CN107955179B - 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法 - Google Patents

一种水相中超支化聚合物修饰的氧化石墨烯及制备方法 Download PDF

Info

Publication number
CN107955179B
CN107955179B CN201711132470.3A CN201711132470A CN107955179B CN 107955179 B CN107955179 B CN 107955179B CN 201711132470 A CN201711132470 A CN 201711132470A CN 107955179 B CN107955179 B CN 107955179B
Authority
CN
China
Prior art keywords
graphene oxide
hyperbranched polymer
modified
graphene
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711132470.3A
Other languages
English (en)
Other versions
CN107955179A (zh
Inventor
纪树兰
汪林
王乃鑫
安全福
杨恒宇
李倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201711132470.3A priority Critical patent/CN107955179B/zh
Publication of CN107955179A publication Critical patent/CN107955179A/zh
Application granted granted Critical
Publication of CN107955179B publication Critical patent/CN107955179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Abstract

一种水相中超支化聚合物修饰的氧化石墨烯及制备方法,属于石墨烯材料的改性技术领域。包括:将氧化石墨烯超声分散后加入二胺单体恒温搅拌,让二胺单体充分与氧化石墨烯反应;将双烯单体加入上述反应体系中,继续恒温搅拌,让两种单体发生聚合,部分单体即可在氧化石墨烯片层上原位聚合,对氧化石墨烯进行修饰改性。通过透析除去超支化聚合物即可得到改性的氧化石墨烯。该工艺方法简单,操作条件温和,易于控制且不需要添加其他组分或进行多步反应。由该方法制备的改性石墨烯及其复合材料可用于新型分离膜、新型药物负载材料、新型吸附材料的制备等领域。

Description

一种水相中超支化聚合物修饰的氧化石墨烯及制备方法
技术领域
本发明涉及一种石墨烯材料的改性技术,提供了一种具体的水相中采用原位聚合方式制备超支化聚合物改性氧化石墨烯及其复合材料的方法,由该方法制备的改性石墨烯及其复合材料可用于新型分离膜、新型药物负载材料、新型吸附材料的制备等领域。
背景技术
石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的sp2杂化的碳原子排列构成的单层二维晶体,是目前世界上已知的最薄材料,只有一个碳原子的厚度。其独特的二维结构使其具有优异的力学、热学、电学及光学性能。氧化石墨烯,作为石墨烯的重要衍生物,其制备方法简单,可由石墨经高锰酸钾/浓硫酸氧化后超声获得。氧化石墨烯,其边缘含有大量含氧基团,因此具有良好的亲水性及分散性,并可通过官能团之间的相互作用实现改性,从而对其结构和性质进行调控,制备出不同功能化的石墨烯材料。
基于石墨烯材料独特的化学结构,可通过π-π共轭、静电引力及共价键等作用对其进行改性,已有大量石墨烯材料修饰研究的相关报道。其中超支化聚合物,因其具有高度支化的结构、良好的溶解性、较低的粘度、大量末端功能基团及较树状大分子更简单的合成方法,被广泛应用于石墨烯材料的改性研究。采用超支化聚合物对石墨烯材料进行改性,可通过其独特的分子结构及物化性质明显提高石墨烯片层的分散性、功能化程度及与聚合物的相容性。
通常聚合物对石墨烯片层的共价键功能化修饰,包括“接枝于”(graft-from)和“接枝到”(graft-to)两种方法。其中“接枝到”是指利用超支化大分子上端基官能团与石墨烯片层上活性官能团的直接反应将超支化大分子接枝到石墨烯片层上,而“接枝于”是指先在石墨烯表面键接引发剂,然后引发单体聚合,在石墨烯表面接枝聚合物。为了提高接枝反应的成功率,往往需要对氧化石墨烯进行改性,以提高其活性。且聚合或者接枝反应往往在有机相或温度较高的体系中进行,不利于大规模的应用。
发明内容
为了解决以上问题,在本发明中,提供了一种水相中的超支化聚合物修饰石墨烯材料的改性方法。通过一锅法即可得到超支化聚合物修饰石墨烯/超支化聚合物的复合材料,且可通过后续的透析过程去除聚合物得到超支化聚合物修饰的石墨烯材料。
一种水相中超支化聚合物修饰的氧化石墨烯的制备方法,其特征在于,包括以下步骤:
a)将氧化石墨烯粉末采用超声处理,使其均匀分散在水相中,制备成稳定的氧化石墨烯分散液;
b)向步骤a)氧化石墨烯分散液中添加二胺单体,10~60℃恒温搅拌1~120小时,让含氨基的单体对氧化石墨烯进行改性;
c)将另一种双烯单体加入到步骤b)所制备的混合体系中,继续10~60℃恒温搅拌6~240小时;
d)将步骤c)中溶液进行透析、沉淀、干燥,即可得到超支化聚合物修饰的氧化石墨烯。
在本发明步骤a)氧化石墨烯分散液中的氧化石墨烯浓度为10-6~10mg/mL。
在本发明中所述的二胺单体为可与氧化石墨烯上含氧官能团如羧基反应的1-(2-胺乙基)哌嗪、4-氨甲基哌啶、N-甲基乙二胺、N-乙基乙二胺或N-己基二胺等中的一种。
在本发明中所述的双烯单体为N,N-亚甲基双丙烯酰胺或N,N’-双(丙烯酰)胱胺。
在本发明中所述的二胺单体与双烯单体的摩尔比为2:1~1:2。
在本发明中所述的透析选用分子量为8-30kDa的透析袋,在去离子水中进行透析。
本发明的技术原理:向氧化石墨烯分散液中加入二胺单体并长时间搅拌,使其与氧化石墨烯片层上的羧酸基团反应。紧接着加入双烯单体,使聚合反应同时在二胺单体与双烯单体间及双烯单体与二胺单体修饰的石墨烯片层间进行。通过一步反应同时得到超支化聚合物及超支化聚合物修饰的石墨烯材料,可直接将该复合材料进行下一步应用,也可以通过透析去除聚合物得到超支化聚合物修饰的石墨烯材料。
本发明提供的具体方案反应条件温和,反应过程简单易行,制备得到的复合材料或石墨烯材料可应用于分离膜材料、吸附材料、药物控制释放材料的制备等领域。
附图说明
图1为氧化石墨烯及采用本发明方法制备的超支化聚合物改性氧化石墨烯的红外光谱图。
图2为氧化石墨烯及采用本发明方法制备的超支化聚合物改性氧化石墨烯的拉曼光谱图。
图3为氧化石墨烯基采用本发明方法制备的超支化聚合物改性氧化石墨烯的AFM图及改性前后片层的厚度(a为氧化石墨烯,b为超支化聚合物改性氧化石墨烯)。
具体实施方式
下面结合具体实施例对本发明作详细的说明,但本发明并不限于以下实施例。
实施例1
超支化聚合物修饰氧化石墨烯具体方法如下:
(1)取30mg氧化石墨烯粉末,加入30mL去离子水,超声4小时得到稳定分散的1mg/mL氧化石墨烯分散液;
(2)向步骤(1)制备的分散液中加入2.584g 1-(2-胺乙基)哌嗪,并30℃恒温搅拌24小时;
(3)向步骤(2)的反应体系中加入3.083g N,N-亚甲基双丙烯酰胺,继续30℃恒温搅拌60小时,即可得到1mg/mL超支化聚合物/超支化聚合物修饰氧化石墨烯的混合溶液;
(4)将步骤(3)中制备得到的反应溶液,置于8-14kDa透析袋中,透析一周,即可得到超支化聚合物修饰的氧化石墨烯;
对制备得到的进行表征,图1为改性前后氧化石墨烯材料的红外光谱,其中2920cm-1处为C-H键特征峰,经超支化聚合物改性后,该峰值明显增强,说明了石墨烯片层上烃类的引入;图2为改性前后氧化石墨烯材料的拉曼光谱图,改性后材料的ID/IG明显增大,说明石墨烯片层的规整度明显下降,这是由于经过改性后,石墨烯片层上形成了共价键,导致规整度下降,该结果也验证了改性的成功进行;图3为改性前后氧化石墨烯AFM的表征,经过改性,石墨烯片层上原位聚合生成了大量超支化聚合物,故片层的厚度明显增加。
实施例2
超支化聚合物修饰氧化石墨烯具体方法如下:
(1)经超声4小时制备1mg/mL的氧化石墨烯分散液,取1mL分散液加入去离子水稀释至30mL;
(2)向步骤(1)制备的分散液中加入2.584g 1-(2-胺乙基)哌嗪,并30℃恒温搅拌24小时;
(3)向步骤(2)的反应体系中加入3.083g N,N-亚甲基双丙烯酰胺,继续30℃恒温搅拌48小时;
(4)向步骤(3)的溶液中加入去离子水,稀释至500mL即可得到氧化石墨烯浓度为2mg/L的超支化聚合物/超支化聚合物修饰氧化石墨烯的混合溶液。
将该溶液用于在无机陶瓷材料表面制备渗透汽化膜,对无机管式膜进行预处理:将无机膜浸入3-氨基-三乙氧基硅烷乙醇溶液中2小时,取出后放入110℃烘箱中高温处理2两小时;将处理后的管式膜置于步骤(4)稀释后的反应溶液中,在-0.9MPa左右负压条件下浸渍10分钟;取出膜,置于40℃烘箱中干燥48小时,即可得到改性氧化石墨烯/超支化聚合物复合膜
将上述制备的复合膜在渗透汽化膜池中进行渗透汽化性能测试,测试条件为:原液料甲醇含量为10wt%的甲基叔丁基醚/甲醇体系,实验温度40℃,膜下游侧压力300Pa。其对甲基叔丁基醚/甲醇混合体系具有良好的分离效果,通量及透过液中甲醇含量分别可达到403g/m2h及99.51%。

Claims (4)

1.一种水相中超支化聚合物修饰的氧化石墨烯的制备方法,其特征在于,包括以下步骤:
a)将氧化石墨烯粉末采用超声处理,使其均匀分散在水相中,制备成稳定的氧化石墨烯分散液;
b)向步骤a)氧化石墨烯分散液中添加二胺单体,10~60℃恒温搅拌1~120小时,让含氨基的单体对氧化石墨烯进行改性;
c)将另一种双烯单体加入到步骤b)所制备的混合体系中,继续10~60℃恒温搅拌6~240小时;
d)将步骤c)中溶液进行透析、沉淀、干燥,即可得到超支化聚合物修饰的氧化石墨烯;
二胺单体为1-(2-胺乙基)哌嗪;双烯单体为N,N-亚甲基双丙烯酰胺,二胺单体与双烯单体的摩尔比为2:1~1:2。
2.按照权利要求1所述的一种水相中超支化聚合物修饰的氧化石墨烯的制备方法,其特征在于,步骤a)氧化石墨烯分散液中的氧化石墨烯浓度为10-6~10mg/mL。
3.按照权利要求1所述的一种水相中超支化聚合物修饰的氧化石墨烯的制备方法,其特征在于,透析选用分子量为8-30kDa的透析袋,在去离子水中进行透析。
4.按照权利要求1-3任一项所述的方法制备得到的超支化聚合物修饰的氧化石墨烯。
CN201711132470.3A 2017-11-15 2017-11-15 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法 Active CN107955179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711132470.3A CN107955179B (zh) 2017-11-15 2017-11-15 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711132470.3A CN107955179B (zh) 2017-11-15 2017-11-15 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法

Publications (2)

Publication Number Publication Date
CN107955179A CN107955179A (zh) 2018-04-24
CN107955179B true CN107955179B (zh) 2021-03-30

Family

ID=61964907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711132470.3A Active CN107955179B (zh) 2017-11-15 2017-11-15 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法

Country Status (1)

Country Link
CN (1) CN107955179B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940232B (zh) * 2018-07-11 2020-07-28 华南理工大学 端氨基超支化聚合物接枝氧化石墨烯磁性阴离子吸附剂的制备及应用
CN109406507B (zh) * 2018-12-10 2021-09-24 鲁东大学 一种采用稳定化金纳米粒子检测海水中银离子的方法
CN109647514B (zh) * 2019-01-30 2020-04-17 中国科学院长春应用化学研究所 高分散的钯催化剂及其制备方法与应用
KR102225469B1 (ko) * 2019-06-19 2021-03-10 한국과학기술연구원 기능화된 산화그래핀 및 그 제조방법
CN110508247A (zh) * 2019-08-30 2019-11-29 方大炭素新材料科技股份有限公司 一种用于工业污水处理的氧化石墨烯复合材料的制备方法
CN113144915B (zh) * 2021-05-13 2023-02-28 清华大学 改性聚酰胺复合纳滤膜及其制备方法
CN115491077B (zh) * 2022-09-21 2023-09-15 武汉易锦包装印务有限公司 一种快干高稳定印刷油墨及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390830A (zh) * 2011-08-23 2012-03-28 华南理工大学 聚酰胺胺原位插层石墨烯复合材料的制备方法
CN102826539A (zh) * 2012-07-31 2012-12-19 上海交通大学 一种超支化聚芳酰胺功能化石墨烯及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335775B2 (en) * 2015-05-26 2019-07-02 Council Of Scientific & Industrial Research Magnetically separable iron-based heterogeneous catalysts for dehydrogenation of alcohols and amines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390830A (zh) * 2011-08-23 2012-03-28 华南理工大学 聚酰胺胺原位插层石墨烯复合材料的制备方法
CN102826539A (zh) * 2012-07-31 2012-12-19 上海交通大学 一种超支化聚芳酰胺功能化石墨烯及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions";Yang Yuan et al;《Polym.Chem.》;20130212;第4卷(第6期);正文第2164页第2.1节第2-4段 *
"多功能超支化聚酰胺-胺的合成及应用";余志强;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20131015;正文第93页第4.2.4节 *

Also Published As

Publication number Publication date
CN107955179A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
CN107955179B (zh) 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法
Kong et al. Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly
Zhang et al. Recent advances in the synthesis and applications of graphene–polymer nanocomposites
Li et al. Highly conductive graphene/PANi-phytic acid modified cathodic filter membrane and its antifouling property in EMBR in neutral conditions
Ouyang et al. Surface molecularly imprinted nanowire for protein specific recognition
Chang et al. Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites
Shawky et al. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment
Sakellariou et al. Surface-initiated polymerization from carbon nanotubes: strategies and perspectives
Zhao et al. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes
Huynh et al. Polymer coating of graphene oxide via reversible addition–fragmentation chain transfer mediated emulsion polymerization
Zhang et al. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance
CN107737530B (zh) 一种改性氧化石墨烯/超支化聚合物复合膜、制备方法及应用
Li et al. One‐pot synthesis of surface‐functionalized molecularly imprinted polymer microspheres by iniferter‐induced “living” radical precipitation polymerization
Yeang et al. Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone
Shakeri et al. Preparation of polymer-carbon nanotubes composite hydrogel and its application as forward osmosis draw agent
KR20150122928A (ko) 층간 자기조립을 이용한 그래핀 기반 나노탄소 섬유 제조 방법
Dinari et al. Synthesis, structural characterization and properties of novel functional poly (ether imide)/titania nanocomposite thin films
Pradhan et al. Oxygen barrier of multiwalled carbon nanotube/polymethyl methacrylate nanocomposites prepared by in situ method
WO2023094814A1 (en) Separation membrane
Ahn et al. Nanocomposite membranes consisting of poly (vinyl chloride) graft copolymer and surface-modified silica nanoparticles
CN106757789B (zh) 一种超亲水聚偏二氟乙烯/聚多巴胺复合薄膜的制备方法
Wang et al. Functionalization of carbon nanotubes by surface-initiated immortal alternating polymerization of CO 2 and epoxides
CN111229059A (zh) 一种环糊精接枝埃罗石纳米管有机溶剂纳滤膜及其制备方法
Si et al. Engineering transport highways in microporous membranes for lithium extraction: The double role of covalent organic frameworks
TWI448491B (zh) 具有化學鍵結之碳奈米管-高分子混成物(hybrid)及其奈米複合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant