CN107962566B - 一种移动机械臂重复运动规划方法 - Google Patents

一种移动机械臂重复运动规划方法 Download PDF

Info

Publication number
CN107962566B
CN107962566B CN201711101729.8A CN201711101729A CN107962566B CN 107962566 B CN107962566 B CN 107962566B CN 201711101729 A CN201711101729 A CN 201711101729A CN 107962566 B CN107962566 B CN 107962566B
Authority
CN
China
Prior art keywords
mechanical arm
motion
end effector
final state
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711101729.8A
Other languages
English (en)
Other versions
CN107962566A (zh
Inventor
孔颖
黄奕筱
朱佳超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lover Health Science and Technology Development Co Ltd
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN201711101729.8A priority Critical patent/CN107962566B/zh
Publication of CN107962566A publication Critical patent/CN107962566A/zh
Application granted granted Critical
Publication of CN107962566B publication Critical patent/CN107962566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1643Programme controls characterised by the control loop redundant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种移动机械臂重复运动规划方法,包括以下步骤:1)确定移动机械臂末端执行器期望目标轨迹r*(t)和期望回拢的关节角度θ*(0);2)设计终态吸引优化指标,形成机械臂重复运动规划方案,其中移动机械臂实际运动时的初始关节角可以任意指定,不要求末端执行器处于期望轨迹上;给定移动机械臂实际运动时的初始关节角度θ(0),以θ(0)为运动起始点,形成的重复运动规划方案描述为具终态吸引优化指标的二次规划;3)构建有限值激活函数的终态神经网络模型,有限值终态神经网络求解时变矩阵方程,将求解得到的结果用于控制各关节电机。本发明提供一种精度高、有限时间收敛的移动机械臂重复运动规划方法。

Description

一种移动机械臂重复运动规划方法
技术领域
本发明涉及移动机械臂的重复运动规划及控制技术,具体地,涉及一种有限时间收敛性能指标、在初始偏移情形下的冗余机械臂的逆运动学求解方法。
背景技术
移动机械臂是由一个或者多个连杆机械臂安装在一个可移动平台上的一种操作工具。相比于底座固定的冗余机械臂而言,移动机械臂具有更广的工作空间,并且为同一任务提供了多种自由度分配的方案。在未来机器人化的智能家居服务中,人们期望机器人像人一样大范围移动,移动机器人和机械臂的实时运动规划与控制已经成为人们关注的焦点之一。
随着冗余机械臂运动控制领域研究成果的大量涌现,二次优化逐渐取代了基于伪逆的运动规划方法。许多基于二次优化方法重复运动规划算法被广泛应用于底座固定的冗余机械臂运动控制中。随着研究成果的大量涌现,为了高效地执行重复运动任务,渐近收敛优化重复运动方案被开发,并且结合递归神经网络(RNN)用于求解底座非固定的移动机械臂冗余度解析问题,取得了很好的实验结果。但是,面对可移动机械臂各个初始关节角不在期望位置的情形下,如何建立有效可行的运动学方案,当冗余机械臂初始位置偏移期望位置时,实现冗余机械臂有限时间内重复运动,本发明提供一种精度较高、有限时间收敛、易于实现的基于终态吸引优化指标的冗余机械臂轨迹规划方法,以具有有限值激活函数的终态神经网络作为求解器,在初始位置偏移情形下,冗余机械臂各关节角仍然可以回到初始期望位置。
冗余机械臂在实时运动控制中存在的一个基础问题是冗余度解析问题,考虑在m维空间中作业的具有n个自由度的机械臂,末端轨迹与关节位移之间的关系(即正运动学问题)
r(t)=f(θ(t))
其中,r(t)表示机械臂末端执行器在工作空间中笛卡尔坐标系下的位移,θ(t)表示关节位移。末端笛卡尔空间与关节空间之间的微分运动关系为
Figure BDA0001463482600000021
其中,
Figure BDA0001463482600000022
是r的时间导数,
Figure BDA0001463482600000023
是关节速度向量,
Figure BDA0001463482600000024
是机械臂的雅克比矩阵。
对于冗余机械臂,传统方法是求解Moore-Penrose广义逆(伪逆),可得关节变量速度的最小二乘解为
Figure BDA0001463482600000025
这里,J+=JT(JJT)-1是雅克比矩阵J的伪逆。
末端执行器在笛卡尔操作空间做重复运动时,闭合的末端执行器运动轨迹可能产生非闭合的关节角轨迹,导致关节角偏差现象。这种非重复运动问题可能会引起机械臂在重复作业中出现不可预料的情况。一般来说,应用最为广泛的伪逆控制法不能获得重复性为了完成原有的重复运动。通常采用自运动的方法进行弥补,而自运动进行调整往往效率不高。
发明内容
为了克服现有的移动机械臂运动规划方法的精度较低、无法实现有限时间收敛的不足,本发明提供一种精度高、有限时间收敛的移动机械臂重复运动规划方法,当机械臂初始各个关节角偏移期望位置时,保证移动机械臂可以有效完成工作任务,无需考虑初始各个关节角是否在期望的任务轨迹上。
为了解决上述技术问题,本发明提供如下的技术方案:
一种移动机械臂重复运动规划方法,包括以下步骤:
1)确定冗余移动机械臂末端执行器期望目标轨迹r*(t)和期望回拢的关节角度θ*(0);
2)设计有限时间收敛的优化指标,形成移动机械臂重复运动规划方案,其中移动机械臂实际运动时的初始关节角可以任意指定(只需要保证关节角的运动幅度在关节角物理限制范围之内),不要求末端执行器处于期望轨迹上;给定冗余机械臂实际运动时的初始关节角度θ(0),以θ(0)为运动起始点,形成的重复运动规划方案描述为具有有限时间收敛优化指标的二次规划:
Figure BDA0001463482600000031
其中,
Figure BDA0001463482600000032
g=Λ(qw-q(0))q/p∈R3+m,κ>0表示位置的参数增益,用来调节末端执行器运动到期望路径的速率,0<q/p<1,q、p分别为奇数,Λ=diag(λ12,...λ3+m)∈R(3+m)×(3+m)是一斜对角线矩阵,且Λ中的每一个元素λi>0∈R,i=1,2,...3+m,I是单位矩阵,||·||2表示二范数向量,
Figure BDA0001463482600000033
在式(1)中Jw∈Rn×(s+m)表示整个移动机械臂***的雅克比矩阵,rwd∈Rn为移动机械臂末端执行器运动的期望轨迹,rw为末端执行器实际运动的轨迹,
Figure BDA0001463482600000034
表示末端执行器运动时的速度向量,为了避免机械臂的移动过程中受到损坏,在移动机械臂运动过程中需要考虑各个关节角转动范围的限制,
Figure BDA0001463482600000035
Figure BDA0001463482600000036
3)构建有限值激活函数的终态神经网络模型,其动态特性由下述方程描述
Figure BDA0001463482600000037
其中,关节角位移偏差E(t)=θ(t)-θ(0),此动态方程所表达的***有限时间收敛于零,βE1>0,βE2>0,γ>0,q、p是影响收敛速率的设计参数,满足q<p,且均为正奇数,φ(·):Rn×n→Rn×n为严格单调递增的激活函数,满足φ(-·)=-φ(·),有限值激活函数φ(Eq/p(t))=(1-exp(-ξEq/p(t)))/(1+exp(-ξEq/p(t))),ξ>2,即满足
Figure BDA0001463482600000038
在指标函数达到最小值时,冗余机械臂的各个关节角可以回拢到期望的目标轨迹上;
为求解步骤2)中的二次规划,建立拉格朗日函数
Figure BDA0001463482600000041
式中,M=BTB∈R(s+m)×(s+m),h=BTg,λ(t)为拉格朗日乘子向量,λT(t)是λ(t)向量的转置,通过拉格朗日函数对各个变量求导,并令其为零,得下述矩阵方程
E=WY-v (3)
Figure BDA0001463482600000042
I为单位矩阵
Figure BDA0001463482600000043
Figure BDA0001463482600000044
最后,记时变矩阵方程误差E=WY-v,为求解矩阵方程(3),依据终态神经网络动态方程(2)构建神经网络模型(4),得到各关节角自运动轨迹:
Figure BDA0001463482600000045
将求解得到的结果用于控制各关节电机。本发明的有益效果主要表现在:本发明提供一种有限时间收敛的优化指标,在初始位置偏移情形下,实现移动机械臂各个关节角仍然可以回到期望初始位置,实现重复运动规划任务。相对于已有运动规划方法,该神经网络求解优化指标使得所提方案具有有限时间收敛的特点,有利于提高计算精度和速度。
相比于具有渐近收敛递归神经网络,有限值终态神经网络具有有限时间收敛特性,该终态神经网络求解方法采用的激活函数是有限值激活函数,为相关时变问题求解提供了实时计算工具,并且在实际应用时易于实现。
附图说明
图1为本发明提供的重复规划方案的流程图。
图2为取不同δ值时的终态神经网络激活函数φ(·)。
图3为采用本发明重复规划方案的移动机械臂结构图,其中,1为末端执行器,2,3,4分别为不同的关节角。
图4为移动机械臂底座的几何运动模型。
图5为移动机械臂末端执行器的运动轨迹。
图6为移动机械臂末端执行器的各位置误差轨迹。
图7以有限值终态神经网络和递归神经网络求解时的误差轨迹。
具体实施方式:
下面结合附图对本发明作进一步描述。
参照图1~图7,一种移动机械臂可重复运动初始位置定位方法,由以下3个步骤组成:1、确定移动机械臂末端执行器期望目标轨迹和期望回拢各关节角度2、建立具有有限时间收敛优化指标的冗余机械臂重复运动二次规划方案3、以有限值终态神经网络求解二次规划问题,获得各关节角轨迹。
第一步.确定期望轨迹
设定移动机械臂期望回拢的关节角度
将目标路径设定为一个Cardioid轨迹任务,给定机械臂的末端执行器的期望路径为
Figure BDA0001463482600000051
其中,
Figure BDA0001463482600000052
α=1m,t=[0,T],T=10为移动机械臂的运动周期,S=3πα2/2=4.71m2为闭合Cardioid轨迹面积,可以求得该闭合曲线的周长l=8α=8m。
设定移动机械臂期望回拢的关节角度
θ*(0)=[0,0,3π/10,π/36,π/36,π/12]T
考虑到移动机械臂的初始位置可能不在期望的运动轨迹上,将移动机械臂的六个关节角度初值设为θ(0)=[0,0,3π/10,π/36,π/36,π/12+0.005]T
第二步.建立移动机械臂重复运动的二次规划方案
为实现移动机械臂有限时间收敛的重复运动规划,将冗余机械臂重复运动轨迹规划描述为以下二次规划问题,其有限时间收敛的优化指标为
Figure BDA0001463482600000061
Figure BDA0001463482600000062
其中,
Figure BDA0001463482600000063
g=Λ(qw-q(0))q/p∈R3+m,κ>0表示位置的参数增益,用来调节末端执行器运动到期望路径的速率。0<q/p<1,q、p分别为奇数,Λ=diag(λ12,...λ3+m)∈R(3+m)×(3+m)是一斜对角线矩阵,且Λ中的每一个元素λi>0∈R,i=1,2,...3+m,I是单位矩阵,||·||2表示二范数向量,
Figure BDA0001463482600000064
在式(9-5)中Jw∈Rn×(s+m)表示整个移动机械臂***的雅克比矩阵,rwd∈Rn为移动机械臂末端执行器运动的期望轨迹,rw为末端执行器实际运动的轨迹。
Figure BDA0001463482600000065
表示末端执行器运动时的速度向量。
第三步.以有限值终态神经网络求解上述二次规划问题
通过对拉格朗日函数各个变量求导,并令其为零,可得如下时变矩阵方程
E=WY-v (3)
Figure BDA0001463482600000066
I为单位矩阵
Figure BDA0001463482600000067
Figure BDA0001463482600000068
最后,记时变矩阵方程误差E=WY-v。为求解矩阵方程(3),依据终态神经网络动态方程(2)构建神经网络模型(4),得到各关节角自运动轨迹:
Figure BDA0001463482600000071
将求解得到的结果用于控制各关节电机。
图2为φ(Eq/p(t))=(1-exp(-δEq/p(t)))/(1+exp(-δEq/p(t)))取不同δ值的终态神经网络激活函数。从图中可以看出,δ的取值在0和1之间,在图中分别取δ=0.1,0.2,0.4,0.6,0.8,随着δ的增大,曲线的在零点附近的收敛速度越慢。
用于实现本发明重复规划方案的移动机械臂如图3所示。该机械臂由1个移动基座,3个可移动轮子(其中一个在移动基座后面),通过关节2、关节3、关节4和末端执行器1组成。该移动机械臂的连杆长度分别为L1=0.3米,L2=0.25米,L3=0.1米。
可移动底座的几何构成和运动学模型如图4所示。图中,xc和yc分别表示圆心C投影在Xw,Yw的角度位置。由于移动移动机械臂只在平面上运动,因此Zw=0。r为底座轮子的半径,L表示底座圆心到轮子的垂直距离,
Figure BDA0001463482600000072
表示轮子旋转的角速度。由于初始状态时,底座轮子沿着X0方向运动,则θ0=π/3。
Figure BDA0001463482600000073
Figure BDA0001463482600000074
分别表示xc,yc,θ0表示底座的起始运动方向。
Figure BDA0001463482600000075
分别表示底座三个轮子的转动速度。
移动机械臂的末端执行器在空间中的运动轨迹如图5所示。图中给出机械臂末端执行器运动轨迹。可以看出,末端执行器的初始位置不在期望的轨迹上。随着时间的增加,实际轨迹和期望轨迹吻合,末端执行器的终值位置误差精度在三个方向XYZ轴上达到10-3,如图6所示。
为比较传统递归神经网络与有限值终态神经网络的收敛性能,定义计算误差JE(t)=||W(t)y(t)-v(t)||2。图7给出分别用有限值终态神经网络和递归神经网络求解二次规划问题的误差收敛轨迹。从图中可以看出,以有限值终态神经网络求解时,当时间t接近0.001秒时,误差收敛精度达到1.0*10-5,以递归神经网络求解时,误差收敛精度只达到0.002。

Claims (1)

1.一种移动机械臂重复运动规划方法,其特征在于:包括以下步骤:
1)确定移动机械臂末端执行器期望轨迹方程r*(t),设定期望回拢的关节角度θ*(0);
2)设计终态吸引优化指标,形成机械臂重复运动二次规划方案,其中冗余机械臂实际运动时的初始关节角可以任意指定,不要求末端执行器处于期望轨迹上;给定冗余机械臂实际运动时的初始关节角度θ(0),以θ(0)为运动起始点,形成的重复运动规划方案描述为具终态吸引优化指标的二次规划:
Figure FDA0002727730830000011
其中,
Figure FDA0002727730830000012
g=Λ(qw-q(0))q/p∈R3+m,κ>0表示位置的参数增益,用来调节末端执行器运动到期望路径的速率,q、p是影响收敛速率的设计参数,并且分别为正奇数,满足0<q/p<1,Λ=diag(λ12,...λ3+m)∈R(3+m)×(3+m)是一斜对角线矩阵,且Λ中的每一个元素λi>0∈R,i=1,2,...3+m,I是单位矩阵,||·||2表示二范数向量,
Figure FDA0002727730830000013
在式(1)中Jw∈Rn×(s+m)表示整个移动机械臂***的雅克比矩阵,rwd∈Rn为移动机械臂末端执行器运动的期望轨迹,rw为末端执行器实际运动的轨迹,
Figure FDA0002727730830000014
表示末端执行器运动时的速度向量,为了避免机械臂的移动过程中受到损坏,在移动机械臂运动过程中需要考虑各个关节角转动范围的限制,
Figure FDA0002727730830000015
Figure FDA0002727730830000016
3)构建有限值激活函数的终态神经网络模型,其动态特性由下述方程描述
Figure FDA0002727730830000017
其中,关节角位移偏差E(t)=θ(t)-θ(0),此动态方程所表达的***有限时间收敛于零,βE1>0,βE2>0,γ>0,q、p是影响收敛速率的设计参数,并且分别为正奇数,满足0<q/p<1,φ(·):Rn×n→Rn×n为严格单调递增的激活函数,满足φ(-·)=-φ(·),
有限值激活函数φ(Eq/p(t))=(1-exp(-δEq/p(t)))/(1+exp(-δEq/p(t))),δ>2,即满足
Figure FDA0002727730830000021
在指标函数达到最小值时,冗余机械臂的各个关节角可以回拢到期望的目标轨迹上;
为求解步骤2)中的二次规划,建立拉格朗日函数
Figure FDA0002727730830000022
式中,M=BTB∈R(s+m)×(s+m),h=BTg,λ(t)为拉格朗日乘子向量,λT(t)是λ(t)向量的转置,通过拉格朗日函数对各个变量求导,并令其为零,可得下述矩阵方程
E=WY-v (3)
Figure FDA0002727730830000023
M为单位矩阵
Figure FDA0002727730830000024
Figure FDA0002727730830000025
最后,记时变矩阵方程误差E=WY-v,为求解矩阵方程(3),依据终态神经网络动态方程(2)构建神经网络模型(4),得到各关节角自运动轨迹;
Figure FDA0002727730830000026
将求解得到的结果用于控制各关节电机。
CN201711101729.8A 2017-11-10 2017-11-10 一种移动机械臂重复运动规划方法 Active CN107962566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711101729.8A CN107962566B (zh) 2017-11-10 2017-11-10 一种移动机械臂重复运动规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711101729.8A CN107962566B (zh) 2017-11-10 2017-11-10 一种移动机械臂重复运动规划方法

Publications (2)

Publication Number Publication Date
CN107962566A CN107962566A (zh) 2018-04-27
CN107962566B true CN107962566B (zh) 2021-01-08

Family

ID=62000091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711101729.8A Active CN107962566B (zh) 2017-11-10 2017-11-10 一种移动机械臂重复运动规划方法

Country Status (1)

Country Link
CN (1) CN107962566B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108621162A (zh) * 2018-05-09 2018-10-09 广西科技大学 一种机械臂运动规划方法
CN109015657B (zh) * 2018-09-07 2021-12-10 浙江科技学院 一种面向冗余机械臂重复运动规划的终态网络优化方法
CN108908347B (zh) * 2018-09-07 2020-07-07 浙江科技学院 一种面向冗余移动机械臂容错型重复运动规划方法
CN109159122B (zh) * 2018-09-12 2021-01-01 浙江工业大学 采用椭圆型终态神经网络的冗余机器人重复运动规划方法
CN109129486B (zh) * 2018-09-26 2021-04-30 华南理工大学 一种抑制周期噪声的冗余度机械臂重复运动规划方法
CN109940615B (zh) * 2019-03-13 2021-02-23 浙江科技学院 一种面向双臂机械手同步重复运动规划的终态网络优化方法
CN110561441B (zh) * 2019-10-23 2022-09-27 中山大学 一种冗余度机械臂位姿控制的单94lvi迭代算法
CN113858198B (zh) * 2021-09-28 2023-10-13 南京邮电大学 一种考虑关节电机动力学的机械臂力跟踪阻抗控制方法
CN113787501B (zh) * 2021-09-28 2023-02-07 千翼蓝犀智能制造科技(广州)有限公司 一种基于梯度下降的轮式移动机器人状态调整方法
CN113985738A (zh) * 2021-11-02 2022-01-28 长春工业大学 非凸约束的全向四轮移动机械臂重复运动的梯度神经网络协同控制
CN115056230B (zh) * 2022-07-15 2024-04-09 海南大学 一种基于伪逆的三轮全向移动机械臂重复运动规划方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804627B (zh) * 2010-04-02 2011-12-07 中山大学 一种冗余度机械臂运动规划方法
KR20160149649A (ko) * 2015-06-18 2016-12-28 울산대학교 산학협력단 비선형 관절 강성을 포함하는 로봇 캘리브레이션 방법
KR102312368B1 (ko) * 2015-08-04 2021-10-12 한국전기연구원 여자유도 로봇 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
CN106426164B (zh) * 2016-09-27 2019-04-09 华南理工大学 一种冗余度双机械臂的多指标协调运动规划方法
CN106985138B (zh) * 2017-03-13 2019-05-31 浙江工业大学 基于终态吸引优化指标的冗余机械臂轨迹规划方法

Also Published As

Publication number Publication date
CN107962566A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN107962566B (zh) 一种移动机械臂重复运动规划方法
CN107972031B (zh) 一种冗余机械臂可重复运动的初始位置定位方法
CN107891424B (zh) 求解冗余机械臂逆运动学的有限时间神经网络优化方法
CN107972030B (zh) 一种冗余机械臂重复运动中的初始位置修正方法
CN108908347B (zh) 一种面向冗余移动机械臂容错型重复运动规划方法
CN111941421B (zh) 一种基于多机器人协同操作的自适应模糊力跟踪控制方法
CN110561440B (zh) 一种冗余度机械臂加速度层多目标规划方法
WO2018176854A1 (zh) 一种冗余度机械臂重复运动规划方法
Yin et al. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy
CN111975768B (zh) 一种基于固参神经网络的机械臂运动规划方法
Hu et al. Evolution strategies learning with variable impedance control for grasping under uncertainty
CN109940615B (zh) 一种面向双臂机械手同步重复运动规划的终态网络优化方法
CN110434858B (zh) 一种基于命令滤波的多机械臂***的力/位混合控制方法
CN109159122B (zh) 采用椭圆型终态神经网络的冗余机器人重复运动规划方法
CN109807902A (zh) 一种基于反步法的双机械臂力/位模糊混合控制方法
CN108638058B (zh) 一种姿态决策动态规划方法
CN109015657B (zh) 一种面向冗余机械臂重复运动规划的终态网络优化方法
CN110695994B (zh) 一种面向双臂机械手协同重复运动的有限时间规划方法
Chen et al. Neural-learning trajectory tracking control of flexible-joint robot manipulators with unknown dynamics
Likar et al. Adaptation of bimanual assembly tasks using iterative learning framework
CN109159124B (zh) 采用快速双幂次终态神经网络的冗余机器人重复运动规划方法
CN108908340B (zh) 采用有限区间神经网络的冗余机器人重复运动规划方法
CN110561441A (zh) 一种冗余度机械臂位姿控制的单94lvi迭代算法
CN108908341B (zh) 二次根式终态吸引的冗余机器人重复运动规划方法
CN109159121B (zh) 采用抛物线型终态神经网络的冗余机器人重复运动规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant