CN108046327B - Preparation method of tungsten disulfide nanotube - Google Patents

Preparation method of tungsten disulfide nanotube Download PDF

Info

Publication number
CN108046327B
CN108046327B CN201711454387.8A CN201711454387A CN108046327B CN 108046327 B CN108046327 B CN 108046327B CN 201711454387 A CN201711454387 A CN 201711454387A CN 108046327 B CN108046327 B CN 108046327B
Authority
CN
China
Prior art keywords
crucible
tungsten
temperature
template
porous anodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711454387.8A
Other languages
Chinese (zh)
Other versions
CN108046327A (en
Inventor
胡柱东
林海敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201711454387.8A priority Critical patent/CN108046327B/en
Publication of CN108046327A publication Critical patent/CN108046327A/en
Application granted granted Critical
Publication of CN108046327B publication Critical patent/CN108046327B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes

Abstract

The invention discloses a preparation method of a tungsten disulfide nanotube, which comprises the following process steps: 1) paving tungsten hexacarbonyl at the bottom of a ceramic crucible, then placing a porous anodic aluminum oxide template with an opening downward above the tungsten hexacarbonyl, sealing the crucible, placing the crucible in a tubular furnace, carrying out low-temperature sublimation deposition and high-temperature pyrolysis under the protection of gas, and then cooling; 2) after the temperature of the vacuum tube furnace is reduced to room temperature, the opening of the template is downwards placed in a ceramic crucible filled with sulfur powder, and the temperature is raised after the crucible is sealed, so that elemental sulfur and metal tungsten directly react; 3) removing the porous alumina template by using a dilute acid solution, removing redundant sulfur by using carbon disulfide, then carrying out suction filtration treatment, and drying to obtain a finished product. The method has simple steps, no environmental pollution and no need of complex equipment, and the prepared tungsten disulfide nanotube powder material has strong size controllability, good crystallinity and uniform nanotube wall morphology, thereby greatly improving the comprehensive performance of the finished product of the tungsten disulfide nanotube powder material. The invention has wide applicability and is beneficial to large-scale industrial production.

Description

Preparation method of tungsten disulfide nanotube
Technical Field
The invention relates to the field of semiconductor nano materials, in particular to a preparation method of a semiconductor nano tube.
Background
Tungsten disulfide (WS)2) The crystal structure of (a) is a hexagonal close-packed layered structure. The tungsten atom and the sulfur atom are connected by a strong chemical bond, and the interlayer sulfur atom and the sulfur atom are connected by a weak molecular bond. The bonding force between layers is Van der Waals force, the interlayer spacing of tungsten disulfide is large, and the friction coefficient is lower and is between 0.03 and 0.05. The tungsten disulfide has good lubricating property, is not only suitable for common lubricating conditions, but also can be used in harsh working environments such as high temperature, high pressure, high vacuum, high load, radiation, corrosive media and the like. In addition, the application fields of the layered compounds also relate to photodetectors, transistors, lithium batteries, hydrogen production catalysts, DNA detection, photothermal therapy, memory devices and the like.
As early as 1992, Tenne and his research group passed through WO3And H2S high-temperature reaction to prepare WS with fullerene structure2Nanotubes, after which they have designed a fluidized bed reactor, can achieve WS of fullerene structure2Small batch production of nanotubes and nanoparticles. From this WS2The preparation and research work of nano materials is continuously carried out. C, N, R, Rao et al direct pyrolysis of (NH) in hydrogen at 1200-1300 deg.C4)2WS4Obtain WS2A nanotube. 2011 preparation method of ammonium tetrathiotungstate by thermal decomposition of Zhuyanfang et al in alumina templateTungsten disulfide nanotubes are provided. WS prepared by the above reported Structure2The nanotube involves complex chemical reaction, and brings great influence to the application of a transistor, a lithium battery, a hydrogen production catalyst and the like.
Disclosure of Invention
The invention aims to provide a preparation method of a tungsten disulfide nanotube aiming at the defects of the prior art, and the obtained tungsten disulfide nanotube powder material has wide applicability and excellent comprehensive performance and can be applied to electronic devices.
The technical scheme adopted by the invention is as follows: a preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) taking tungsten hexacarbonyl as a raw material and porous anodic aluminum oxide as a template, paving the raw material at the bottom of a ceramic crucible, then placing the porous anodic aluminum oxide template with an opening downward above the raw material, sealing the crucible, placing the crucible in a vacuum tube furnace, heating under the protection of gas, sublimating at low temperature to deposit tungsten hexacarbonyl in the porous anodic aluminum oxide template, continuously heating to deposit tungsten hexacarbonyl in the porous anodic aluminum oxide template for thermal decomposition to obtain metal tungsten deposit;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating under the protection of gas to enable elemental sulfur and metal tungsten to directly react, stopping heating, and cooling the crucible to room temperature along with the furnace;
3) removing the porous alumina template by using a dilute acid solution, removing redundant sulfur by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain a finished product.
As a further improvement of the scheme, the pore diameter of the porous anodic alumina template in the step 1) is within the range of 10-200 nm. In particular, the shape controllability of the nanotube can be stronger by limiting the pore diameter of the porous anodic alumina template.
As a further improvement of the scheme, the low-temperature sublimation temperature in the step 1) is 50-150 ℃, and the sublimation time is 30-200 min. The invention directly obtains the deposit through low-temperature sublimation, and the limit of the sublimation temperature and the heat preservation time can ensure that the tungsten hexacarbonyl is more fully deposited.
As a further improvement of the scheme, the thermal decomposition temperature in the step 1) is 200-420 ℃, and the thermal decomposition time is 30-100 min. In particular, the limitation of the pyrolysis temperature and the pyrolysis time can effectively improve the crystallinity of the metal tungsten in the alumina template.
As a further improvement of the scheme, in the step 2), the reaction temperature of the elemental sulfur and the metal tungsten is 500-740 ℃, and the reaction time is 10-60 hours. In particular, the present invention limits the tungsten disulfide reaction temperature and time to allow for more complete reaction.
As a further improvement of the scheme, the dilute acid solution in the step 3) is a phosphoric acid solution with the concentration of 0.1-3 mol/L. In particular, further definition of dilute acid solution allows for more efficient removal of the alumina template.
As a further improvement of the scheme, in the step 1) and the step 2), the gas is argon or nitrogen, the gas purity is 99.999%, and the flow rate of the protective gas is 10-500 SCCM.
The invention has the beneficial effects that: the method has simple steps, realizes the direct reaction of the metal tungsten and the sulfur powder in the limited space to prepare the tungsten disulfide nanotube powder material, has no environmental pollution, does not need complex equipment, and has strong size controllability, good crystallinity and uniform nanotube wall appearance of the prepared tungsten disulfide nanotube powder material, thereby greatly improving the comprehensive performance of the finished product of the tungsten disulfide nanotube powder material. The invention has wide applicability and is beneficial to large-scale industrial production.
Detailed Description
The present invention is specifically described below with reference to examples in order to facilitate understanding of the present invention by those skilled in the art. It should be particularly noted that the examples are given solely for the purpose of illustration and are not to be construed as limitations on the scope of the invention, as non-essential improvements and modifications to the invention may occur to those skilled in the art, which fall within the scope of the invention as defined by the appended claims. Meanwhile, the raw materials mentioned below are not specified in detail and are all commercial products; the process steps or preparation methods not mentioned in detail are all process steps or preparation methods known to the person skilled in the art.
Example 1
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) 5g of tungsten hexacarbonyl is paved at the bottom of a ceramic crucible, a porous anodic aluminum oxide template with the aperture of 40nm is placed above the tungsten hexacarbonyl with an opening facing downwards, the crucible is sealed and then placed in a vacuum tube furnace, and 100SCCM argon is introduced to clean air in the furnace tube. Under the protection of 100SCCM argon, heating to 100 ℃ and preserving heat for 60min, then continuing heating to 300 ℃ and preserving heat for 40min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 120 ℃ under the protection of 100SCCM argon gas, keeping the temperature for 60min, continuing heating to 550 ℃ and keeping the temperature for 48h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 1.
Example 2
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) 5g of tungsten hexacarbonyl is paved at the bottom of a ceramic crucible, a porous anodic aluminum oxide template with the aperture of 10nm is placed above the tungsten hexacarbonyl with the opening facing downwards, the crucible is sealed and then placed in a vacuum tube furnace, and 100SCCM nitrogen is introduced to clean the air in the furnace tube. Under the protection of 100SCCM nitrogen, heating to 50 ℃ and preserving heat for 200min, then continuing heating to 300 ℃ and preserving heat for 40min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 120 ℃ under the protection of 100SCCM nitrogen, keeping the temperature for 60min, continuing heating to 550 ℃ and keeping the temperature for 48h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 2.
Example 3
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) paving 5g of tungsten hexacarbonyl at the bottom of a ceramic crucible, placing a porous anodic aluminum oxide template with the aperture of 200nm with an opening downward above the tungsten hexacarbonyl, sealing the crucible, placing the crucible in a vacuum tube furnace, and introducing 100SCCM argon to clean air in the furnace tube. Under the protection of 100SCCM argon, heating to 150 ℃ and preserving heat for 30min, then continuing heating to 300 ℃ and preserving heat for 40min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 120 ℃ under the protection of 100SCCM argon gas, keeping the temperature for 60min, continuing heating to 550 ℃ and keeping the temperature for 48h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 3.
Example 4
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) 5g of tungsten hexacarbonyl is paved at the bottom of a ceramic crucible, a porous anodic aluminum oxide template with the aperture of 40nm is placed above the tungsten hexacarbonyl with an opening facing downwards, the crucible is sealed and then placed in a vacuum tube furnace, and 100SCCM argon is introduced to clean air in the furnace tube. Under the protection of 100SCCM argon, heating to 100 ℃ and preserving heat for 60min, then continuing heating to 200 ℃ and preserving heat for 100min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 110 ℃ under the protection of 100SCCM argon gas, keeping the temperature for 120min, continuing heating to 550 ℃ and keeping the temperature for 48h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.1mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 4.
Example 5
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) 5g of tungsten hexacarbonyl is paved at the bottom of a ceramic crucible, a porous anodic aluminum oxide template with the aperture of 40nm is placed above the tungsten hexacarbonyl with an opening facing downwards, the crucible is sealed and then placed in a vacuum tube furnace, and 100SCCM argon is introduced to clean air in the furnace tube. Under the protection of 100SCCM argon, heating to 100 ℃ and preserving heat for 60min, then continuing heating to 420 ℃ and preserving heat for 30min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 200 ℃ under the protection of 100SCCM argon gas, keeping the temperature for 60min, continuing heating to 550 ℃ and keeping the temperature for 48h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 5.
Example 6
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) paving 5g of tungsten hexacarbonyl at the bottom of a ceramic crucible, placing a porous anodic aluminum oxide template with the aperture of 40nm above the tungsten hexacarbonyl with an opening downwards, sealing the crucible, placing the crucible in a vacuum tube furnace, and introducing 10SCCM argon to clean air in the furnace tube. Under the protection of 10SCCM argon, heating to 100 ℃ and preserving heat for 60min, then continuing heating to 300 ℃ and preserving heat for 40min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 120 ℃ under the protection of 10SCCM argon gas, keeping the temperature for 60min, continuing heating to 500 ℃ and keeping the temperature for 60h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 6.
Example 7
A preparation method of a tungsten disulfide nanotube comprises the following process steps:
1) 5g of tungsten hexacarbonyl is paved at the bottom of a ceramic crucible, a porous anodic aluminum oxide template with the aperture of 40nm is placed above the tungsten hexacarbonyl with an opening facing downwards, the crucible is sealed and then placed in a vacuum tube furnace, and argon of 500SCCM is introduced to clean air in the furnace tube. Under the protection of argon gas of 500SCCM, heating to 100 ℃ and preserving heat for 60min, then continuing heating to 300 ℃ and preserving heat for 40min to obtain metal tungsten deposition, and stopping heating;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating to 120 ℃ under the protection of 500SCCM argon gas, keeping the temperature for 60min, continuing heating to 740 ℃ and keeping the temperature for 10h, and stopping heating;
3) and (3) when the temperature of the ceramic crucible in the step 2) is reduced to room temperature, taking out the sample, removing the porous alumina template by using a phosphoric acid solution with the concentration of 0.3mol/L, removing redundant sulfur powder by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain the finished product of the tungsten disulfide nanotube powder material in the embodiment 7.
Example 8
The tungsten disulfide nanotube powder finished products prepared in the embodiments 1 to 7 are respectively observed by a scanning electron microscope, and the tungsten disulfide nanotube powder finished products are observed to form one-dimensional tubular structures with uniform tube wall appearance and uniform diameter, and have good crystallinity and strong controllability of nanotube appearance.
The above embodiments are preferred embodiments of the present invention, and all similar processes and equivalent variations to those of the present invention should fall within the scope of the present invention.

Claims (4)

1. A preparation method of a tungsten disulfide nanotube is characterized by comprising the following process steps:
1) taking tungsten hexacarbonyl as a raw material and porous anodic aluminum oxide as a template, paving the raw material at the bottom of a ceramic crucible, then placing the porous anodic aluminum oxide template with an opening downward above the raw material, sealing the crucible, placing the crucible in a vacuum tube furnace, heating under the protection of gas, sublimating at low temperature to deposit tungsten hexacarbonyl in the porous anodic aluminum oxide template, continuously heating to deposit tungsten hexacarbonyl in the porous anodic aluminum oxide template for thermal decomposition to obtain metal tungsten deposit;
2) after the vacuum tube furnace in the step 1) is cooled to room temperature, taking out the porous anodic alumina template, placing the porous anodic alumina template into a ceramic crucible filled with sulfur powder with an opening facing downwards, sealing the crucible, placing the crucible into the vacuum tube furnace, heating under the protection of gas to enable elemental sulfur and metal tungsten to directly react, stopping heating, and cooling the crucible to room temperature along with the furnace;
3) removing the porous alumina template by using a dilute acid solution, removing redundant sulfur by using carbon disulfide, cleaning by using deionized water, then carrying out suction filtration treatment, and drying to obtain a finished product;
the low-temperature sublimation in the step 1) is carried out at the temperature of 50-150 ℃ for 30-200 min; the thermal decomposition temperature in the step 1) is 200-420 ℃, and the thermal decomposition time is 30-100 min; in the step 2), the reaction temperature of the elemental sulfur and the metal tungsten is 500-740 ℃, and the reaction time is 10-60 h.
2. The method for preparing tungsten disulfide nanotubes as claimed in claim 1, wherein: the aperture of the porous anodic alumina template in the step 1) is within the range of 10-200 nm.
3. The method for preparing tungsten disulfide nanotubes as claimed in claim 1, wherein: the diluted acid solution in the step 3) is a phosphoric acid solution with the concentration of 0.1-3 mol/L.
4. The method for preparing tungsten disulfide nanotubes as claimed in claim 1, wherein: in the step 1) and the step 2), the gas is nitrogen or argon, the gas purity is 99.999%, and the flow rate of the protective gas is 10-500 SCCM.
CN201711454387.8A 2017-12-26 2017-12-26 Preparation method of tungsten disulfide nanotube Active CN108046327B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711454387.8A CN108046327B (en) 2017-12-26 2017-12-26 Preparation method of tungsten disulfide nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711454387.8A CN108046327B (en) 2017-12-26 2017-12-26 Preparation method of tungsten disulfide nanotube

Publications (2)

Publication Number Publication Date
CN108046327A CN108046327A (en) 2018-05-18
CN108046327B true CN108046327B (en) 2020-05-05

Family

ID=62128520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711454387.8A Active CN108046327B (en) 2017-12-26 2017-12-26 Preparation method of tungsten disulfide nanotube

Country Status (1)

Country Link
CN (1) CN108046327B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191431A (en) * 2018-02-02 2018-06-22 武汉科技大学 A kind of two dimension transient metal sulfide and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759950B (en) * 2020-11-06 2022-04-01 國立雲林科技大學 Method for making metal compound nanotubes
CN112871397B (en) * 2020-12-28 2021-10-22 浙江爱润特汽车科技有限公司 Nanoscale tungsten disulfide material and preparation method and device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467311A (en) * 2002-06-19 2004-01-14 ���ǵ�����ʽ���� Method of manufacturing inorganic nanotube
CN1669920A (en) * 2004-12-29 2005-09-21 浙江大学 Method for preparing one-dimensional nanostructure in anode alumina template
CN102530853A (en) * 2012-01-11 2012-07-04 哈尔滨工业大学 Preparation method of artificial nanometer pipes and application of utilizing artificial nanometer pipes as nanometer motors
CN107043922A (en) * 2017-03-28 2017-08-15 天津大学 A kind of preparation method of two-dimentional tungsten sulfide thin-film material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467311A (en) * 2002-06-19 2004-01-14 ���ǵ�����ʽ���� Method of manufacturing inorganic nanotube
CN1669920A (en) * 2004-12-29 2005-09-21 浙江大学 Method for preparing one-dimensional nanostructure in anode alumina template
CN102530853A (en) * 2012-01-11 2012-07-04 哈尔滨工业大学 Preparation method of artificial nanometer pipes and application of utilizing artificial nanometer pipes as nanometer motors
CN107043922A (en) * 2017-03-28 2017-08-15 天津大学 A kind of preparation method of two-dimentional tungsten sulfide thin-film material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191431A (en) * 2018-02-02 2018-06-22 武汉科技大学 A kind of two dimension transient metal sulfide and preparation method thereof
CN108191431B (en) * 2018-02-02 2020-10-30 武汉科技大学 Two-dimensional transition metal sulfide and preparation method thereof

Also Published As

Publication number Publication date
CN108046327A (en) 2018-05-18

Similar Documents

Publication Publication Date Title
CN108046327B (en) Preparation method of tungsten disulfide nanotube
Liu et al. Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method
Wang et al. Large-scale preparation of chestnut-like ZnO and Zn–ZnO hollow nanostructures by chemical vapor deposition
Gao et al. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
CN105347346B (en) Air-assisted preparation method of porous nano silicon
CN104528671A (en) Preparation method of porous boron nitride nanofibers
CN107640751B (en) One-dimensional boron nitride nano material and preparation method thereof
US20140256120A1 (en) Process for Preparing Graphene Based on Metal Film-Assisted Annealing and the Reaction with Cl2
CN109081350A (en) A kind of method that watery fusion salt medium prepares nano-silicon
CN108557799B (en) High-purity high-conductivity graphene-like hierarchical porous carbon and preparation method thereof
CN114180568B (en) Pretreated microcrystalline graphite, negative electrode active material, and preparation and application thereof
CN103771521B (en) Method for preparing tungsten disulfide nano sheet
CN107673318B (en) Boron nitride nanotubes and batch preparation method thereof
CN105668555A (en) Method for preparing three-dimensional graphene
CN111943207A (en) Method for preparing fluorine-free two-dimensional material MXene simply and in pollution-free manner
WO2019232765A1 (en) Preparation method for ultrathin boron nitride nanosheet
CN107585749B (en) Boron nitride nanosheet powder, green macro-preparation method and application thereof
CN108059189B (en) Preparation method of molybdenum disulfide nanotube
Zhang et al. Hierarchical architecture of WO 3 nanosheets by self-assembly of nanorods for photoelectrochemical applications
CN114149000A (en) Two-dimensional magnetic material-carbon nano tube coaxial heterojunction material, and preparation method and application thereof
CN107934925B (en) Preparation method of tungsten diselenide nanotube
Yang et al. Understanding the morphology evolution of 1D BiVO 4 nanoarrays from nanorods to nanocones with enhanced photocatalytic performance
CN108910868B (en) Method for preparing graphene dendrite on insulating substrate
CN107934927B (en) Preparation method of molybdenum ditelluride nanotube
CN106882793A (en) A kind of synthetic method of sulphur and nitrogen co-doped Graphene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant