CN107990825B - 基于先验数据校正的高精度位置测量装置与方法 - Google Patents

基于先验数据校正的高精度位置测量装置与方法 Download PDF

Info

Publication number
CN107990825B
CN107990825B CN201711156396.9A CN201711156396A CN107990825B CN 107990825 B CN107990825 B CN 107990825B CN 201711156396 A CN201711156396 A CN 201711156396A CN 107990825 B CN107990825 B CN 107990825B
Authority
CN
China
Prior art keywords
camera
coordinate system
moving object
image
acquisition card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711156396.9A
Other languages
English (en)
Other versions
CN107990825A (zh
Inventor
夏红伟
张昊翔
王常虹
马广程
考永贵
安昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201711156396.9A priority Critical patent/CN107990825B/zh
Publication of CN107990825A publication Critical patent/CN107990825A/zh
Application granted granted Critical
Publication of CN107990825B publication Critical patent/CN107990825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供了基于先验数据校正的高精度位置测量装置与方法,属于运动物***置测量领域。本发明基于先验数据校正的高精度位置测量装置,相机与支架横梁固定连接;支架横梁沿纵向导轨带动相机在竖直方向运动;相机的正下方放置有运动平台;运动平台上放置有运动物体;相机与图像采集卡通过连接端口一连接;图像采集卡与上位机通过连接端口二连接。本发明基于先验数据校正的高精度位置测量方法,在测量开始前利用先验数据对相机进行校正,可以有效地减少镜头畸变对测量精度的影响。采用具有双标志点的标志物,将运动物体的深度信息包含在相机采集得到的一帧图像中,无需增加相机个数或其他距离传感器,简化了测量装置的结构。

Description

基于先验数据校正的高精度位置测量装置与方法
技术领域
本发明涉及一种基于先验数据校正的高精度位置测量装置与方法,属于运动物***置测量领域。
背景技术
论文“基于单目视觉的位姿测量方法及仿真***研究”(哈尔滨工业大学硕士学位论文,马国松,20050301)中提出的基于单目视觉的目标位姿测量算法,虽然在三维运动物体的位置与姿态测量中效果良好,但是对于二维运动物体的位置测量太过于冗余,算法的运行速度较慢,不适合应用在实时性要求较高的场合。
论文“单目飞行目标位姿测量***的设计与实现”(西安电子科技大学硕士学位论文,王毅凡,20151201)中提出的基于轮廓特征匹配的位姿测量方法,虽然能够完成复杂环境状况下飞行目标的提取和测量,但是测量算法太过于复杂,需要计算的参数较多,在实际的工程应用中存在调试困难的问题。
论文“基于单目视觉的高速目标柔性化位姿测量技术”(大连理工大学硕士学位论文,陈玲,20160608)中提出的基于投影矩阵参数化的单目视觉可变焦位姿测量方法和基于相机运动标定的摄像机运动基准转换方法,虽然能够实现无校准、免标定情况下的目标位姿测量,但是测量过程中使用的镜头焦距、畸变系数等参数均由在线计算得到,与离线计算相比更易受到测量时偶然因素的干扰,测量***的鲁棒性较差。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,进而提供一种基于先验数据校正的高精度位置测量装置与方法。
本发明的目的是通过以下技术方案实现的:
基于先验数据校正的高精度位置测量装置,所述测量装置包括支架横梁、相机、纵向导轨、运动物体、运动平台、连接端口一、图像采集卡、连接端口二、上位机,相机与支架横梁固定连接;支架横梁沿纵向导轨带动相机在竖直方向运动;相机的正下方放置有运动平台;运动平台上放置有运动物体;相机与图像采集卡通过连接端口一连接;图像采集卡与上位机通过连接端口二连接。
基于先验数据校正的高精度位置测量方法,所述测量方法的具体步骤为:
步骤一:测量开始前使用先验数据对相机进行校正,获得相机的内参矩阵和畸变系数,得到相机的内参矩阵为
Figure BDA0001474372810000021
其中fx、fy为相机的焦距,u0、v0为像平面中心在像素坐标系下的坐标;
校正时采用的相机畸变模型为
x′=x(1+k1r2+k2r4+k3r6)+2p1xy+p2(r2+2x2)
y′=y(1+k1r2+k2r4+k3r6)+2p2xy+p1(r2+2y2)
r2=x2+y2
其中(x,y)、(x′,y′)分别为像平面坐标系下同一点在畸变前后的坐标,r为畸变前该点与像平面原点的像素距离,k1、k2、k3为径向畸变系数,p1、p2切向畸变系数;
步骤二:校正完成后固定相机的位置,使相机的光轴与运动平面垂直;以相机的光轴与运动平面的交点为原点,在运动平面内建立直角坐标系O2XY,其坐标轴与像平面坐标系O1UV中的对应坐标轴平行;
运动物体在像平面坐标系下的坐标为(u,v),在运动平面坐标系下的坐标为(xW,yW),两坐标系下坐标之间的转换关系为
Figure BDA0001474372810000022
其中fx、fy为相机的焦距,(u0,v0)为相机光轴与像平面的交点在像平面坐标系下的坐标,d为相机的光心到运动平面的距离;
步骤三:在运动物体上安装事先制作好的标志物,标志物包含两个圆形实心标志点,标志点一和标志点二,标志点之间的圆心距为R;
步骤四:相机和运动物体准备完成后,开始进行位置测量,相机采集到的图像经USB接口传输到图像采集卡中,在图像采集卡中完成对图像的预处理和运动物体的位置解算,并通过RS232串口将物***置信息传送到上位机进行显示和进一步处理。
本发明一种基于先验数据校正的高精度位置测量装置与方法,在测量开始前利用先验数据对相机进行校正,可以有效地减少镜头畸变对测量精度的影响。采用具有双标志点的标志物,将运动物体的深度信息包含在相机采集得到的一帧图像中,无需增加相机个数或其他距离传感器,简化了测量装置的结构。充分运用运动物体在平面内做二维运动这一条件,合理选取相机的安装位置,可以大大简化位置解算中必需的坐标变换过程,有效地减少了位置解算程序的运行时间,使得单目位置测量在实时性要求较高场合下的应用成为可能。
附图说明
图1为本发明基于先验数据校正的高精度位置测量装置的结构示意图。
图2为实施例五中运动物体的标志物的示意图。
图3为本发明基于先验数据校正的高精度位置测量方法的方框图。
图中的附图标记,1为支架横梁;2为相机;3为纵向导轨;4为运动物体;5为运动平台;6为连接端口一;7为图像采集卡;8为连接端口二;9为上位机。
具体实施方式
下面将结合附图对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
实施例一:如图1所示,本实施例所涉及的基于先验数据校正的高精度位置测量装置,包括支架横梁、相机、纵向导轨、运动物体、运动平台、连接端口一、图像采集卡、连接端口二、上位机,相机与支架横梁固定连接;支架横梁沿纵向导轨带动相机在竖直方向运动;相机的正下方放置有运动平台;运动平台上放置有运动物体;相机与图像采集卡通过连接端口一连接;图像采集卡与上位机通过连接端口二连接。
相机固定在支架横梁上,支架横梁沿着纵向导轨做竖直运动,控制相机距离运动平台的垂直距离的大小。测量***通过相机采集图像信息,传送至图像采集卡进行处理后传送至上位机。
实施例二:如图1和3所示,本实施例所涉及的基于先验数据校正的高精度位置测量装置,所述图像采集卡采用DSP图像采集卡,图像采集卡包括图像预处理模块和位置解算模块。
实施例三:如图1所示,本实施例所涉及的基于先验数据校正的高精度位置测量装置,所述连接端口一采用USB接口;连接端口二采用RS232串口。
实施例四:如图1所示,本实施例所涉及的基于先验数据校正的高精度位置测量装置,所述相机采用单目相机。
实施例五:如图1、2和3所示,本实施例所涉及的基于先验数据校正的高精度位置测量方法,所述基于先验数据校正的高精度位置测量方法的具体步骤为:
步骤一:测量开始前使用先验数据对相机进行校正,获得相机的内参矩阵和畸变系数,得到相机的内参矩阵为
Figure BDA0001474372810000041
其中fx、fy为相机的焦距,u0、v0为像平面中心在像素坐标系下的坐标;
校正时采用的相机畸变模型为
x′=x(1+k1r2+k2r4+k3r6)+2p1xy+p2(r2+2x2)
y′=y(1+k1r2+k2r4+k3r6)+2p2xy+p1(r2+2y2)
r2=x2+y2
其中(x,y)、(x′,y′)分别为像平面坐标系下同一点在畸变前后的坐标,r为畸变前该点与像平面原点的像素距离,k1、k2、k3为径向畸变系数,p1、p2切向畸变系数;
步骤二:校正完成后固定相机的位置,使相机的光轴与运动平面垂直;以相机的光轴与运动平面的交点为原点,在运动平面内建立直角坐标系O2XY,其坐标轴与像平面坐标系O1UV中的对应坐标轴平行;
运动物体在像平面坐标系下的坐标为(u,v),在运动平面坐标系下的坐标为(xW,yW),两坐标系下坐标之间的转换关系为
Figure BDA0001474372810000051
其中fx、fy为相机的焦距,(u0,v0)为相机光轴与像平面的交点在像平面坐标系下的坐标,d为相机的光心到运动平面的距离;
步骤三:在运动物体上安装事先制作好的标志物,标志物包含两个圆形实心标志点,标志点一和标志点二,标志点之间的圆心距为R;
步骤四:相机和运动物体准备完成后,开始进行位置测量,相机采集到的图像经USB接口传输到图像采集卡中,在图像采集卡中完成对图像的预处理和运动物体的位置解算,并通过RS232串口将物***置信息传送到上位机进行显示和进一步处理。
利用先验数据对相机进行校正,减少了镜头畸变对位置测量的影响,提高了测量精度。使用含有双标志点的标志物,使得单目相机可以直接从图像中计算出深度信息,简化了测量装置的结构。
实施例六:如图3所示,本实施例所涉及的基于先验数据校正的高精度位置测量方法,所述在图像采集卡中完成对图像的预处理和运动物体的位置解算具体操作为:
图像采集卡接收到图像数据后,首先对图像进行预处理;预处理完成后得到标志物中两个圆形标志点的边缘,再对标志点的边缘进行处理,得到两个标志点的质心在像平面坐标系下的坐标(u1,v1)和(u2,v2);
再对运动物体进行位置解算,根据像平面坐标系下两个圆形标志点的圆心坐标,计算像平面坐标系下这两个圆形标志点的圆心距
Figure BDA0001474372810000052
利用三角形相似的原理,计算出相机(2)的光心到运动平面的距离
Figure BDA0001474372810000053
其中
Figure BDA0001474372810000054
为相机的镜头在x、y方向上的平均焦距;
用标志点一的位置代表运动物体的位置,根据运动平面坐标系和像平面坐标系之间的坐标变换矩阵,求出运动物体在运动平面坐标系下的位置
Figure BDA0001474372810000055
得到运动物体在运动平面坐标系下的位置坐标(xW,yW)。
实施例七:如图3所示,本实施例所涉及的基于先验数据校正的高精度位置测量方法,所述预处理包含三部分,依次为去畸变、二值化和边缘提取。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (7)

1.基于先验数据校正的高精度位置测量方法,其特征在于,所述基于先验数据校正的高精度位置测量方法的具体步骤为:
步骤一:测量开始前使用先验数据对相机(2)进行校正,获得相机(2)的内参矩阵和畸变系数,得到相机(2)的内参矩阵为
Figure FDA0002265763940000011
其中fx、fy为相机(2)的焦距,u0、v0为像平面中心在像素坐标系下的坐标;
校正时采用的相机(2)畸变模型为
x′=x(1+k1r2+k2r4+k3r6)+2p1xy+p2(r2+2x2)
y′=y(1+k1r2+k2r4+k3r6)+2p2xy+p1(r2+2y2)
r2=x2+y2
其中(x,y)、(x′,y′)分别为像平面坐标系下同一点在畸变前后的坐标,r为畸变前该点与像平面原点的像素距离,k1、k2、k3为径向畸变系数,p1、p2切向畸变系数;
步骤二:校正完成后固定相机(2)的位置,使相机(2)的光轴与运动平面垂直;以相机(2)的光轴与运动平面的交点为原点,在运动平面内建立直角坐标系O2XY,其坐标轴与像平面坐标系O1UV中的对应坐标轴平行;
运动物体(4)在像平面坐标系下的坐标为(u,v),在运动平面坐标系下的坐标为(xW,yW),两坐标系下坐标之间的转换关系为
Figure FDA0002265763940000012
其中fx、fy为相机(2)的焦距,(u0,v0)为相机(2)光轴与像平面的交点在像平面坐标系下的坐标,d为相机(2)的光心到运动平面的距离;
步骤三:在运动物体(4)上安装事先制作好的标志物,标志物包含两个圆形实心标志点,标志点一(4-1)和标志点二(4-2),标志点之间的圆心距为R;
步骤四:相机(2)和运动物体(4)准备完成后,开始进行位置测量,相机采集到的图像经USB接口传输到图像采集卡(7)中,在图像采集卡(7)中完成对图像的预处理和运动物体(4)的位置解算,并通过RS232串口将物***置信息传送到上位机(9)进行显示和进一步处理。
2.根据权利要求1所述的基于先验数据校正的高精度位置测量方法,其特征在于,所述在图像采集卡(7)中完成对图像的预处理和运动物体(4)的位置解算具体操作为:
图像采集卡(7)接收到图像数据后,首先对图像进行预处理;预处理完成后得到标志物中两个圆形标志点的边缘,再对标志点的边缘进行处理,得到两个标志点的质心在像平面坐标系下的坐标(u1,v1)和(u2,v2);
再对运动物体进行位置解算,根据像平面坐标系下两个圆形标志点的圆心坐标,计算像平面坐标系下这两个圆形标志点的圆心距
Figure FDA0002265763940000021
利用三角形相似的原理,计算出相机(2)的光心到运动平面的距离
Figure FDA0002265763940000022
其中
Figure FDA0002265763940000023
为相机(2)的镜头在x、y方向上的平均焦距;
用标志点一(4-1)的位置代表运动物体的位置,根据运动平面坐标系和像平面坐标系之间的坐标变换矩阵,求出运动物体(4)在运动平面坐标系下的位置
Figure FDA0002265763940000024
得到运动物体(4)在运动平面坐标系下的位置坐标(xW,yW)。
3.根据权利要求1或2所述的基于先验数据校正的高精度位置测量方法,其特征在于,所述预处理包含三部分,依次为去畸变、二值化和边缘提取。
4.一种权利要求1基于先验数据校正的高精度位置测量方法使用的装置,其特征在于,所述基于先验数据校正的高精度位置测量装置包括支架横梁(1)、相机(2)、纵向导轨(3)、运动物体(4)、运动平台(5)、连接端口一(6)、图像采集卡(7)、连接端口二(8)、上位机(9),相机(2)与支架横梁(1)固定连接;支架横梁(1)沿纵向导轨(3)带动相机(2)在竖直方向运动;相机(2)的正下方放置有运动平台(5);运动平台(5)上放置有运动物体(4);相机(2)与图像采集卡(7)通过连接端口一(6)连接;图像采集卡(7)与上位机(9)通过连接端口二(8)连接。
5.根据权利要求4所述的装置,其特征在于,所述图像采集卡(7)采用DSP图像采集卡,图像采集卡包括预处理模块和位置解算模块。
6.根据权利要求4所述的装置,其特征在于,所述连接端口一(6)采用USB接口;连接端口二(8)采用RS232串口。
7.根据权利要求4所述的装置,其特征在于,所述相机(2)采用单目相机。
CN201711156396.9A 2017-11-20 2017-11-20 基于先验数据校正的高精度位置测量装置与方法 Active CN107990825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711156396.9A CN107990825B (zh) 2017-11-20 2017-11-20 基于先验数据校正的高精度位置测量装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711156396.9A CN107990825B (zh) 2017-11-20 2017-11-20 基于先验数据校正的高精度位置测量装置与方法

Publications (2)

Publication Number Publication Date
CN107990825A CN107990825A (zh) 2018-05-04
CN107990825B true CN107990825B (zh) 2020-03-10

Family

ID=62029942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711156396.9A Active CN107990825B (zh) 2017-11-20 2017-11-20 基于先验数据校正的高精度位置测量装置与方法

Country Status (1)

Country Link
CN (1) CN107990825B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405755B (zh) * 2018-12-13 2021-01-19 西安交通大学 一种大尺寸管板孔径和节距测量装置与测量方法
CN109859605A (zh) * 2019-02-28 2019-06-07 江苏集萃微纳自动化***与装备技术研究所有限公司 工业机器人无示教器的3d示教方法
CN110619660A (zh) * 2019-08-21 2019-12-27 深圳市优必选科技股份有限公司 一种物体定位方法、装置、计算机可读存储介质及机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122434A (ja) * 2011-12-12 2013-06-20 Itt:Kk レーザーを用いた単眼カメラによる3次元形状位置計測装置,3次元形状位置計測処理方法および3次元形状位置計測処理プログラム
CN103793719A (zh) * 2014-01-26 2014-05-14 深圳大学 一种基于人眼定位的单目测距方法和***
CN106197265A (zh) * 2016-06-30 2016-12-07 中国科学院长春光学精密机械与物理研究所 一种空间自由飞行模拟器视觉精密定位方法
CN106643745A (zh) * 2017-01-17 2017-05-10 哈尔滨工业大学 深空探测行星着陆模拟器位姿测量装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122434A (ja) * 2011-12-12 2013-06-20 Itt:Kk レーザーを用いた単眼カメラによる3次元形状位置計測装置,3次元形状位置計測処理方法および3次元形状位置計測処理プログラム
CN103793719A (zh) * 2014-01-26 2014-05-14 深圳大学 一种基于人眼定位的单目测距方法和***
CN106197265A (zh) * 2016-06-30 2016-12-07 中国科学院长春光学精密机械与物理研究所 一种空间自由飞行模拟器视觉精密定位方法
CN106643745A (zh) * 2017-01-17 2017-05-10 哈尔滨工业大学 深空探测行星着陆模拟器位姿测量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
面向空间非合作目标捕获的位姿测量方法研究;任宇琪;《中国优秀硕士学位论文全文数据库》;20160229;全文 *

Also Published As

Publication number Publication date
CN107990825A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107063228B (zh) 基于双目视觉的目标姿态解算方法
WO2019105044A1 (zh) 一种镜头畸变矫正和特征提取的方法及***
CN111340797A (zh) 一种激光雷达与双目相机数据融合检测方法及***
CN109018591A (zh) 一种基于计算机视觉的自动贴标定位方法
CN110555889A (zh) 一种基于CALTag和点云信息的深度相机手眼标定方法
CN102221331B (zh) 一种基于不对称双目立体视觉技术的测量方法
CN106197265B (zh) 一种空间自由飞行模拟器视觉精密定位方法
CN107990825B (zh) 基于先验数据校正的高精度位置测量装置与方法
CN105547153A (zh) 基于双目视觉的插件元件针脚视觉定位方法及装置
CN103196370A (zh) 一种导管接头空间位姿参数的测量方法和装置
CN112697044B (zh) 一种基于无人机平台的静态刚性物体视觉测量方法
CN114413788B (zh) 基于双目视觉和反向模型重构的零件表面图案检测方法
CN106352817A (zh) 一种非接触四轮定位仪及其定位方法
CN111536872A (zh) 基于视觉的二维平面测距装置及方法、标记点识别装置
CN107886541B (zh) 基于反向投影法的单目运动目标位姿实时测量方法
CN102881040A (zh) 一种数码相机移动拍摄三维重建方法
CN110992416A (zh) 基于双目视觉与cad模型的高反光面金属零件位姿测量方法
CN113705564B (zh) 一种指针式仪表识别读数方法
CN108257184B (zh) 一种基于正方形点阵合作目标的相机姿态测量方法
Grudziński et al. Stereovision tracking system for monitoring loader crane tip position
CN107818587A (zh) 一种基于ros的机器视觉高精度定位方法
CN111768383A (zh) 立体靶标及利用其恢复视觉传感器工作功能的方法
CN114511620B (zh) 一种基于Mask R-CNN的结构位移监测方法
CN205482791U (zh) 基于双目视觉的插件元件针脚视觉定位装置
CN114359393A (zh) 跨平台的视觉引导点胶引导方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant