CN107991336B - 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法 - Google Patents

一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法 Download PDF

Info

Publication number
CN107991336B
CN107991336B CN201711216129.6A CN201711216129A CN107991336B CN 107991336 B CN107991336 B CN 107991336B CN 201711216129 A CN201711216129 A CN 201711216129A CN 107991336 B CN107991336 B CN 107991336B
Authority
CN
China
Prior art keywords
magnetic
quercetin
concentration
nanoparticles
qmnps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711216129.6A
Other languages
English (en)
Other versions
CN107991336A (zh
Inventor
徐莉
姜维娜
杨世龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201711216129.6A priority Critical patent/CN107991336B/zh
Publication of CN107991336A publication Critical patent/CN107991336A/zh
Application granted granted Critical
Publication of CN107991336B publication Critical patent/CN107991336B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,包括:1)制备槲皮素包覆磁性Fe3O4纳米颗粒;2)做出△T2‑Pb2+和Cu2+浓度的标准曲线;3)利用槲皮素包覆磁性Fe3O4纳米颗粒(QMNPs)结合Pb2+和Cu2+的性质,测定出△T2,依据△T2‑Pb2+和Cu2+浓度的标准曲线,计算出Pb2+和Cu2+的浓度;4)在磁场作用下,利用磁性吸附法吸附结合Pb2+和Cu2+的槲皮素包覆磁性Fe3O4纳米颗粒,实现去除Pb2+和Cu2+。本发明是基于QMNPs体系与Pb2+或Cu2+进行配位,在外界磁场作用下发生聚集和沉淀,因此能同时对水中的Pb2+和Cu2+进行检测和去除,可成功地应用于水、尿样品,并且有回收率高,吸附能力强,无潜在的二次污染等优点,具有很好的实用性。

Description

一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法
技术领域
本发明属于磁性纳米粒子及其应用技术领域,具体涉及一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法。
背景技术
重金属离子污染对环境和生物的发展具有重要的影响。由于过量的重金属离子会对人体健康和环境造成严重威胁,开发检测和消除它们的方法至关重要。因此,将重金属离子(如Pb2+和Cu2+)从污水中去除引起了公众的关注。在重金属离子中,Cu2+在环境、生物和化学***等方面起着至关重要的作用,但高浓度的 Cu2+会对肝脏和肾脏造成损害,并且对自我净化功能也有严重影响。Pb2+是高毒性重金属离子,即使是在低浓度的情况下也会对人类健康和环境构成严重威胁。因此,从受污染的水中去除Pb2+和Cu2+是非常必要的。
目前已应用不同的方法检测这些重金属离子,如荧光光谱法、原子吸收光谱法和气相色谱法。但是,这些方法有诸多缺点,如检测范围很小、设备昂贵、程序复杂、必须由专业人员进行操作等,显然还不能完全满足使用需求。
发明内容
发明目的:针对现有技术中存在的不足,本发明提供了一种基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,用于从受污染的水样中同时检测和去除 Pb2+和Cu2+
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,步骤如下:
1)制备槲皮素包覆磁性Fe3O4纳米颗粒;
2)做出△T2-Pb2+和Cu2+浓度的标准曲线;
3)利用槲皮素包覆磁性Fe3O4纳米颗粒(QMNPs)结合Pb2+和Cu2+的性质,测定出△T2,依据△T2-Pb2+和Cu2+浓度的标准曲线,计算出Pb2+和Cu2+的浓度;
4)在磁场作用下,利用磁性吸附法吸附结合Pb2+和Cu2+的槲皮素包覆磁性 Fe3O4纳米颗粒,实现去除Pb2+和Cu2+
步骤1)中,具体过程为:在超纯水中加入FeCl3·6H2O和FeCl2·6H2O,搅拌、加热至100℃,直至固体完全溶解;然后加NH3·H2O,产生黑色沉淀;采用离心分离法分离磁性Fe3O4纳米粒子,并用水和乙醇清洗;将Fe3O4粉末加入到超纯水中,超声分散1h;然后将槲皮素加入悬浮***中,与Fe3O4在超声分散条件下反应1h;接着,离心分离出功能化的磁性槲皮素纳米颗粒分离出来;最后用清水冲洗多次,并分散在去离子水里进行长期贮存。
步骤1)中,Fe3O4与槲皮素的质量比为1:1。
步骤2)中,△T2-Pb2+浓度的标准曲线为Y=52.41458X-8.88188,R2=0.9912。
步骤2)中,△T2-Cu2+浓度的标准曲线位Y=49.69175X-0.06574,R2=0.9983。
Pb2+的检测的线性范围为4.8×10-6mol L-1~10-4mol L-1
Cu2+的检测的线性范围为5.0×10-6mol L-1~10-4mol L-1
本方法中,所采用的槲皮素黄酮是植物中广泛存在的一种天然产物,属于具有良好生物活性的黄酮类化合物。经研究证书该槲皮素是一种有效的金属螯合剂具有三种可能的螯合位点竞争:3-羟基-4-羰基邻苯二酚,5-羟基-4-羰基邻苯二酚, 3’,4’-二羟基邻苯二酚。本申请的试验证实金属离子Pb2+和Cu2+与槲皮素包覆Fe3O4体系的络合会导致纳米粒子聚集并改变自旋弛豫时间(T2),在T2的变化和T2加权MR图像的亮度增强的基础上,可以检测到Pb2+和Cu2+的浓度。此外,该功能磁性纳米颗粒还可通过外部磁场去除受污染的水中的Pb2+和Cu2+,避免了潜在的二次污染。
有益效果:与现有技术相比,本发明的方法,是基于QMNPs体系与Pb2+或Cu2+进行配位,导致QMNPs体系团聚,致使弛豫时间T2增加。在△T2-离子浓度的标准曲线中,Pb2+的R2=0.9912,Cu2+的R2=0.9983,具有很好的相关性,检测的线性范围Pb2+在4.8×10-6mol L-1~10-4mol L-1,Cu2+在5.0×10-6mol L-1~10-4mol L-1。由于QMNPs体系在外界磁场作用下与Pb2 +或Cu2+进行配位发生聚集和沉淀,因此能同时对水中的Pb2+和Cu2+进行检测和去除,可成功地应用于水、尿样品,并且有回收率高,吸附能力强,无潜在的二次污染等优点,具有很好的实用性。
附图说明
图1是槲皮素包覆Fe3O4纳米颗粒的制备路线图;
图2是透射电镜观察QMNPs的形貌图;图中,a为显示未修饰的Fe3O4,b 为槲皮素包覆Fe3O4,c为QMNPs的分散状态,d为加入Pb2+的QMNPs的分散状态;
图3是Fe3O4(a)和QMNPs(b)的红外光谱图;
图4是Fe3O4(a)和QMPNs(b)的XRD图像;
图5是Fe3O4和QMNPs的T2弛豫时间图;
图6是100mL Fe3O4水溶液加入槲皮素T2弛豫时间图;
图7是QMNPs体系加入不同金属离子对T2的影响结果图;
图8是团聚原理图;
图9是QMNPs体系加入Cu2+的T2变化以及MRI变化图;
图10是QMNPs体系加入Pb2+的T2变化以及MRI变化图;
图11是QMNPs体系中随着Pb2+或Cu2+浓度增加的T2加权MR图;
图12是QMNPs体系中△T2-Pb2+浓度的标准曲线图;
图13是QMNPs体系中△T2-Cu2+浓度的标准曲线图;
图14是槲皮素包覆Fe3O4体系对Cu2+、Pb2+的吸附结果图;
图15是实施例6的结果图。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
以下实施例中,T2(自旋弛豫时间)由0.47T核磁共振仪(上海Niumag公司) 测得,透射电子显微镜(TEM,JEM-1400)用于研究槲皮素包覆磁性Fe3O4纳米核壳颗粒纳米(QMNPs)的形貌和结构。用布鲁克D8Venture系列单晶X射线衍射仪和Bruker VERTEX 80V系列的傅立叶变换红外光谱(FTIR)对该体系进行研究,并用Perkin Elmer AA900T AAS对Pb2+和Cu2+的含量进行了测定。
实施例1
功能化的磁性槲皮素纳米粒子(QMNPs)的合成,其路线图如图1所示,具体过程为:在250mL超纯水中加入FeCl3·6H2O(10.85g)和FeCl2·6H2O(3.99g),搅拌、加热至100℃,直至固体完全溶解。然后加NH3·H2O(5mL,28%),产生黑色沉淀。采用离心分离法分离磁性Fe3O4纳米粒子,并用水和乙醇清洗三次。将1mg Fe3O4粉末加入到100mL的超纯水中,超声(40KHz,30℃)分散1h。然后将一定量的槲皮素(10-5mol·L-1)加入悬浮***中,让其与Fe3O4在超声 (40KHz,30℃)分散条件下反应1h。接着,离心分离(15min,15000rmp),将功能化的磁性槲皮素纳米颗粒(QMNPs)分离出来。最后,将产品用清水冲洗多次,并将其分散在去离子水里进行长期贮存。
通过透射电镜(TEM)观察QMNPs的形貌。图2a显示未修饰的Fe3O4,粒径在20nm到30nm间。图2b示出QMNPs的形貌,在Fe3O4纳米颗粒表面成功包覆上了槲皮素。图2c和d分别显示出QMNPs在水样中有无Pb2+的分散状态。从图中可以清楚地看到,在添加Pb2+后,磁传感器出现团聚的现象,聚集和聚集。这间接表明槲皮素已经成功地嵌入到Fe3O4的表面。
Fe3O4(a)和QMNPs(b)的傅立叶变换红外光谱(FTIR)如图3所示。图3a,567 cm-1和1632cm-1处的峰是Fe–O键和FeOO–键的特征峰。3500cm-1的峰是 O–H的伸缩振动峰。在图3b中,在2900cm-1和1640cm-1处的峰是C=O的伸缩振动。1320-1210cm-1处的峰是羰基的C–O键的特征峰。因此,根据上述的结果,证实了本实施例已经成功合成了磁性QMNPs结构,而槲皮素包覆在Fe3O4纳米颗粒表面上也是有效的。
图4是Fe3O4和QMPNs的XRD图像。曲线上的不同的衍射峰(a)可以认为是Fe3O4的面心立方相(JCPDS card 65–3107)。在包覆槲皮素涂层后,QMNPs(b) 的衍射模式明显不同于Fe3O4(a),结晶度的变化可能是由槲皮素层引起的。
实施例2
为了比较两种样品QMNPs和Fe3O4纳米颗粒在水中的状态,分别测定了两种样品的T2:将样品溶液放入5毫米玻璃管中,T2由0.55T核磁共振仪测量(TE =1000s,TR=1500ms)。T2的测量间隔为5分钟,每个样本扫描3次。
结果图如5所示,Fe3O4的T2在22分钟内明显增加,表明在磁场条件下Fe3O4纳米颗粒在水中聚集成簇。虽然QMNPs只发生了很小的变化,但这表明槲皮素包覆的Fe3O4可以分散在水中。在槲皮素结构中,5个羟基基团可以与Fe3O4形成氢键,使Fe3O4纳米粒子在水中更好地分散。但是,槲皮素的含量会影响QMNPs 的稳定性。在100mL Fe3O4水溶液中添加4种不同质量的槲皮素(0.5mg,1.0mg, 1.5mg,2.0mg),测试4种不同QMNPs体系的T2弛豫时间的变化。结果如图6 所示,表明随着槲皮素含量的增加,QMNPs的T2先减小后变大,这表明QMNPs 体系在100mL Fe3O4水溶液中含有1.0mg槲皮素时的稳定性是最好的。在Fe3O4水溶液中加入少量槲皮素,槲皮素与Fe3O4之间形成氢键,提高了QMNPs体系的稳定性。当槲皮素的含量增加到一定程度时,包覆在Fe3O4纳米颗粒表面的槲皮素的氢键相互作用增加,导致了QMNPs体系的趋向于聚集状态。因此,在制备QMNPs时,槲皮素含量是很重要的。
实施例3QMNPs对金属离子的识别
为了检测QMNPs体系对不同金属离子的T2,1mL的QMNPs溶液与10μL 的不同金属离子(Co2+,K+,Zn2+,Na+,Ni2+,Cd2+,Li+,Fe3+,Fe2+,Mn2+, Mg2+,La2+,Cu2+,Pb2+)的醋酸/硝酸盐标准溶液(1×10-3mol·L-1)混合,然后将样品溶液放入5毫米玻璃管中,T2由0.55T核磁共振仪测定(TE=1000s,TR= 1500ms)。
将每一种金属离子分别加入到制备的检测***中,记录T2弛豫时间。结果如图7所示,结果表明只有Pb2+和Cu2+使T2弛豫时间发生明显变化。
当Pb2+或Cu2+加入QMNPs溶液中时,QMNPs与Pb2+或Cu2+之间发生配位反应,导致QMNPs分散成簇,如图示8所示。较大的纳米颗粒改变了周围水质子的磁性弛豫特性,从而增加T2弛豫时间,如图9和图10所示,这一现象可以通过MRI的T2加权磁弛豫(MR)的亮度变化显示,同时,QMNPs***在外部磁场作用下出现沉淀。
实施例4QMNPs体系对Pb2+和Cu2+的检测
为了测定不同浓度Pb2+和Cu2+对T2的影响,测试溶液是将1mL作为检测器的溶液与不同浓度Pb2+和Cu2+标准液混合得到的,注入试管测量T2。T2测得后可得到T2的加权图像。
该体系可以检测出不同浓度的Pb2+或Cu2+。从图11可以观察到,随着样品中Pb2+和Cu2+浓度的增加,样品的MR图像也会逐渐变亮,T2弛豫时间相应增加。
将1mL磁传感器加入到测试用玻璃管中,用低场核磁共振仪记录它的T2值;再分别将不同浓度的铅盐溶液和铜盐溶液滴加入其中,用低场核磁共振仪记录它们的T2值,将前后分别测得的T2值相减,得到△T2,并绘制△T2与不同浓度的 Pb2+和Cu2+的工作曲线:△T2-Pb2+浓度的标准曲线见图12, Y=52.41458X-8.88188,R2=0.9912。△T2-Cu2+浓度的标准曲线见图13, Y=49.69175X-0.06574,R2=0.9983,它们具有很好的相关性,检测的线性范围Pb2+在4.8×10-6mol L-1~10-4mol L-1,Cu2+在5.0×10-6mol L-1~10-4mol L-1。其中Pb2+检测限为1.6×10-6mol L-1,Cu2+检测限为2×10-6mol L-1
实施例5QMNPs体系在水样和尿样中的应用
将1mmol/L的Pb2+或Cu2+加到3.0mL的水中,然后加入QMNPs。当混合物外部磁场发生作用沉淀随即出现,如图14所示。半小时后,小心去除悬浮液,并测定Pb2+或Cu2+的浓度。每克该体系的吸附公式:M=[(C0-C)×V]×m-1,C0和C 是溶液Pb2+或Cu2+的初始和最终浓度(mg·L-1),V是样品体积(L),m是QMNPs 的重量(g)。经计算,对Pb2+和Cu2+最大吸附量分别为68mg和71mg,优于现有的方法(表1所示)。所以QMNPs的磁性吸附法对去除水溶液中的Pb2+和Cu2+可行。
表1文献中对Cu2+、Pb2+的吸附量
Figure BDA0001485575230000061
注:具体参考文献如下:
1、Y.Chen,R.C.Haddon,S.Fang,A.M.Rao,P.C.Eklund,Chemical attachment oforganic functional groups to single-walled carbon nanotube material,J.Mater.Res.13 (1998)2423–2431.
2、N.Chiron,R.Guilet,E.Deydier,Adsorption of Cu(II)and Pb(II)onto agrafted silica:isotherms and kinetic models,Water Res.37(2003)3079–3086.
3、L.Curkovic,S.Cerjan-Stefanovic,A.RastoveanMioe,Batch Pb2+and Cu2+removal by electric furnace slag,Water Res.35(2001)3436–3440.
4、C.Zhang,J.Sui,J.Li,Y.Tang,W.Cai,Efficient removal of heavy metalions by thiol-functionalized superparamagneticcarbon nanotubes,Chem.Eng.J.210(2012)45–52.
5、S.
Figure BDA0001485575230000071
A.Veronovski,Z.Novak,Z.Knez,Silica aerogels modifiedwith mercapto functional groups used for Cu(II)and Hg(II)removal from aqueoussolutions, Desalination 269(2011)223-230.
本实施例还设计评估QMPNs体系对水和尿样(酸消化后)中的Pb2+和Cu2+检测性能和去除能力。首先,将10μL含有Pb2+和Cu2+的水样或尿样加入1mL QMNPs体系的溶液中。低场NMR检测Pb2+和Cu2+的存在,并经AAs法测得Pb2+和Cu2+的浓度。结果统计在表2和表3中,所测结果与AAs法的测量结果基本相同,证明QMNPs可以作为磁性传感器对Pb2+和Cu2+进行定性和定量的分析。
表2QMNPs体系对Pb2+的检测和去除能力
Figure BDA0001485575230000072
此外,60μg QMNPs加入水或尿液中与Pb2+或Cu2+进行配位,在外部磁场条件下吸附金属离子,30min后,对混合液进行过滤,用原子吸收光谱法测定滤液中的Pb2+或Cu2+的浓度。结果(表2和表3)显示:水样中90.24~92.00%的Pb2+和 88.2~91.9%的Cu2+,尿样中90.90~92.00%的Pb2+和91.8~91.9%的Cu2+被QMNPs 体系吸附并除去。
表3QMNPs体系对Cu2+的检测和去除能力
Figure BDA0001485575230000073
Figure BDA0001485575230000081
实施例6
山奈酚修饰磁性Fe3O4纳米粒子体系的制备方法,同实施例1,其中采用山奈酚替代槲皮素,制备产物在水中对不同离子进行检测和去除,方法同实施例3,结果如图15所示,其对不同离子的选择性差,并不能满足同时检测、去除Pb2+和Cu2+的使用需求。

Claims (4)

1.一种基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,其特征在于,步骤如下:
1)制备槲皮素包覆磁性Fe3O4纳米颗粒;具体过程为:在超纯水中加入FeCl3·6H2O和FeCl2·6H2O,搅拌、加热至100℃,直至固体完全溶解;然后加NH3·H2O,产生黑色沉淀;采用离心分离法分离磁性Fe3O4纳米粒子,并用水和乙醇清洗;将Fe3O4 粉末加入到超纯水中,超声分散1h;然后将槲皮素加入悬浮***中,与Fe3O4在超声分散条件下反应1h;接着,离心分离出功能化的磁性槲皮素纳米颗粒;最后用清水冲洗磁性槲皮素纳米颗粒多次,并分散在去离子水里进行长期贮存;
2)做出△T2-Pb2+和Cu2+浓度的标准曲线;△T2-Pb2+浓度的标准曲线为Y=52.41458X—8.88188,R2=0.9912;△T2-Cu2+浓度的标准曲线为 Y=49.69175X—0.06574,R2=0.9983;其中,△T2-为前后相邻弛豫时间的差值,Y为△T2,X为离子浓度,10-5mol·L-1
3)应用槲皮素包覆磁性Fe3O4纳米颗粒结合Pb2+和Cu2+,测定出△T2,依据△T2- Pb2+和Cu2+浓度的标准曲线,计算出Pb2+和Cu2+的浓度;
4)在磁场作用下,利用磁性吸附法吸附结合Pb2+和Cu2+的槲皮素包覆磁性Fe3O4纳米颗粒,实现去除Pb2+和Cu2+
2.根据权利要求1所述的基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,其特征在于,步骤1)中,Fe3O4与槲皮素的质量比为1:1。
3.根据权利要求1所述的基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,其特征在于,Pb2+的检测的线性范围为4.8×10-6mol L-1~10-4 mol L -1
4.根据权利要求1所述的基于磁传感的快速同时检测、分离Pb2+和Cu2+的方法,其特征在于,Cu2 +的检测的线性范围为5.0×10-6mol L-1~10-4mol L -1
CN201711216129.6A 2017-11-28 2017-11-28 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法 Expired - Fee Related CN107991336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711216129.6A CN107991336B (zh) 2017-11-28 2017-11-28 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711216129.6A CN107991336B (zh) 2017-11-28 2017-11-28 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法

Publications (2)

Publication Number Publication Date
CN107991336A CN107991336A (zh) 2018-05-04
CN107991336B true CN107991336B (zh) 2020-08-28

Family

ID=62033749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711216129.6A Expired - Fee Related CN107991336B (zh) 2017-11-28 2017-11-28 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法

Country Status (1)

Country Link
CN (1) CN107991336B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107007569A (zh) * 2017-03-23 2017-08-04 徐州医科大学 一种载槲皮素和白藜芦醇的磁性脂质纳米粒及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3155334A1 (en) * 2010-10-22 2012-04-26 T2 Biosystems, Inc. NMR SYSTEMS AND METHODS FOR RAPID ANALYTE DETECTION
WO2013102842A2 (en) * 2012-01-06 2013-07-11 Sahajanand Medical Technologies Private Limited Device and composition for drug release
WO2013110828A1 (es) * 2012-01-27 2013-08-01 Soluciones Nanotecnológicas, S.L. Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)
CN103760184A (zh) * 2014-01-16 2014-04-30 江南大学 一种测定铅离子的磁共振成像传感器的构建方法
CN104142355B (zh) * 2014-05-08 2016-07-06 上海师范大学 一种基于磁性纳米粒子检测Cd2+离子的核磁共振传感器及其制备方法
CN104535601B (zh) * 2014-12-19 2017-01-11 上海师范大学 一种基于磁性纳米粒子检测Cd2+的双模式传感器及其制备方法
CN106033066B (zh) * 2015-03-11 2018-08-28 中国科学院宁波材料技术与工程研究所 一种核磁共振快速检测金属离子与小分子化合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107007569A (zh) * 2017-03-23 2017-08-04 徐州医科大学 一种载槲皮素和白藜芦醇的磁性脂质纳米粒及其制备方法

Also Published As

Publication number Publication date
CN107991336A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
Suo et al. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry
Bagheri et al. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry
Enache et al. Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents
Cheng et al. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES
Monier Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff's base
Khoddami et al. A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples
Giraldo et al. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization
Suo et al. Functionalization of a SiO 2-coated magnetic graphene oxide composite with polyaniline–polypyrrole for magnetic solid phase extraction of ultra-trace Cr (III) and Pb (II) in water and food samples using a Box–Behnken design
Zhang et al. Magnetically recoverable facile nanomaterials: synthesis, characterization and application in remediation of heavy metals
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
Shojaee et al. Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices
Banaei et al. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag (I) from aqueous samples
Zhang et al. Colorimetric magnetic microspheres as chemosensor for Cu2+ prepared from adamantane-modified rhodamine and β-cyclodextrin-modified Fe3O4@ SiO2 via host–guest interaction
Jiang et al. Quercetin-coated Fe 3 O 4 nanoparticle sensors based on low-field NMR for determination and removal of Pb 2+ and Cu 2+ in biological samples
Abdolmohammad-Zadeh et al. Nickel oxide/chitosan nano-composite as a magnetic adsorbent for pre-concentration of Zn (II) ions
Asgharinezhad et al. Solid phase extraction of Pb (II) and Cd (II) ions based on murexide functionalized magnetic nanoparticles with the aid of experimental design methodology
Yang et al. Enhanced removal and detection of benzo [a] pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites
Karbalaie et al. Dopamine-modified magnetic graphene oxide as a recoverable sorbent for the preconcentration of metal ions by an effervescence-assisted dispersive micro solid-phase extraction procedure
Abdolmaleki et al. Efficient heavy metal ion removal by triazinyl-β-cyclodextrin functionalized iron nanoparticles
CN110193345A (zh) 一种磁性纳米复合材料的制备方法
Kaykhaii et al. Magnetic molecularly imprinted polymer nanoparticles for selective extraction of copper from aqueous solutions prior to its flame atomic absorption determination
Sun et al. Fabrication of Fe 3 O 4@ polydopamine@ polyamidoamine core–shell nanocomposites and their application for Cu (ii) adsorption
Hua et al. Novel magnetic ion-imprinted polymer extraction of trace Ce (III) in environmental and mineral samples and determination by ICP-MS
Peng et al. Thiol-functionalized Fe 3 O 4/SiO 2 microspheres with superparamagnetism and their adsorption properties for Au (III) ion separation
CN111437797B (zh) 一种离子液体包覆的氨基硅烷化磁性氧化石墨烯复合材料制备及其在重金属中应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180504

Assignee: SPECTRUM DETECTION (SUZHOU) Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2021320000020

Denomination of invention: A method for rapid simultaneous detection and separation of Pb2 + and Cu2 + in water based on magnetic sensor

Granted publication date: 20200828

License type: Common License

Record date: 20210224

EE01 Entry into force of recordation of patent licensing contract
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200828

CF01 Termination of patent right due to non-payment of annual fee