CN107964217B - Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate - Google Patents

Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate Download PDF

Info

Publication number
CN107964217B
CN107964217B CN201711340791.2A CN201711340791A CN107964217B CN 107964217 B CN107964217 B CN 107964217B CN 201711340791 A CN201711340791 A CN 201711340791A CN 107964217 B CN107964217 B CN 107964217B
Authority
CN
China
Prior art keywords
carbon fiber
reinforced composite
fiber reinforced
parts
resin matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711340791.2A
Other languages
Chinese (zh)
Other versions
CN107964217A (en
Inventor
李璐
郭海伟
梁宁纳
张廉
乔月月
邵海磊
薛海霞
李俊姣
张征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Siwei Special Material Co ltd
Original Assignee
Zhengzhou Siwei Special Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Siwei Special Material Co ltd filed Critical Zhengzhou Siwei Special Material Co ltd
Priority to CN201711340791.2A priority Critical patent/CN107964217B/en
Publication of CN107964217A publication Critical patent/CN107964217A/en
Application granted granted Critical
Publication of CN107964217B publication Critical patent/CN107964217B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4207Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The invention relates to a carbon fiber reinforced composite resin matrix, a carbon fiber reinforced composite, a preparation method of the carbon fiber reinforced composite and a base plate of a table tennis bat, and belongs to the technical field of carbon fiber reinforced composites. The carbon fiber reinforced composite material resin matrix is prepared from the following raw materials in parts by weight: 95-105 parts of epoxy resin, 70-80 parts of endomethyltetrahydrophthalic anhydride and 4-6 parts of dimethylaniline. The carbon fiber reinforced composite material resin matrix disclosed by the invention is simple in raw materials, has high specific strength, specific modulus, dimensional stability, excellent corrosion resistance, wear resistance, electric insulation property and the like, and has a good application prospect in the manufacturing of a table tennis bat bottom plate material.

Description

Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate
Technical Field
The invention relates to a carbon fiber reinforced composite resin matrix, a carbon fiber reinforced composite, a preparation method of the carbon fiber reinforced composite and a base plate of a table tennis bat, and belongs to the technical field of carbon fiber reinforced composites.
Background
Most of the existing table tennis bottom plates in the market are solid wood bottom plates, the strength and modulus of the bottom plates have anisotropy and instability due to the difference of the internal structures of wood of the solid wood bottom plates, carbon fiber materials are small in density, light in weight, high-temperature resistant and corrosion resistant, flexible outside and rigid inside, high in specific strength and specific modulus, and the same in strength and modulus in all directions, so that the carbon fiber composite materials can be used for replacing solid wood to manufacture the table tennis bottom plates.
The invention discloses a high-strength corrosion-resistant furan/epoxy blend resin suitable for composite material molding, which is disclosed by the Chinese patent with the application publication number of CN 105754300A and comprises the following raw materials in parts by weight: 30-70 parts of furan resin, 70-30 parts of epoxy resin, 50-100 parts of anhydride curing agent and 1-3 parts of accelerator, and also discloses a furan/epoxy blend resin-based fiber reinforced composite material, wherein the resin is the blend resin, and a fiber fabric adopted by the composite material is any one of carbon fiber, glass fiber, basalt fiber and aramid fiber. The blending resin disclosed in the patent contains various resins, a cross-linking reaction needs to be carried out, the preparation is relatively complex, and the mechanical property of the finally obtained composite material is still to be further improved.
The Chinese invention patent with application publication number CN 106633624A discloses a novel table tennis bat bottom plate made of basalt composite material, which is mainly processed by multilayer basalt fiber cloth through a process method of resin mixed glue solution soaking and integral mould pressing, wherein the resin mixed glue solution is prepared from the following raw materials in parts by weight: the resin is characterized by comprising bismaleimide modified phenolic resin, polyaryl acetylene resin, benzotriazole, dialkyl diphenylamine, dodecyl trimethyl ammonium bromide, fatty alcohol sodium sulfate, potassium dichloroisocyanurate, fatty alcohol-polyoxyethylene ether, zinc naphthenate, terephthaloyl chloride, reactants of quaternized chloromethane and polyamide wax micropowder, wherein the resin mixed glue solution is complex in component and still needs to be further improved, and the mechanical property of the resin mixed glue solution needs to be further improved.
Disclosure of Invention
The invention aims to provide a carbon fiber reinforced composite material resin matrix which is simple in raw material and has excellent tensile strength and elastic modulus.
A second object of the present invention is to provide a carbon fiber reinforced composite material.
The third purpose of the invention is to provide a preparation method of the carbon fiber reinforced composite material.
The fourth purpose of the invention is to provide a table tennis bat base plate.
In order to achieve the purpose, the technical scheme of the invention is as follows:
a carbon fiber reinforced composite resin matrix is prepared from the following raw materials in parts by weight: 95-105 parts of epoxy resin, 70-80 parts of endomethyltetrahydrophthalic anhydride and 4-6 parts of dimethylaniline.
Preferably, the carbon fiber reinforced composite resin matrix is prepared from the following raw materials in parts by weight: 100 parts of epoxy resin, 75 parts of endomethyltetrahydrophthalic anhydride and 5 parts of dimethylaniline.
The epoxy resin is epoxy resin 648.
The epoxy resin 648 is a F46(648) novolac type epoxy resin.
The dimethylaniline was a colorless to pale yellow oily liquid.
The carbon fiber reinforced composite material resin matrix has the advantages of simple raw materials, moderate viscosity, good compatibility with a reinforcement, high tensile strength, elastic modulus, dimensional stability, excellent corrosion resistance, wear resistance, electric insulation and the like, and has good application prospect in the manufacturing of the base plate material of the table tennis bat.
A carbon fiber reinforced composite material is mainly prepared from a resin matrix and carbon fibers, wherein the resin matrix is the carbon fiber reinforced composite material resin matrix.
The mass ratio of the carbon fibers to the resin matrix in the carbon fiber reinforced composite material is 60: 40.
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite resin matrix in an organic solvent to obtain a glue solution, and pre-curing carbon fibers after dipping the carbon fibers in the glue solution for 25-30 s to obtain a prepreg;
2) molding the prepreg by adopting an autoclave, cooling and demolding to obtain the prepreg; the working pressure of the autoclave molding is 1.0-1.2 MPa, and the working temperature is 180-200 ℃.
The organic solvent in the step 1) is any one or more of acetone, toluene and xylene. The mass ratio of the organic solvent to the epoxy resin in the resin matrix is 100-120: 95-105.
The organic solvent in step 1) is preferably acetone. The mass ratio of the acetone to the epoxy resin in the resin matrix is 100-120: 95-105.
The carbon fiber in the step 1) is carbon fiber T300. The density of the carbon fiber is 1.79g/cm3. The tensile strength of the carbon fiber is 4120MPa, the tensile modulus is 234GPa, and the elongation is 1.8%.
The carbon fiber is subjected to surface treatment and sizing agent treatment before use.
The surface treatment adopts an anodic oxidation method.
The anodic oxidation treatment specifically comprises the following steps: carbon fiber is used as an anode of an electrolytic cell, graphite is used as a cathode, and in the process of electrolyzing water, carbon and oxygen-containing functional groups on the surface of the carbon fiber are oxidized by oxygen generated by the anode to be firstly oxidized into hydroxyl and then gradually oxidized into ketone, carboxyl and CO2
The sizing agent treatment is to carry out sizing agent treatment on the carbon fiber after surface treatment by a sizing machine. The carbon fiber treated by the sizing agent has better compatibility with a resin matrix.
The sizing agent is epoxy resin type sizing agent. Preferably an emulsion epoxy sizing agent.
The temperature of the glue solution in the step 1) is 20-30 ℃. The glue solution can have proper viscosity at the temperature of 20-30 ℃.
The relative density of the glue solution in the step 1) is 1.06-1.08.
And 3) adjusting the gum dipping amount of the carbon fiber in the step 1) by using three pairs of extrusion dipping rollers when the carbon fiber is subjected to gum dipping by using the gum solution.
The pre-curing in the step 1) is carried out in a pre-curing furnace, wherein the inlet temperature of the pre-curing furnace is 90-100 ℃, the middle temperature of the pre-curing furnace is 120-150 ℃, and the outlet temperature of the pre-curing furnace is less than or equal to 100 ℃. The pre-curing oven is a curing oven commonly used in the prepreg preparation process in the prior art.
And (3) after precuring in the step 1), cooling by a cooling device, and drawing to a winding device for winding.
The hot-press pouring molding in the step 2) comprises the following steps: cutting a prepreg, laying layers, laying a vacuum auxiliary material, sealing by using a vacuum bag, pushing into hot-pressing irrigation, vacuumizing for 15-20 min and detecting leakage. Then setting the working pressure to be 1.0-1.2 MPa, the working temperature to be 180-200 ℃, and carrying out pressure curing.
And 2) pressurizing and curing for 30min by adopting a hot-pressing pouring forming method.
The cutting was performed by cutting the prepreg to a size of 500mm by 500 mm. Cleaning the mould before layering.
Before cutting, the prepreg is cleaned in a clean room for 5-6 h. The temperature of the clean room is 25-30 ℃, and the humidity is 40-60%. The cleaning is mainly to remove impurities such as dust on the surface of the prepreg.
The cooling in the step 2) is to reduce the temperature to 60 ℃.
A base plate of a table tennis bat is prepared by adopting the carbon fiber reinforced composite material. The method specifically comprises the following steps: machining the base plate into a base plate of the table tennis bat according to the designed size.
The carbon fiber reinforced composite material has the advantages of small density, light weight, high strength, high modulus, acid and alkali resistance, corrosion resistance, high temperature resistance, good electrical insulation, combustion resistance and the like.
According to the preparation method of the carbon fiber reinforced composite material, the carbon fiber reinforced resin composite material prepreg is prepared by a solution impregnation method, so that the carbon fibers can be uniformly wrapped by glue solution, then the prepreg is molded by an autoclave, and the novel carbon fiber reinforced composite material is prepared by pressurization and solidification.
The base plate of the table tennis bat is made of the carbon fiber reinforced composite material, the whole base plate has the advantages of small density, light weight, high strength, high modulus, acid and alkali resistance, corrosion resistance, high temperature resistance, good electrical insulation, combustion resistance and the like, is stressed uniformly in all directions, has consistent reaction speed, high ball speed, good ball feel and long service life, expands the application of carbon fiber in the field of common industry, and has higher economic value.
Detailed Description
Example 1
The carbon fiber reinforced composite material resin matrix of the embodiment is prepared from the following components in parts by weight: f46(648) phenolic epoxy resin 100 parts, endomethyltetrahydrophthalic anhydride 75 parts, and dimethylaniline 5 parts.
The carbon fiber reinforced composite material of the embodiment is mainly prepared from the carbon fiber reinforced composite material resin matrix and carbon fibers T300; the mass ratio of the carbon fibers to the resin matrix in the carbon fiber reinforced composite material is 60: 40.
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite material resin matrix in 100 parts of acetone to prepare a glue solution, adding the glue solution into a glue tank, and stabilizing the temperature of the glue solution at 30 ℃;
2) carrying out anodic oxidation treatment on the carbon fiber T300, and then carrying out sizing agent treatment; the anodic oxidation treatment comprises the following steps: carbon fiber is used as an anode of an electrolytic cell, graphite is used as a cathode, and in the process of electrolyzing water, carbon and oxygen-containing functional groups on the surface of the carbon fiber are oxidized by oxygen generated by the anode to be firstly oxidized into hydroxyl and then gradually oxidized into ketone, carboxyl and CO2(ii) a The sizing agent treatment is to carry out emulsion type epoxy resin sizing agent treatment on the carbon fiber after the anodic oxidation treatment by a sizing machine;
3) dipping the pretreated carbon fiber T300 in glue for 30s through a glue tank, adjusting the glue dipping amount through three pairs of extrusion dipping rollers, then drawing the carbon fiber into a pre-curing furnace for pre-curing, setting the temperature at the inlet of the pre-curing furnace to be 90 ℃, setting the temperature at the middle part of the pre-curing furnace to be 120 ℃, setting the temperature at the outlet of the pre-curing furnace to be 90 ℃, drying, cooling and drawing the carbon fiber to a winding device for winding to obtain a prepreg;
4) cleaning the prepreg in a clean room with the temperature of 25 ℃ and the humidity of 60% for 6h, cutting the prepreg into the size of 500mm x 500mm, cleaning a mould, laying layers, laying a vacuum auxiliary material, sealing the vacuum auxiliary material by using a vacuum bag, pushing the vacuum auxiliary material into a hot-pressing tank, vacuumizing for 15min, detecting leakage, setting the working pressure of an autoclave to be 1.2MPa and the working temperature to be 200 ℃, pressurizing and curing for 30min, cooling to 60 ℃ after the operation is finished, taking out and demoulding to obtain the high-performance high-temperature-resistant high-pressure prepreg.
The base plate of the table tennis bat is obtained by machining the carbon fiber reinforced composite material into the base plate of the table tennis bat according to the design size.
Example 2
The carbon fiber reinforced composite resin matrix of the embodiment is prepared from the following raw materials in parts by weight: 95 parts of F46(648) phenolic epoxy resin, 70 parts of endomethyltetrahydrophthalic anhydride and 4 parts of dimethylaniline.
The carbon fiber reinforced composite material of the embodiment is mainly prepared from the carbon fiber reinforced composite material resin matrix and carbon fibers T300; the mass ratio of the carbon fibers to the resin matrix in the carbon fiber reinforced composite material is 60: 40.
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite resin matrix in 110 parts of acetone to prepare a glue solution, adding the glue solution into a glue tank, and stabilizing the temperature of the glue solution at 20 ℃;
2) carrying out anodic oxidation treatment on the carbon fiber T300, and then carrying out sizing agent treatment; the anodic oxidation treatment comprises the following steps: carbon fiber is used as an anode of an electrolytic cell, graphite is used as a cathode, and in the process of electrolyzing water, carbon and oxygen-containing functional groups on the surface of the carbon fiber are oxidized by oxygen generated by the anode to be firstly oxidized into hydroxyl and then gradually oxidized into ketone, carboxyl and CO2(ii) a The sizing agent treatment is to carry out emulsion type epoxy resin sizing agent treatment on the carbon fiber after the anodic oxidation treatment by a sizing machine;
3) dipping the pretreated carbon fiber T300 in glue for 25s through a glue tank, adjusting the glue dipping amount through three pairs of extrusion dipping rollers, then drawing the carbon fiber into a pre-curing furnace for pre-curing, setting the temperature at the inlet of the pre-curing furnace to be 95 ℃, the temperature at the middle part of the pre-curing furnace to be 130 ℃, setting the temperature at the outlet of the pre-curing furnace to be 100 ℃, drying, cooling and drawing the carbon fiber to a winding device for winding to obtain a prepreg;
4) cleaning the prepreg in a clean room with the temperature of 30 ℃ and the humidity of 40% for 5h, cutting the prepreg into the size of 500mm x 500mm, cleaning a mould, laying layers, laying a vacuum auxiliary material, sealing the vacuum auxiliary material by using a vacuum bag, pushing the vacuum auxiliary material into a hot-pressing tank, vacuumizing for 20min, detecting leakage, setting the working pressure of an autoclave to be 1.0MPa, the working temperature to be 180 ℃, pressurizing and curing for 30min, cooling to 60 ℃ after the operation is finished, taking out and demoulding to obtain the high-performance high-temperature-resistant high-pressure prepreg.
The base plate of the table tennis bat is obtained by machining the carbon fiber reinforced composite material into the base plate of the table tennis bat according to the design size.
Example 3
The carbon fiber reinforced composite resin matrix of the embodiment is prepared from the following raw materials in parts by weight: 105 parts of F46(648) phenolic epoxy resin, 80 parts of endomethyltetrahydrophthalic anhydride and 6 parts of dimethylaniline.
The carbon fiber reinforced composite material of the embodiment is mainly prepared from the carbon fiber reinforced composite material resin matrix and carbon fibers T300; the mass ratio of the carbon fibers to the resin matrix in the carbon fiber reinforced composite material is 60: 40.
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite resin matrix in 120 parts of acetone to prepare a glue solution, adding the glue solution into a glue tank, and stabilizing the temperature of the glue solution at 25 ℃;
2) carrying out anodic oxidation treatment on the carbon fiber T300, and then carrying out sizing agent treatment; the anodic oxidation treatment comprises the following steps: carbon fiber is used as an anode of an electrolytic cell, graphite is used as a cathode, and in the process of electrolyzing water, carbon and oxygen-containing functional groups on the surface of the carbon fiber are oxidized by oxygen generated by the anode to be firstly oxidized into hydroxyl and then gradually oxidized into ketone, carboxyl and CO2(ii) a The sizing agent treatment is to carry out emulsion type epoxy resin sizing agent treatment on the carbon fiber after the anodic oxidation treatment by a sizing machine;
3) dipping the pretreated carbon fiber T300 for 28 seconds by a glue tank, adjusting the dipping amount by three pairs of extrusion dipping rollers, then drawing the carbon fiber into a pre-curing furnace for pre-curing, setting the temperature at the inlet of the pre-curing furnace as 100 ℃, the temperature at the middle part as 150 ℃ and the temperature at the outlet as 90 ℃, drying, cooling and drawing the carbon fiber to a winding device for winding to obtain a prepreg;
4) cleaning the prepreg in a clean room with the temperature of 28 ℃ and the humidity of 50% for 6h, cutting the prepreg into the size of 500mm x 500mm, cleaning a mould, laying layers, laying a vacuum auxiliary material, sealing the vacuum auxiliary material by using a vacuum bag, pushing the vacuum auxiliary material into a hot-pressing tank, vacuumizing for 18min, detecting leakage, setting the working pressure of an autoclave to be 1.1MPa and the working temperature to be 190 ℃, pressurizing and curing for 30min, cooling to 60 ℃ after the operation is finished, taking out and demoulding to obtain the high-performance high-temperature-resistant high-pressure prepreg.
The base plate of the table tennis bat is obtained by machining the carbon fiber reinforced composite material into the base plate of the table tennis bat according to the design size.
Example 4
The carbon fiber reinforced composite resin matrix of the embodiment is prepared from the following raw materials in parts by weight: f46(648) phenolic epoxy resin 100 parts, endomethyltetrahydrophthalic anhydride 75 parts, and dimethylaniline 5 parts.
The carbon fiber reinforced composite material of the embodiment is mainly prepared from the carbon fiber reinforced composite material resin matrix and carbon fibers T300; the mass ratio of the carbon fibers to the resin matrix in the carbon fiber reinforced composite material is 60: 40.
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite resin matrix in 120 parts of toluene to prepare a glue solution, adding the glue solution into a glue tank, and stabilizing the temperature of the glue solution at 25 ℃;
2) carrying out anodic oxidation treatment on the carbon fiber T300, and then carrying out sizing agent treatment; the anodic oxidation treatment comprises the following steps: carbon fiber is used as an anode of an electrolytic cell, graphite is used as a cathode, and in the process of electrolyzing water, carbon and oxygen-containing functional groups on the surface of the carbon fiber are oxidized by oxygen generated by the anode to be firstly oxidized into hydroxyl and then gradually oxidized into ketone, carboxyl and CO2(ii) a The sizing agent treatment is to carry out emulsion type epoxy resin sizing agent treatment on the carbon fiber after the anodic oxidation treatment by a sizing machine;
3) dipping the pretreated carbon fiber T300 for 28 seconds by a glue tank, adjusting the dipping amount by three pairs of extrusion dipping rollers, then drawing the carbon fiber into a pre-curing furnace for pre-curing, setting the temperature at the inlet of the pre-curing furnace as 100 ℃, the temperature at the middle part as 150 ℃ and the temperature at the outlet as 90 ℃, drying, cooling and drawing the carbon fiber to a winding device for winding to obtain a prepreg;
4) cleaning the prepreg in a clean room with the temperature of 28 ℃ and the humidity of 50% for 6h, cutting the prepreg into the size of 500mm x 500mm, cleaning a mould, laying layers, laying a vacuum auxiliary material, sealing the vacuum auxiliary material by using a vacuum bag, pushing the vacuum auxiliary material into a hot-pressing tank, vacuumizing for 18min, detecting leakage, setting the working pressure of an autoclave to be 1.1MPa and the working temperature to be 190 ℃, pressurizing and curing for 30min, cooling to 60 ℃ after the operation is finished, taking out and demoulding to obtain the high-performance high-temperature-resistant high-pressure prepreg.
The base plate of the table tennis bat is obtained by machining the carbon fiber reinforced composite material into the base plate of the table tennis bat according to the design size.
Examples of the experiments
The base plates of the table tennis rackets of examples 1 to 3 were tested for density, tensile strength and elastic modulus, and the results are shown in Table 1.
Table 1 table tennis bat base plate performance test results in examples 1-3
Figure BDA0001508348710000071
Figure BDA0001508348710000081

Claims (7)

1. The carbon fiber reinforced composite material is characterized by mainly comprising a resin matrix and carbon fibers, wherein the resin matrix is a carbon fiber reinforced composite material resin matrix; the carbon fiber reinforced composite resin matrix is prepared from the following raw materials in parts by weight: 95-105 parts of epoxy resin, 70-80 parts of endomethyltetrahydrophthalic anhydride and 4-6 parts of dimethylaniline; the epoxy resin is epoxy resin 648;
the preparation method of the carbon fiber reinforced composite material comprises the following steps:
1) dissolving a carbon fiber reinforced composite resin matrix in an organic solvent to obtain a glue solution, and pre-curing carbon fibers after dipping the carbon fibers in the glue solution for 25-30 s to obtain a prepreg;
2) molding the prepreg by adopting an autoclave, cooling and demolding to obtain the prepreg; the working pressure of the autoclave molding is 1.0-1.2 MPa, and the working temperature is 180-200 ℃.
2. The carbon fiber reinforced composite material according to claim 1, wherein the carbon fiber reinforced composite material resin matrix is prepared from the following raw materials in parts by weight: 100 parts of epoxy resin, 75 parts of endomethyltetrahydrophthalic anhydride and 5 parts of dimethylaniline.
3. A method for producing a carbon fiber-reinforced composite material according to claim 1, comprising the steps of:
1) dissolving a carbon fiber reinforced composite resin matrix in an organic solvent to obtain a glue solution, and pre-curing carbon fibers after dipping the carbon fibers in the glue solution for 25-30 s to obtain a prepreg;
2) molding the prepreg by adopting an autoclave, cooling and demolding to obtain the prepreg; the working pressure of the autoclave molding is 1.0-1.2 MPa, and the working temperature is 180-200 ℃.
4. The preparation method according to claim 3, wherein the organic solvent in step 1) is any one or more of acetone, toluene and xylene.
5. The preparation method according to claim 3, wherein the temperature of the glue solution in the step 1) is 20-30 ℃.
6. The preparation method according to claim 3, wherein the pre-curing in the step 1) is performed in a pre-curing furnace, wherein the inlet temperature of the pre-curing furnace is 90-100 ℃, the middle temperature of the pre-curing furnace is 120-150 ℃, and the outlet temperature of the pre-curing furnace is less than or equal to 100 ℃.
7. A table tennis bat base plate made of the carbon fiber-reinforced composite material according to claim 1.
CN201711340791.2A 2017-12-14 2017-12-14 Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate Active CN107964217B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711340791.2A CN107964217B (en) 2017-12-14 2017-12-14 Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711340791.2A CN107964217B (en) 2017-12-14 2017-12-14 Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate

Publications (2)

Publication Number Publication Date
CN107964217A CN107964217A (en) 2018-04-27
CN107964217B true CN107964217B (en) 2020-11-17

Family

ID=61995066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711340791.2A Active CN107964217B (en) 2017-12-14 2017-12-14 Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate

Country Status (1)

Country Link
CN (1) CN107964217B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490992B (en) * 2022-10-24 2024-05-24 合肥市尚技体育用品有限公司 Racket preparation method based on recycling of waste carbon fiber materials
CN116377705A (en) * 2023-04-07 2023-07-04 中北大学 Electrochemical oxidation surface green high-efficiency modification method for carbon fiber fabric and resin-based composite material thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159781A1 (en) * 2014-04-15 2015-10-22 三菱瓦斯化学株式会社 Fiber-reinforced composite material
KR20170131434A (en) * 2015-03-27 2017-11-29 도레이 카부시키가이샤 Two-component epoxy resin composition and fiber reinforced composite material for fiber reinforced composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435977A (en) * 2013-09-17 2013-12-11 天津滨海津丽电子材料有限公司 Epoxy resin material for carbon fiber composite core cable
CN103483552B (en) * 2013-09-29 2016-01-20 东华大学 A kind of carbon-fibre composite matrix resin and preparation method thereof
CN105623189A (en) * 2014-11-03 2016-06-01 中国石油化工股份有限公司 Epoxy resin composition used for carbon fiber prepreg, and preparation method thereof
CN105131255A (en) * 2015-09-30 2015-12-09 西安超码复合材料有限公司 High-temperature-resistant resin
CN105885351A (en) * 2016-05-20 2016-08-24 江苏兆鋆新材料股份有限公司 Preparation method of low-gummosis carbon fiber prepreg
CN106832752A (en) * 2017-01-05 2017-06-13 厦门复晟复合材料有限公司 A kind of carbon fiber epoxy prepreg
CN107118518A (en) * 2017-07-07 2017-09-01 江苏兆鋆新材料股份有限公司 A kind of carbon fiber prepreg and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159781A1 (en) * 2014-04-15 2015-10-22 三菱瓦斯化学株式会社 Fiber-reinforced composite material
KR20170131434A (en) * 2015-03-27 2017-11-29 도레이 카부시키가이샤 Two-component epoxy resin composition and fiber reinforced composite material for fiber reinforced composite material

Also Published As

Publication number Publication date
CN107964217A (en) 2018-04-27

Similar Documents

Publication Publication Date Title
JP2013543035A5 (en)
CN102153833B (en) Carbon fiber (powder)/epoxy resin composite material used for rapid prototyping die
US20160002417A1 (en) Toughened epoxy resin/glass fiber prepreg and preparation method thereof
CN108276578B (en) High-temperature-resistant high-toughness bismaleimide resin and preparation method and application thereof
CN107964217B (en) Carbon fiber reinforced composite resin matrix, carbon fiber reinforced composite and preparation method thereof, and table tennis bat bottom plate
CN106626439A (en) Preparation method of low-cost and large-tow 48K carbon fiber preimpregnated cloth and composite material thereof
KR20120108002A (en) Modified resin systems for liquid resin infusion applications & process methods related thereto
CN107283871B (en) A kind of thermoplastic resin matrix's carbon fiber-titanium/titanium alloy layer plywood preparation method
CN104945854A (en) Preparation method for short carbon fiber interlayer-reinforced fiber composite material
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
CN111005229B (en) Carbon fiber sizing agent and preparation method thereof
CN108384188A (en) A kind of prepreg and its application based on engineering plastics non-woven cloth
CN105504750B (en) A kind of continuous carbon fibre polycarbafil composite and preparation method thereof
CN104031358A (en) Unsaturated resin fiberglass prepreg for low-temperature low-pressure molding as well as preparation method and application of unsaturated resin fiberglass prepreg
CN1213084C (en) Preparation method and application of modified double maleimide resin
CN207207293U (en) Carbon fiber reinforced polymer-based composite board
CN104212142B (en) The plant oil based unsaturated polyester composite of a kind of bamboo fiber enhancing modified
CN105150508A (en) Process method for preparing static ring used for ship tail shaft sealing and lubricating
CN112590252A (en) Method for enhancing interlayer performance of thermoplastic automatic laying component
CN109988410A (en) A kind of fiber prepreg material and its preparation method and application
CN104311846B (en) A kind of manufacture method of high-precision continuous fiber reinforced composite materials
CN110105715A (en) The preparation method of the co-curing system of epoxy resin-base composite material and ethylene propylene diene rubber
CN107458066B (en) A kind of preparation method of toughening carbon fiber reinforced polymer matrix composites
CN108908964A (en) The production method of fiber-reinforced resin matrix compound material laminate
CN108422725A (en) A kind of flame-retardant foam battenboard of the non-woven cloth containing engineering plastics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant