CN108007916B - 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型 - Google Patents

希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型 Download PDF

Info

Publication number
CN108007916B
CN108007916B CN201710156394.3A CN201710156394A CN108007916B CN 108007916 B CN108007916 B CN 108007916B CN 201710156394 A CN201710156394 A CN 201710156394A CN 108007916 B CN108007916 B CN 108007916B
Authority
CN
China
Prior art keywords
hilbert
spectrum
nitrogen content
nitrogen
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710156394.3A
Other languages
English (en)
Other versions
CN108007916A (zh
Inventor
赵肖宇
蔡立晶
尚廷义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Bayi Agricultural University
Original Assignee
Heilongjiang Bayi Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang Bayi Agricultural University filed Critical Heilongjiang Bayi Agricultural University
Priority to CN201710156394.3A priority Critical patent/CN108007916B/zh
Publication of CN108007916A publication Critical patent/CN108007916A/zh
Application granted granted Critical
Publication of CN108007916B publication Critical patent/CN108007916B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,属于作物中微量元素测量技术领域。根据测量目标需求,构建5个功能模块:光谱采集模块、光谱预处理模块、光谱分解及训练模块、希尔伯特黄变换模块和模式识别模块。实现主要功能是应用共聚焦显微拉曼光谱仪采集水稻植株光谱;应用小波分解算法对光谱数据去噪和基线校正;应用总体平均经验模态方法分解光谱数据,得到特征模态分量,通过神经网络训练识别得到氮素关联分量;应用希尔伯特黄变换,从边际谱中得到氮素特征频率;建立特征频率与氮素含量最小二乘测量模型。本发明使用氮素边际谱频率参与建模,测量机理明确,具有测量精度高、测试时间短特点。

Description

希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型
技术领域
本发明为一种希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼光谱测量方法,属于作物中微量元素测量技术领域。
背景技术
传统氮素水平的检测方法有土壤指标法、生化测定法、经验法。土壤指标法是根据土壤中氮素含量,向水稻补充肥料,即测土配方。生化测定法是目前水稻氮素检测的主要实验方法,包括甲醛法、凯氏定氮法、杜马斯燃烧定氮法等。经验法检测的技术手段或指标主要分为三类:目测法、光谱遥感法、机器视觉法。目测法以叶片出现的异常颜色为指标,依据生产经验进行病情诊断,是目前广泛采用的检测手段。光谱遥感法是以稻田冠层的反射光谱为分析对象,对比标准光谱实现缺氮检测。机器视觉法主要利用PC机,从图像上区分病稻与健康稻株的微小色差,是目测法的数字化延伸。上述方法中,只有当水稻出现病症时,光谱遥感法和机器视觉法才能有效检测,即难以进行早期测量。经验表明,水稻表现出缺氮症状以后,追加肥料的用量至少增加一倍并显著影响幼苗生长,因此缺氮病害的早期发现是至关重要的。土壤指标法具有预测性,但稻苗中氮素除了与土壤中氮素含量相关,还会受到光照、温湿度、土壤酸碱度等影响,是多因素制约变量,可见土壤指标法是间接测量手段,测量精度不高。生化测定法准确可靠,但操作复杂,效率较低,无法进行规模和快速测量,主要在对照实验中使用。在目前的水稻缺氮检测中,目测法虽然误差大,但是操作简单,是应用最广泛的检测手段。人工目测存在两个缺点:(1)人工目测需要按照经验观察稻株颜色,判断结果受主观因素影响较大。当两种及两种以上营养元素同时缺乏时,病变色彩交叉影响,使目测法不能有效判断。(2)人工目测只能观测到较严重的缺氮病变。在病变早期或程度较轻时,水稻植株表现的变化还不明显,但是对植株光合生理等已经带来严重影响,目测法却难以观察。
发明内容
本发明的目的就是针对上述已有技术存在的问题,研究基于希尔伯特黄法分析水稻植株中氮素含量的共聚焦显微拉曼光谱测量模型,该模型可以准确、快速和早期测量水稻植株中氮素水平。
为实现以上目的,本发明是通过以下步骤来实现的:
(1)首先获取水稻植株共聚焦显微拉曼光谱;
(2)接着对共聚焦显微拉曼光谱数据预处理;
(3)然后对共聚焦显微拉曼光谱信号进行自适应分解,各分解分量与氮素关联识别,得到关联信号;
(4)然后对关联信号进行希尔伯特黄变换,得到氮素特征频率;
(5)建立关联特征频率与氮素含量化学计量学测量模型。
【具体实施方式】
以下提供本发明基于共聚焦显微拉曼光谱频率法测量水稻植株中氮素含量方法的具体实施方式。
实验室内、25℃恒温环境下,压玻片整压水稻叶片1小时,距离叶尖1cm处中部截取0.5×0.5cm2叶样,将叶样置于载玻片和盖玻片之间,放到显微拉曼光谱仪物镜下方载物台上,以1.2μm横、纵步长扫描样品,获得样品的空间显微拉曼光谱图像,用多条图像平均值表示水稻叶样标准图像;用小波分解方法对共聚焦显微拉曼光谱去噪和去除基线漂移处理;对共聚焦显微拉曼光谱信号进行总体平均经验模态分解,应用神经网络训练识别得到氮素关联信号;对关联信号进行希尔伯特黄变换,通过边际谱得到氮素特征频率;最后建立特征频率与氮素含量最小二乘测量模型。
本发明的有益效果是通过对总体平均经验模态分解得到的光谱特征模态分量进行神经网络识别,剔除无关或相关性较弱的分量,得到氮素关联特征模态分量,进一步的希尔伯特黄变换,得到光谱中固有特征模态分量,该特征模态分量是氮元素共价键振动单频直接表达,比较希尔伯特变换得到的频率分量具有实际意义,所以频率特征指标不会受到其他微量元素特征峰叠加影响,具有特异性,识别精度高,适合植物中微量元素痕量测量。
附图说明
图1是方法功能框图。
具体实施方式
下面结合附图对本发明实施例进行详细描述:
1. 方法功能框图
方法功能采用模块化进行设计,以便于调整、可复用、易修改和易扩充。根据测量目标需求,即稻株叶片共聚焦显微拉曼光谱处理和建模过程,构建5个功能模块:光谱采集模块、光谱预处理模块、光谱分解及训练模块、希尔伯特黄变换模块和模式识别模块,如图1所示。
光谱采集模块实现光谱仪器参数调整、状态设置,样品制备和光谱采集、数据存储;光谱预处理模块提供了光谱的预处理算法,包括去噪、基线校正;光谱分解及训练模块用于分解拉曼光谱,训练识别得到氮素相关分量;希尔伯特黄变换模块将波长特征模态分量转换成频率特征指标;模式识别模块采用最小二乘方法建立氮素含量测量模型。
2. 关键技术
2.1小波分解去噪和去基线漂移
共聚焦显微拉曼光谱中噪声有两类,来自仪器的电子热运动噪声和外部通信***干扰。噪声的存在极大影响了光谱真实信息的解读,所以信号降噪在光谱解析中有着举足轻重的作用。
分别采用sym1、sym2、sym3、sym4、sym5、sym6、sym7、sym8、db1、db2、db3、db4、db5、db6、db7、db8、db9、coif1、coif2、coif3、coif4、coif5小波基函数,使用不同的阈值估计法Hcursurc、Sqtwolog、Rigrsurc、Minimaxi,n(1-10)次分解,信号重构,本发明中针对水稻叶片的共聚焦显微拉曼光谱,较佳去噪和去基线参数设置为:基函数sym5、sym6、sym7、db6、db7;阈值估计方法Hcursurc、Sqtwolog;分解层数为5。
2.2总体平均经验模态分解共聚焦显微拉曼光谱
经验模态分解方法能将信号按照不同频率自适应分解,但是对共聚焦显微拉曼光谱分解时出现了模态混叠问题,为了解决该问题,发明中使用总体平均值经验模态分解方法,该方法利用高斯白噪声零均值以及频率均匀分布特性,使信号特征尺度均匀分布,最终获得优于经验模态分解的效果,处理过程自适应。
总体平均值经验模态分解步骤:
步骤1:待处理共聚焦显微拉曼光谱中加入等长度不等幅高斯白噪声,对复合信号经验模态分解,重复操作k次,得到特征模态分量
Figure DEST_PATH_IMAGE001
和余项
Figure 441952DEST_PATH_IMAGE002
经验模态分解步骤:
步骤a:通过三次样条函数求取共聚焦显微拉曼光谱x(t)极大值包络线u(t)和极小值包络线v(t),其均值记作m(t):
Figure DEST_PATH_IMAGE003
(1)
步骤b:令 R(t)=x(t)-m(t),如 R(t)不满足特征模态分量条件,则将其赋值给 x(t) 。返回步骤1,循环计算
Figure 44578DEST_PATH_IMAGE004
(2)
直至标准差
Figure DEST_PATH_IMAGE005
可以停止筛分过程。其中
Figure 512731DEST_PATH_IMAGE006
(3)
步骤c:得到第1个特征模态分量
Figure DEST_PATH_IMAGE007
及余项
Figure 655743DEST_PATH_IMAGE008
步骤 d:返回步骤1继续筛分
Figure DEST_PATH_IMAGE009
,依次得到
Figure 657066DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
,…,
Figure 230261DEST_PATH_IMAGE012
。判断余项
Figure DEST_PATH_IMAGE013
很小或基本呈单调趋势时筛分过程停止。
步骤2:对特征模态分量整体平均,
Figure 182780DEST_PATH_IMAGE014
(4)
Figure DEST_PATH_IMAGE015
(5)
式中
Figure 70096DEST_PATH_IMAGE016
为加噪经验模态分解次数。
通过神经网络训练识别各特征模态分量
Figure DEST_PATH_IMAGE017
与氮素关联程度,设置阈值筛选出关联特征频率分量
Figure 424460DEST_PATH_IMAGE018
。发明中神经网络采用BP型结构,参数设置如下:输入层神经元的数量由特征模态分量决定,本实例中,输入特征向量为
Figure DEST_PATH_IMAGE019
数据;输出层采用1个节点,用0和1分别表示氮素特征模态分量为假和真;隐含层节点数的选择对网络的性能影响很大,节点数过少,容易陷入局部极小值,隐含节点数过多,拟合函数复杂,使得网络泛化能力变差,试验结果显示,本发明中最优隐含层节点数取值范围8-12(根据n、m数值不同);隐含层神经元的激活函数选用logsig()函数,输出层的激活函数选pureline()函数;设置迭代次数1000,每隔10步显示1次,网络训练的目标值为0.01,学习率为0.1,使用trainlm()函数作为训练网络。
2.3 希尔伯特黄变换及模型建立
将关联特征模态分量与
Figure 168556DEST_PATH_IMAGE020
信号做卷积积分操作,得到关联特征模态分量的希尔伯特黄瞬时频率
Figure DEST_PATH_IMAGE021
,按照式(6)计算各希尔伯特瞬时频率的边际谱。
Figure 109836DEST_PATH_IMAGE022
(6)
式中
Figure DEST_PATH_IMAGE023
为共聚焦显微拉曼光谱第k个分量的边际谱。以边际谱中各频率幅值为输入变量,以氮素含量为输出变量,建立偏最小二乘拟合模型,实现水稻中氮素含量测量。
由上可知,本发明实施例用希尔伯特黄方法建立了水稻中氮素含量测量模型,该方法不同于黑盒子建模方法,使用氮元素的边际谱频率直接参与建模,模型测量机理明确,具有测量精度高、测试时间短的特点。本发明适合水稻等作物缺氮病害早期检测以及可以为精准农业提供科学依据。
以上所述仅为本发明的较佳实施案例,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,其特征在于,通过以下步骤来实现的:
(1)首先获取水稻植株共聚焦显微拉曼光谱;
(2)接着对共聚焦显微拉曼光谱数据预处理;
(3)然后对共聚焦显微拉曼光谱信号用总体平均经验模态方法进行自适应分解,得到特征模态分量,应用神经网络训练识别各分解分量、得到氮素关联信号;
(4)然后对关联信号进行希尔伯特黄变换,得到氮素特征频率;
(5)建立关联特征频率与氮素含量化学计量学测量模型。
2.根据权利要求1所述的希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,其特征是:
实验室内、25℃恒温环境下;
压玻片整压水稻叶片1小时,距离叶尖1cm处中部截取0.5×0.5cm2叶样;
将叶样置于载玻片和盖玻片之间,放到显微拉曼光谱仪物镜下方载物台上,以1.2μm横、纵步长扫描样品,获得样品的空间显微拉曼光谱图像;
用多条图像平均值表示水稻叶样标准图像。
3.根据权利要求1所述的希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,其特征是:
用小波分解方法对共聚焦显微拉曼光谱去噪处理;
用小波分解方法对共聚焦显微拉曼光谱去除基线漂移。
4.根据权利要求1所述的希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,其特征是:
对关联信号进行希尔伯特黄变换,通过边际谱得到氮素特征频率。
5.根据权利要求1所述的希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型,其特征是:
使用最小二乘法建立特征频率与氮素含量测量模型。
CN201710156394.3A 2017-03-16 2017-03-16 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型 Expired - Fee Related CN108007916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156394.3A CN108007916B (zh) 2017-03-16 2017-03-16 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156394.3A CN108007916B (zh) 2017-03-16 2017-03-16 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型

Publications (2)

Publication Number Publication Date
CN108007916A CN108007916A (zh) 2018-05-08
CN108007916B true CN108007916B (zh) 2020-08-04

Family

ID=62048653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156394.3A Expired - Fee Related CN108007916B (zh) 2017-03-16 2017-03-16 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型

Country Status (1)

Country Link
CN (1) CN108007916B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236015A1 (en) * 2020-05-21 2021-11-25 Temasek Life Sciences Laboratory Limited Early diagnosis and management of nitrogen deficiency in plants utilizing raman spectroscopy
CN113049500B (zh) * 2021-03-19 2022-12-06 杭州海康威视数字技术股份有限公司 水质检测模型训练和水质检测方法、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382488A (zh) * 2008-10-14 2009-03-11 江苏吟春碧芽茶叶研究所有限公司 利用可见-近红外漫反射光谱技术检测茶鲜叶氮含量的方法
CN101424637A (zh) * 2008-12-04 2009-05-06 浙江大学 一种油菜叶片氮素含量遥感估算模型方法
CN103674929A (zh) * 2013-12-25 2014-03-26 黑龙江八一农垦大学 光谱分析用于植物幼苗的体检方法
KR20140038213A (ko) * 2012-09-20 2014-03-28 주식회사 스마테움 라만 분광법 및 케모메트릭스를 이용한 식물의 바이러스 감염에 대한 분석방법
CN103729688A (zh) * 2013-12-18 2014-04-16 北京交通大学 一种基于emd的断面客流神经网络预测方法
CN105203495A (zh) * 2015-09-11 2015-12-30 天津工业大学 一种基于希尔伯特-黄变换的光谱信号去噪方法
US9403833B2 (en) * 2014-05-14 2016-08-02 Novartis Ag Carboxamide derivatives

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547460A1 (en) * 2003-11-28 2005-06-09 Haishan Zeng Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy
CN102374971A (zh) * 2010-08-09 2012-03-14 中国农业大学 一种基于高光谱技术的玉米叶片氮含量估算方法
US20120092663A1 (en) * 2010-10-14 2012-04-19 Kull Linda S Transmission raman spectroscopy analysis of seed composition
CN102788752B (zh) * 2012-08-08 2015-02-04 江苏大学 基于光谱技术的农作物内部信息无损检测装置及方法
CN106290292B (zh) * 2016-07-25 2018-12-28 浙江大学 一种利用共聚焦显微拉曼检测茶叶中类胡萝卜素含量的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382488A (zh) * 2008-10-14 2009-03-11 江苏吟春碧芽茶叶研究所有限公司 利用可见-近红外漫反射光谱技术检测茶鲜叶氮含量的方法
CN101424637A (zh) * 2008-12-04 2009-05-06 浙江大学 一种油菜叶片氮素含量遥感估算模型方法
KR20140038213A (ko) * 2012-09-20 2014-03-28 주식회사 스마테움 라만 분광법 및 케모메트릭스를 이용한 식물의 바이러스 감염에 대한 분석방법
CN103729688A (zh) * 2013-12-18 2014-04-16 北京交通大学 一种基于emd的断面客流神经网络预测方法
CN103674929A (zh) * 2013-12-25 2014-03-26 黑龙江八一农垦大学 光谱分析用于植物幼苗的体检方法
US9403833B2 (en) * 2014-05-14 2016-08-02 Novartis Ag Carboxamide derivatives
CN105203495A (zh) * 2015-09-11 2015-12-30 天津工业大学 一种基于希尔伯特-黄变换的光谱信号去噪方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Elastic properties and surface damage resistance of nitrogen-rich;Pathikumar Sellappan;《Journal of Non-Crystalline Solids》;20100930;第356卷(第41期);全文 *
Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy;Elfatih M;《International Journal of Applied Earth Observation and》;20101231;第12S卷;全文 *
基于希尔伯特解调的LFM信号调频斜率的识别;高洪青;《计算机测量与控制》;20161231;第24卷(第9期);全文 *
基于拉曼光谱分析寒地水稻叶瘟病害植株特征;谭峰;《农业工程学报》;20150228;第31卷(第4期);全文 *

Also Published As

Publication number Publication date
CN108007916A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
Zhang et al. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion
CN102879353B (zh) 近红外检测花生中蛋白质组分含量的方法
CN102721651B (zh) 基于多光谱图像的植物叶片水分含量的检测方法及***
CN107796764B (zh) 一种基于三波段植被指数的小麦叶面积指数估算模型的构建方法
CN103940748B (zh) 基于高光谱技术的柑橘冠层含氮量预测与可视化的方法
CN101915738A (zh) 基于高光谱成像技术的茶树营养信息快速探测方法及装置
CN101210875A (zh) 基于近红外光谱技术的无损测量土壤养分含量的方法
CN107607486B (zh) 一种土壤全氮检测方法及装置
CN108007917B (zh) 希尔伯特法建立稻株中氮素含量拉曼光谱测量模型方法
CN104778349B (zh) 一种用于水稻表土氮肥施用等级评定方法
CN110333195A (zh) 植物叶片水分含量检测方法及装置
CN108007916B (zh) 希尔伯特黄法建立稻株氮含量的共聚焦显微拉曼测量模型
Wu et al. Study on the optimal algorithm prediction of corn leaf component information based on hyperspectral imaging
CN114676636A (zh) 一种综合植被和生境特征的草原区土壤水分快速反演方法
CN107202784B (zh) 一种水稻浸种催芽过程中工艺节点的检测方法
CN109142238B (zh) 一种棉花磷素营养快速诊断方法
Wang et al. Intelligent detection of hard seeds of snap bean based on hyperspectral imaging
Yang et al. Classification of sugar beets based on hyperspectral and extreme learning machine methods
CN110596048A (zh) 一种光谱速测烟草叶片中钾含量的方法
CN113065230B (zh) 基于优化光谱指数建立水稻叶片spad的高光谱反演模型
Yang et al. Rapid detection method of Pleurotus eryngii mycelium based on near infrared spectral characteristics
Liu et al. Estimation of chlorophyll content in maize canopy using wavelet denoising and SVR method
Yao et al. Image-based plant nutrient status analysis: An overview
CN108169162B (zh) 一种茶园土壤肥力水平的快速评价方法
CN112782103B (zh) 棉花苗期叶片棉蚜早期为害的监测方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200804