有限公司 调控Jak-Stat通路使细胞分化、去分化、年轻化的技术及其应用
CN110423721B (zh) * 2018-05-01 2024-02-27 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN112608883A (zh) * 2020-12-25 2021-04-06 武汉睿健医药科技有限公司 一种光感受器神经元细胞的化学诱导方法
CN112608883B (zh) * 2020-12-25 2023-02-24 武汉睿健医药科技有限公司 一种光感受器神经元细胞的化学诱导方法

Also Published As

Publication number Publication date
CN108060126B (zh) 2020-09-08
US20190345451A1 (en) 2019-11-14
US11674122B2 (en) 2023-06-13
WO2018082690A1 (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN108060120A (zh) 用于分化的细胞重编程的小分子化合物组合、试剂盒及应用
CN108070549A (zh) 小分子化合物组合及利用该小分子化合物组合诱导分化的细胞制备血管内皮细胞的方法
CN108060126A (zh) 一种诱导分化的细胞制备间充质干细胞的方法及调控靶点的组合
CN108060119A (zh) 小分子化合物组合及利用该小分子化合物组合诱导分化的细胞制备血管平滑肌细胞的方法
JP2010525836A5 (zh)
JP2009539378A5 (zh)
CN104894060A (zh) 诱导体细胞转分化为神经干细胞的方法及其应用
US20210403876A1 (en) Stem cell derived islet differentiation
CN108060123A (zh) 一种用于体细胞去分化的靶点调控***、试剂盒及应用
Uz et al. Advances in controlling differentiation of adult stem cells for peripheral nerve regeneration
US20190002825A1 (en) Method for Inducing Targeted Differentiation of Human Stem Cells Toward Hepatic Cells
RU2016133754A (ru) Лечение диабета при помощи панкреатических эндокринных клеток-предшественников
CN108384755A (zh) 一种高效、快捷的诱导性多能干细胞向神经干细胞分化的方法
CN105062957B (zh) 血管内皮细胞祖细胞的培养方法
CN104928230B (zh) 血管内皮细胞的培养方法
Ravalli et al. New insights on mechanical stimulation of mesenchymal stem cells for cartilage regeneration
CN106244527B (zh) 人源iPS干细胞体外定向分化为心肌细胞的试剂盒及方法
CN108300686A (zh) 用于预防、延缓或逆转细胞、组织、器官、机体衰老的小分子化合物/组合,产品及其用途
Kushioka et al. A novel and efficient method for culturing mouse nucleus pulposus cells
CN108060122A (zh) 小分子化合物组合及利用该小分子化合物组合诱导分化的细胞制备软骨细胞的方法
CN108060121A (zh) 小分子化合物组合及利用该小分子化合物组合诱导分化的细胞制备成骨细胞的方法
CN107429233B (zh) 神经***细胞的制造方法
Hodgetts et al. Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies
US10612002B2 (en) Human pluripotent stem cell derived endocardial endothelium
JP7074323B2 (ja) 胆道癌オルガノイド又は膵臓癌オルガノイドの培養用培地

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180522

Assignee: Shenzhen Zhende Keats pharmaceutical research and Development Co.,Ltd.

Assignor: YUNNAN JICI REGENERATIVE MEDICINE RESEARCH INSTITUTE CO.,LTD.

Contract record no.: X2023980054252

Denomination of invention: A method for inducing differentiation of cells to prepare mesenchymal stem cells and a combination of regulatory targets

Granted publication date: 20200908

License type: Common License

Record date: 20231227

EE01 Entry into force of recordation of patent licensing contract