CN107958309A - 一种高坝多点变形性态联合预报方法 - Google Patents

一种高坝多点变形性态联合预报方法 Download PDF

Info

Publication number
CN107958309A
CN107958309A CN201711281927.7A CN201711281927A CN107958309A CN 107958309 A CN107958309 A CN 107958309A CN 201711281927 A CN201711281927 A CN 201711281927A CN 107958309 A CN107958309 A CN 107958309A
Authority
CN
China
Prior art keywords
sample
denoising
value
dam
wavelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711281927.7A
Other languages
English (en)
Inventor
苏怀智
杨贝贝
韩彰
杨孟
骆鸿
方正
吴文源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201711281927.7A priority Critical patent/CN107958309A/zh
Publication of CN107958309A publication Critical patent/CN107958309A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种高坝多点变形性态联合预报方法,包括以下步骤:(1)选取高坝工程中多个测点的变形监测数据,采用小波软阈值去噪法去噪;(2)确定模型输入因子,对所选因子进行主成分分析,提取主成分;(3)对多测点去噪后数据及各主成分进行归一化处理,分为训练样本、预测样本;(4)依据训练样本,利用改进粒子群算法对支持向量机SVM参数C、σ进行寻优,完成对支持向量机的训练;(5)依据预测样本,用训练好的模型进行样本预测,进行模型预报效果评价。本发明的一种高坝多点变形性态联合预报方法,解决了传统方法预报精度低、模型大、运行速度慢、计算时间长、单测点预测等问题,具有精度高、处理周期短、多测点时空联合预报等优点。

Description

一种高坝多点变形性态联合预报方法
技术领域
本发明涉及高坝多点变形性态联合预报方法,属于高坝工程安全监测领域。
背景技术
水利工程,尤其是高坝大库工程,在防洪、发电、航运、供水、灌溉、养殖、旅游等方面带来了巨大的社会经济效益,为国民经济的发展做出了巨大贡献。但是由于人们对自然力量、材料性能、结构机理、施工控制以及人为损坏等影响高坝安全的因素认识不够充分,使得很多大坝都处于带病状态,病变隐患若得不到及时发现和处理,很有可能引发大坝整体或者局部的灾变甚至溃坝失事,给社会造成严重的经济损失、生命财产损失。
若能布设齐全的安全监测设施并持续监测,及时对安全监测资料进行处理与分析,重视大坝变形、渗流等监控模型、监控指标等的构建和应用,很多安全隐患可以被发现、灾难性事故能够被避免。变形作为大坝安全状况最直观、最综合的体现,对其变化特征的科学分析、辨识、预报以及评价,一直是大坝安全管理的重点,相关模型、方法等长期被坝工安全科研人员所关注和探研,但由于大坝变形影响因素众多、驱动机制复杂,给精细辨识变形时空特征、精确预报变形变化性态带来了极大的困难。
近年来,虽然相关学者通过不断引入模糊数学、灰色理论、小波分析、人工神经网络、支持向量机等理论用于监测资料进行,研究了大坝安全预报方法,但其存在预报精度较低、模型大、运行速度慢、计算时间长、只能单点预测等问题,故急需研发一种大坝变形性态多测点联合预报模型与方法。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种高坝多点变形性态联合预报方法,解决了传统方法预报精度低、模型大、运行速度慢、计算时间长、单测点预测等问题,具有精度高、处理周期短、效率高、多测点时空联合预报等优点。
技术方案:为解决上述技术问题,本发明的一种高坝多点变形性态联合预报方法,包括以下步骤:
(1)选取高坝工程中若干测点的变形监测数据,采用小波软阈值去噪法去噪;
(2)确定模型输入因子,对所选因子进行主成分分析,提取主成分;
(3)对多测点去噪后数据及各主成分进行归一化处理,分为训练样本、预测样本;
(4)依据训练样本,利用改进粒子群算法对支持向量机SVM参数C、σ进行寻优,完成对支持向量机的训练;
(5)依据预测样本,用训练好的模型进行样本预测,进行模型预报效果评价。
作为优选,所述步骤(1)中小波软阈值去噪法包括以下步骤:
(11)根据大坝变形监测数据序列s的特性,选择合适的小波函数和分解层数n;
(12)对数据序列s进行小波分解,得各低频、高频子序列的小波系数;
(13)计算各高频子序列的噪声标准方差σ;
(14)选择一种阈值确定方法,确定各高频子序列的阈值T,对各高频子序列的小波系数进行处理
(15)将低频子序列的小波系数与经过阈值去噪处理后的高频子序列小波系数进行重构,即可得去噪后的变形监测数据序列。
作为优选,所述步骤(4)步骤以下步骤:
(41)对选取的大坝变形测值序列样本进行归一化处理,并确定输入样本,设定粒子个数、种群迭代次数、惯性权重、惩罚因子、核参数的范围、数据分组k、学习因子的初始以及速度因子v与位置因子γ的值,在规定范围内随机生成初始速度及初始位置,初始位置即对应初始C、σ的值,
(42)根据当前的C、σ的值,训练支持向量机,并计算适应度函数值CV-MSE,并记忆个体与群体对应最佳适应值的pbest和gbest
(43)对粒子的速度进行更新,若出现dij<γ且vij<ν的情况,则继续步骤(41),将该粒子的位置重新初始化,否则进行步骤(44),对粒子的位置进行更新;
(44)将粒子当前位置的ppresent与历史最优解pbest做比较,若ppresent>pbest,则令pbest=ppresent,否则pbest不变,将粒子当前位置的ppresent与种群最优解gbest做比较,若ppresent>gbest,则令gbest=ppresent,否则gbest不变,若达到最大迭代次数,则终止迭代,输出最优解。
作为优选,模型预报效果评价方法的具体量化评价指标为均方根误差(MSE)、平均绝对百分比误差(MAPE)和拟合优度(R2)。
其中,均方根误差(MSE):
平均绝对百分比误差(MAPE):
拟合优度(R2):
式中:n为预测值个数;yi为原始测值;为预测值;为原始测值序列平均值;为预测值序列平均值。
有益效果:本发明的高坝多点变形性态联合预报方法,通过引入多输出支持向量机学习方法,在对其损失函数论述的基础上,构建了基于多输出支持向量机的高坝工程变形性态多测点联合预报模型;为削弱建模因子多重共线性对模型精度的不利影响,发明了以模型因子主成分提取结果作为支持向量机输入量的处理方式,解决了传统方法预报精度低、模型大、运行速度慢、计算时间长、单测点预测等问题,具有精度高、处理周期短、效率高、多测点时空联合预报等优点。
附图说明
图1为本发明高坝多点变形性态联合预报技术的流程图;
图2为本发明步骤(1)小波阈值去噪流程图;
图3为本发明步骤(4)基于改进PSO算法的SVM参数寻优实现流程图;
图4为本发明实施例PP2测点测值过程线图;
图5为本发明实施例PP2测点变形预测结果图。
具体实施方式
如图1所示,本发明一种高坝多点变形性态联合预报技术,具体包括如下步骤:
步骤(1)选取多个测点的变形监测数据,例如可以在大坝上均匀的分布若干个测点,采用图2所述小波软阈值去噪法对变形监测数据进行去噪处理,具体子步骤如下:
①根据大坝变形监测数据序列s的特性,选择合适的小波函数和分解层数n,对数据序列s进行小波分解,得各低频、高频子序列的小波系数。其中,合适的小波函数和分解层数n是指选择满足小波基函数正交性、正则性、紧支性、对称性性质的小波函数和分解层数。
②根据公式σ=median(|ωj|)/0.6745计算各高频子序列的噪声标准方差σ。
σ=median(|ωj|)/0.6745
式中:median(|ωj|)表示小波分解后对应分解层数下小波系数{ω}绝对值的中值;j是小波分解尺度。
③选择一种阈值确定方法,优选为无偏似然估计法,确定各高频子序列的阈值T。
④选择一种阈值去噪方法,优选为非线性小波变换阈值去噪法,对各高频子序列的小波系数进行处理。
⑤将低频子序列的小波系数与经过阈值去噪处理后的高频子序列小波系数进行重构,即可得去噪后的变形监测数据序列。
步骤(2)确定模型输入因子,对所选因子进行主成分分析,根据特征值大于1或特征值的累计贡献率超过85%原则提取主成分。
步骤(3)对多测点去噪后数据及各主成分进行归一化处理,从中选取模型训练样本、预测样本,以按时间顺序排列的各主成分因子作为支持向量机的输入,以按时间顺序排列的去噪后变形监测数据为支持向量机的输出。
步骤(4)依据训练样本,利用改进粒子群算法对支持向量机参数进行寻优,寻优结束后输出最优C、σ的值,完成对支持向量机(SVM)的训练。改进粒子群算法实现支持向量机参数寻优的过程如附图3所示,具体子步骤如下:
①对选取的大坝变形测值序列样本进行归一化处理,并确定输入样本。
②粒子群相关参数初始化。设定粒子个数、种群迭代次数、惯性权重、惩罚因子、核参数的范围、数据分组k、学习因子的初始以及速度因子v与位置因子γ的值。在规定范围内随机生成初始速度及初始位置。初始位置即对应初始C、σ的值。
③根据当前的C、σ的值,训练SVM,并计算CV-MSE,并记忆个体与群体对应最佳适应值的pbest和gbest
④对粒子的速度进行更新,若出现dij<γ且vij<v的情况,则将该粒子的位置重新初始化,否则对粒子的位置进行更新。
⑤将粒子当前位置的ppresent与历史最优解pbest做比较,若ppresent>pbest,则令pbest=ppresent,否则pbest不变。
⑥将粒子当前位置的ppresent与种群最优解gbest做比较,若ppresent>gbest,则令gbest=ppresent,否则gbest不变。
⑦若达到最大迭代次数,则终止迭代,输出最优解,否则重复步骤③~⑦。
步骤(5)依据预测样本,用训练好的模型进行样本预测,进行模型预报效果评价。具体量化评价指标为均方根误差(MSE)、平均绝对百分比误差(MAPE)和拟合优度(R2)。
①均方根误差(MSE):
②平均绝对百分比误差(MAPE):
③拟合优度(R2):
式中:n为预测值个数;yi为原始测值;为预测值;为原始测值序列平均值;为预测值序列平均值。
实施例:本发明所述的一种高坝多点变形性态联合预报技术,以某重力坝为例,选取该大坝PP2变形测点,依据三个测点2008年1月1日至2008年7月20日共200个监测数据为样本,测值如附图4所示。遵照附图1所述流程,构建三测点联合预报模型,前180个数据用来训练模型,后20个数据用来验证模型的预测效果。
选H-H0、(H-H0)2、(H-H0)3、(H-H0)4 θ-θ0、lnθ-lnθ0共10个因子进行主成分分析,得到样本数据的特征值和方差贡献率如表1所示。
表1因子贡献率
提取主成分依据的原则是成分的初始特征值大于1并且成分的累计贡献率大于85%,依据此原则以及表1数据可知应选前4个成分。因子载荷矩阵的数值如表2所示,根据因子载荷矩阵,得出各主成分与原指标的线性关系,进而求出各主成分的值,表达式如下:
式中主成分的系数是由因子载荷矩阵中的值除以相应特征值的平方根求得。
表2因子载荷矩阵
对上述主成分提取结果进行归一化处理作为支持向量机的输入样本,以三个变形测点测值归一化结果为支持向量机输入样本,训练得到三个测点变形联合预报模型(PCA-MSVM模型),并与基于主成分分析的单输出支持向量机模型(简称PCA-SVM模型)进行预测效果对比。两个模型均采用改进的PSO算法进行寻优,核函数为Morlet小波核函数。两种模型的预测结果如图5所示,基于步骤(5)所给评价指标进行两模型预测能力的评价,结果如表3所示,从图5及表3可以看出:
(1)PCA-MSVM模型的运算时间较PCA-SVM模型明显减小,其具有运行速度快、节约计算时间的优点。
(2)PCA-MSVM模型的MSE、MAPE等指标均比PCA-SVM模型要小,而拟合优度R2又高于PCA-SVM模型。
表3单输出与多输出SVM预测模型预测性能评价指标

Claims (5)

1.一种高坝多点变形性态联合预报方法,其特征在于,包括以下步骤:
(1)选取高坝工程中若干测点的变形监测数据,采用小波软阈值去噪法去噪;
(2)确定模型输入因子,对所选因子进行主成分分析,提取主成分;
(3)对多测点去噪后数据及各主成分进行归一化处理,分为训练样本、预测样本;
(4)依据训练样本,利用改进粒子群算法对支持向量机SVM参数C、σ进行寻优,完成对支持向量机的训练;
(5)依据预测样本,用训练好的支持向量机进行样本预测,进行模型预报效果评价。
2.根据权利要求1所述的高坝多点变形性态联合预报方法,其特征在于:所述步骤(1)中小波软阈值去噪法包括以下步骤:
(11)根据大坝变形监测数据序列s的特性,选择合适的小波函数和分解层数n;
(12)对数据序列s进行小波分解,得各低频、高频子序列的小波系数;
(13)计算各高频子序列的噪声标准方差σ;
(14)选择一种阈值确定方法,确定各高频子序列的阈值T,对各高频子序列的小波系数进行处理
(15)将低频子序列的小波系数与经过阈值去噪处理后的高频子序列小波系数进行重构,即可得去噪后的变形监测数据序列。
3.根据权利要求1所述的高坝多点变形性态联合预报方法,其特征在于:所述步骤(4)步骤以下步骤:
(41)对选取的大坝变形测值序列样本进行归一化处理,并确定输入样本,设定粒子个数、种群迭代次数、惯性权重、惩罚因子、核参数的范围、数据分组k、学习因子的初始以及速度因子v与位置因子γ的值,在规定范围内随机生成初始速度及初始位置,初始位置即对应初始C、σ的值,
(42)根据当前的C、σ的值,训练支持向量机,并计算适应度函数值CV-MSE,并记忆个体与群体对应最佳适应值的pbest和gbest
(43)对粒子的速度进行更新,若出现dij<γ且vij<v的情况,则继续步骤(41),将该粒子的位置重新初始化,否则进行步骤(44),对粒子的位置进行更新;
(44)将粒子当前位置的ppresent与历史最优解pbest做比较,若ppresent>pbest,则令pbest=ppresent,否则pbest不变,将粒子当前位置的ppresent与种群最优解gbest做比较,若ppresent>gbest,则令gbest=ppresent,否则gbest不变,若达到最大迭代次数,则终止迭代,输出最优解。
4.根据权利要求1所述的高坝多点变形性态联合预报方法,其特征在于:所述步骤(5)中具体量化评价指标为均方根误差(MSE)、平均绝对百分比误差(MAPE)和拟合优度(R2)。
5.根据权利要求2所述的高坝多点变形性态联合预报方法,其特征在于:所述阈值确定方法为无偏似然估计法。
CN201711281927.7A 2017-12-07 2017-12-07 一种高坝多点变形性态联合预报方法 Pending CN107958309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711281927.7A CN107958309A (zh) 2017-12-07 2017-12-07 一种高坝多点变形性态联合预报方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711281927.7A CN107958309A (zh) 2017-12-07 2017-12-07 一种高坝多点变形性态联合预报方法

Publications (1)

Publication Number Publication Date
CN107958309A true CN107958309A (zh) 2018-04-24

Family

ID=61958181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711281927.7A Pending CN107958309A (zh) 2017-12-07 2017-12-07 一种高坝多点变形性态联合预报方法

Country Status (1)

Country Link
CN (1) CN107958309A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108830012A (zh) * 2018-06-29 2018-11-16 上海勘察设计研究院(集团)有限公司 一种基于全要素挖掘的结构变形预测方法
CN109522639A (zh) * 2018-11-13 2019-03-26 河海大学 一种便携式混凝土坝材料动力参数测试***与测试方法
CN111191191A (zh) * 2019-12-26 2020-05-22 南昌大学 一种精准预测混凝土坝变形效应的组合模型的构建方法
CN111416964A (zh) * 2020-05-09 2020-07-14 黄河勘测规划设计研究院有限公司 用于水利工程变形的远程图像智能识别方法
CN112379274A (zh) * 2020-11-16 2021-02-19 河南科技大学 一种动力电池剩余寿命预测方法
CN112884198A (zh) * 2021-01-13 2021-06-01 西安理工大学 结合门限回归和改进支持向量机面板坝坝顶沉降预测方法
CN113609445A (zh) * 2021-08-03 2021-11-05 中冀建勘集团有限公司 多源异构监测数据处理方法、终端设备及可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649966A (zh) * 2016-10-18 2017-05-10 水利部交通运输部国家能源局南京水利科学研究院 一种基于多测点特征信息的大坝变形性态诊断方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649966A (zh) * 2016-10-18 2017-05-10 水利部交通运输部国家能源局南京水利科学研究院 一种基于多测点特征信息的大坝变形性态诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘敏: ""改进支持向量机在大坝变形预测中的应用研究"", 《中国优秀硕士学位论文全文数据库》 *
吕开云等: ""利用PCA-SVM的大坝变形预测研究"", 《测绘科学》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108830012A (zh) * 2018-06-29 2018-11-16 上海勘察设计研究院(集团)有限公司 一种基于全要素挖掘的结构变形预测方法
CN109522639A (zh) * 2018-11-13 2019-03-26 河海大学 一种便携式混凝土坝材料动力参数测试***与测试方法
CN109522639B (zh) * 2018-11-13 2023-06-23 河海大学 一种便携式混凝土坝材料动力参数测试***与测试方法
CN111191191A (zh) * 2019-12-26 2020-05-22 南昌大学 一种精准预测混凝土坝变形效应的组合模型的构建方法
CN111191191B (zh) * 2019-12-26 2022-07-12 南昌大学 一种精准预测混凝土坝变形效应的组合模型的构建方法
CN111416964A (zh) * 2020-05-09 2020-07-14 黄河勘测规划设计研究院有限公司 用于水利工程变形的远程图像智能识别方法
CN111416964B (zh) * 2020-05-09 2021-08-24 黄河勘测规划设计研究院有限公司 用于水利工程变形的远程图像智能识别方法
CN112379274A (zh) * 2020-11-16 2021-02-19 河南科技大学 一种动力电池剩余寿命预测方法
CN112884198A (zh) * 2021-01-13 2021-06-01 西安理工大学 结合门限回归和改进支持向量机面板坝坝顶沉降预测方法
CN112884198B (zh) * 2021-01-13 2023-06-09 西安理工大学 结合门限回归和改进支持向量机面板坝坝顶沉降预测方法
CN113609445A (zh) * 2021-08-03 2021-11-05 中冀建勘集团有限公司 多源异构监测数据处理方法、终端设备及可读存储介质

Similar Documents

Publication Publication Date Title
CN107958309A (zh) 一种高坝多点变形性态联合预报方法
Wu et al. A novel hybrid system based on multi-objective optimization for wind speed forecasting
Tian et al. A combination forecasting model of wind speed based on decomposition
Niu et al. Uncertainty modeling for chaotic time series based on optimal multi-input multi-output architecture: Application to offshore wind speed
CN112116162B (zh) 基于ceemdan-qfoa-lstm的输电线覆冰厚度预测方法
CN113554466B (zh) 一种短期用电量预测模型构建方法、预测方法和装置
Li et al. Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory
CN108647839A (zh) 基于代价敏感lstm循环神经网络的稳压器水位预测方法
CN111898828A (zh) 一种基于极限学习机的水力发电预测方法
CN111784061B (zh) 一种电网工程造价预测模型的训练方法、装置和设备
CN111160620A (zh) 一种基于端到端记忆网络的短期风电功率预测方法
Liu et al. A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction
CN116384244A (zh) 一种基于物理增强神经网络的电磁场预测方法
CN117748495A (zh) 一种基于残差神经网络的光伏电站短期发电功率预测方法
CN112149896A (zh) 一种基于注意力机制的机械设备多工况故障预测方法
CN112288157A (zh) 一种基于模糊聚类与深度强化学习的风电场功率预测方法
CN113762591B (zh) 一种基于gru和多核svm对抗学习的短期电量预测方法及***
Chen et al. Remaining useful life prediction of turbofan engine based on temporal convolutional networks optimized by genetic algorithm
CN112836876B (zh) 一种基于深度学习的配电网线路负荷预测方法
CN109034497A (zh) 多晶硅还原工序能耗值的预测方法、***、介质及设备
CN106503793B (zh) 一种基于改进差分算法的神经网络短期风速预测方法
CN116167508B (zh) 一种基于气象因素分解的短期光伏出力快速预测方法及***
CN116628488A (zh) 风电功率预测模型的训练方法、风电功率预测方法及设备
Gong et al. Short-term power prediction of a wind farm based on empirical mode decomposition and mayfly algorithm–back propagation neural network
CN115796327A (zh) 一种基于vmd和iwoa-f-gru模型的风电功率区间预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180424