CN107952423A - 一种2d的二氧化钛高效光催化材料及其制备方法 - Google Patents

一种2d的二氧化钛高效光催化材料及其制备方法 Download PDF

Info

Publication number
CN107952423A
CN107952423A CN201610911603.6A CN201610911603A CN107952423A CN 107952423 A CN107952423 A CN 107952423A CN 201610911603 A CN201610911603 A CN 201610911603A CN 107952423 A CN107952423 A CN 107952423A
Authority
CN
China
Prior art keywords
tio
titanium dioxide
efficiency photocatalysis
photocatalysis material
dioxide high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610911603.6A
Other languages
English (en)
Inventor
孔祥辰
朱胜利
杨贤金
崔振铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610911603.6A priority Critical patent/CN107952423A/zh
Publication of CN107952423A publication Critical patent/CN107952423A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种2D的二氧化钛高效光催化材料及其制备方法,在冰水浴的条件下,将液态TiCl4逐滴滴入至乙二醇中,静置后待TiCl4全部水解形成胶状的TiO2前驱体;再向制得的前驱体中加入去离子水,形成TiO2前驱体水溶液并搅拌均匀,在密闭的反应釜中进行130℃‑170℃水热反应,水热反应时间不多于6h,待反应结束后得到的样品用无水酒精以及去离子水交替冲洗,并在100℃的干燥箱中干燥后即可。本发明材料比表面积大且具有一定的光催化活性的超薄纳米结构,其实施费用低、结构稳定、操作简便,制备周期短,是一种高效经济的合成方法。

Description

一种2D的二氧化钛高效光催化材料及其制备方法
技术领域
本发明属于光催化技术领域,更加具体地说,涉及一种新型2D结构纳米材料,主要用于光解水***中的产氢催化剂材料。
背景技术
近年来,氢能源因其高的换能效率及清洁无污染在新能源领域受到了越来越多的关注。然而,现有的TiO2(B)相研究热度逐渐降低,一方面是由于其适合光催化的物相种类较为局限,另一方面是在实际应用中因自身结构而导致存在的缺陷还存在着许多的问题,诸如传统的金红石以及锐钛矿两种晶型的TiO2材料催化活性低,而高性能的催化剂制备工艺复杂且产量低;耦合半导体化学性质不稳定且长期使用容易被腐蚀从而产生催化剂中毒现象;离子掺杂工艺复杂且对催化性能提高有限;简单物理负载的贵金属颗粒与的结合力比较弱,在使用过程中容易脱落从而造成催化能力下降等问题都限制了该材料的商业化应用。
发明内容
本发明的目的在于克服现有技术的不足,提供一种2D的二氧化钛高效光催化材料及其制备方法,本发明其实施费用低、结构稳定、操作简便,制备周期短,是一种高效经济的合成方法,本发明制备得到的2D纳米结构材料主要用于光催化***中的催化剂。
本发明的技术目的通过下述技术方案予以实现:
一种2D的二氧化钛高效光催化材料及其制备方法,按照下述步骤进行:
步骤1,在冰水浴的条件下,将液态TiCl4逐滴均匀滴入至乙二醇中,静置以使TiCl4全部水解形成胶状的TiO2(B)前驱体溶液;
在步骤1中,静置时间为10—12小时。
在步骤1中,在30—60min中向乙二醇中均匀滴入液态TiCl4
步骤2,向步骤1制得的TiO2(B)前驱体溶液中加入去离子水并搅拌均匀,以形成TiO2(B)前驱体水溶液;
在步骤2中,步骤1制得的TiO2(B)前驱体溶液和去离子水的体积比为(15—30):1,优选(20—25):1。
步骤3,将步骤2制得的TiO2(B)前驱体水溶液在密闭的反应釜中进行水热反应,反应温度为130℃-170℃,水热反应时间不多于6h,反应结束后洗涤干燥后即为2D的二氧化钛高效光催化材料。
在步骤3中,反应温度为150—160摄氏度,反应时间为2—6小时。
在步骤3中,将反应结束后制得的样品用无水酒精以及去离子水交替冲洗,并在80—100℃的干燥箱中干燥后即为2D-TiO2(B)光催化材料。
在步骤3中,密闭反应釜中气氛为空气。
对本发明的二氧化钛高效光催化材料进行表征,如附图所示。图1所展示为TiO2(B)的TEM图谱,可以看出该材料是由许多的纳米薄层状结构堆叠而成,同时在其边缘位置由于存在表面张力的原因,致使材料发生卷曲,形状近似于石墨烯结构。再分析高倍的HRTEM以及其衍射图谱,尽管材料本身具有很薄的片层结构,但是图谱中清晰的晶格条纹以及明显的多晶衍射环,证明其结晶性很好。图3为TiO2(B)的XRD衍射图谱,其中所有峰位以及晶面参数是根据PDF标准卡片中TiO2(B)(JCPDS 74-1940)对照标定的,证明该材料是氧化钛中同质异构体的B相结构,其中(110)峰位的衍射强度最大,很有可能该材料最优先暴露具有较高能量(110)方向。图2为利用氮吸附分析仪表征的TiO2(B)比表面积图,该材料达到了很可观的数据为367.5398m2/g(平均可达360—380m2/g),比普通的介孔氧化钛材料高出许多,例如商用P25的比表面积约为50m2/g。利用原子显微镜对TiO2(B)材料进行表征,如附图5和6所示,根据A点到B点的测试结果测得TiO2(B)材料的平均厚度为0.6—0.8nm。
依据本发明制备的新型2D-TiO2(B)相催化剂表现出较好的催化活性,该材料具有类似于石墨烯的超薄纳米多层结构,且单层层厚只有2-4个原子层的厚度,非常利于催化剂暴露具有更多活性位点的单晶表面,进而提高催化活性;同时这种2D超薄纳米材料拥有很高的比表面积以及紧致层状的TiO2结构,并且在材料表面分布着很多的开放离子通道,会很大程度促进光生电子以及空穴的转移和氧化还原反应。2D-TiO2(B)作为光催化材料在拥有其独特优势,无毒、无害、价格便宜,物理化学性质稳定,同时该材料具有很高的比表面积,有效的增加了光接触面积,提高了活性位点的催化效率以及活性总量,很大程度改善了以前TiO2材料反应活性位点利用率低的问题;另外,2D-TiO2(B)材料类似于石墨烯组织结构,在拥有超薄原子级厚度的同时材料表面分布着很多的开放离子通道,利于层与层之间的光生电子、空穴的传输转移以及光催化反应的进行,而且紧致的层状结构增强基体本身价键径向连接的稳定性,从而可以保证光催化过程中材料的使用寿命。因此在光解水产氢催化剂的制备领域有着较好的应用前景,有望成为新一代的经济并且稳定的光解水催化剂。
附图说明
图1是利用本发明技术方案制备的2D-TiO2(B)光催化材料表面形貌的TEM图。
图2是利用本发明技术方案制备的2D-TiO2(B)光催化材料比表面积测试图。
图3是利用本发明技术方案制备的2D-TiO2(B)光催化材料在全光条件下的产氢量。
图4是利用本发明技术方案制备的2D-TiO2(B)光催化材料的XRD谱图。
图5是利用本发明技术方案制备的2D-TiO2(B)光催化材料的原子力显微镜图谱(1)。
图6是利用本发明技术方案制备的2D-TiO2(B)光催化材料的原子力显微镜图谱(2)。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1:
制备2D-TiO2(B)高效光催化材料的方法,其制备步骤如下:
步骤一、在冰水浴的条件下,将液态0.5ml的TiCl4逐滴滴入至15ml乙二醇(EG)中,静置12h后待TiCl4全部水解形成胶状的TiO2(B)前驱体;
步骤二、将步骤一制得的TiO2(B)前驱体溶液称取15ml置于烧杯中,然后并向其中加入1ml去离子水,即水与溶液体积比为1:15,形成TiO2(B)前驱体水溶液并搅拌均匀;
步骤三、将步骤二制得的TiO2(B)前驱体水溶液在密闭的反应釜中进行130℃水热反应,水热反应时间为4h,将反应结束后制得的样品用无水酒精以及去离子水交替冲洗,并在100℃的干燥箱中干燥1h后即为2D-TiO2(B)光催化材料。
实施例1制备得到2D-TiO2(B)光催化材料,图1示出了该2D-TiO2(B)纳米结构的TEM图。该催化材料具有高的比表面积,超薄的层间厚度以及高的稳定性并能够促进物质传输,因此在光解水产氢催化剂的制备领域有着较好的应用前景。相比于其他晶型的TiO2(B)催化材料,2D-TiO2(B)拥有超薄原子级厚度的同时材料表面分布着很多的开放离子通道,利于层与层之间的光生电子、空穴的传输转移以及光催化反应的进行,而且紧致的层状结构增强基体本身价键径向连接的稳定性,从而可以保证光催化过程中材料的使用寿命。因此在光解水产氢催化剂的制备领域有着较好的应用前景,有望成为新一代的经济并且稳定的光解水催化剂。本发明制备的2D-TiO2(B)光催化材料化学性质稳定,其在光解水产氢的测试中经过6h的全光测试,其产生氢气总量达到578umol。图2示出了实施例1制备得到的2D-TiO2(B)光催化材料比表面积以及产氢量图谱。
实施例2:
制备过程与实施例1基本相同,其不同之处仅在于:步骤二中,向TiO2(B)前驱体溶液中加入水含量为0.5ml,即水与溶液体积比为1:30;步骤三中,反应温度为150℃。
实施例3:
制备过程与实施例1基本相同,其不同之处仅在于:步骤一中,TiCl4的含量为0.25ml,;步骤三中,反应温度为170℃,反应时间为2h。
实施例4:
制备过程与实施例1基本相同,其不同之处仅在于:步骤一中,TiCl4的含量为0.25ml,;步骤二中,向TiO2(B)前驱体溶液中加入水含量为0.5ml,即水与溶液体积比为1:30;步骤三中,反应温度为170℃,反应时间为6h。
依照本发明内容记载内容进行组分和工艺参数的调整,均可制备2D-TiO2(B)光催化材料,得到的2D-TiO2(B)光催化材料利用气相色谱仪测试产生大量氢气,将100mg的2D-TiO2(B)光催化材料分散到50ml甲醇与250ml去离子水的溶液中,在300W氙灯的全光光照条件下进行0-6h的产氢实验,如附图所示,本发明制备的2D-TiO2(B)光催化材料化学性质稳定,其在光解水产氢的测试中经过6h的全光测试,其产生氢气总量达到578umol,在光解水产氢领域应用前景良好。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种2D的二氧化钛高效光催化材料,其特征在于,二氧化钛高效光催化材料由纳米薄层状结构堆叠而成,在其边缘位置发生卷曲,形状近似于石墨烯结构,比表面积平均可达360—380m2/g,平均厚度为0.6—0.8nm,按照下述步骤进行:
步骤1,在冰水浴的条件下,将液态TiCl4逐滴均匀滴入至乙二醇中,静置以使TiCl4全部水解形成胶状的TiO2(B)前驱体溶液;
步骤2,向步骤1制得的TiO2(B)前驱体溶液中加入去离子水并搅拌均匀,以形成TiO2(B)前驱体水溶液;
步骤3,将步骤2制得的TiO2(B)前驱体水溶液在密闭的反应釜中进行水热反应,反应温度为130℃-170℃,水热反应时间不多于6h,反应结束后洗涤干燥后即为2D的二氧化钛高效光催化材料。
2.根据权利要求1所述的一种2D的二氧化钛高效光催化材料,其特征在于,在步骤1中,静置时间为10—12小时;在步骤1中,在30—60min中向乙二醇中均匀滴入液态TiCl4
3.根据权利要求1所述的一种2D的二氧化钛高效光催化材料,其特征在于,在步骤2中,步骤1制得的TiO2(B)前驱体溶液和去离子水的体积比为(15—30):1,优选(20—25):1。
4.根据权利要求1所述的一种2D的二氧化钛高效光催化材料,其特征在于,在步骤3中,反应温度为150—160摄氏度,反应时间为2—6小时;密闭反应釜中气氛为空气。
5.一种2D的二氧化钛高效光催化材料的制备方法,其特征在于,按照下述步骤进行:
步骤1,在冰水浴的条件下,将液态TiCl4逐滴均匀滴入至乙二醇中,静置以使TiCl4全部水解形成胶状的TiO2(B)前驱体溶液;
步骤2,向步骤1制得的TiO2(B)前驱体溶液中加入去离子水并搅拌均匀,以形成TiO2(B)前驱体水溶液;
步骤3,将步骤2制得的TiO2(B)前驱体水溶液在密闭的反应釜中进行水热反应,反应温度为130℃-170℃,水热反应时间不多于6h,反应结束后洗涤干燥后即为2D的二氧化钛高效光催化材料。
6.根据权利要求5所述的一种2D的二氧化钛高效光催化材料的制备方法,其特征在于,在步骤1中,静置时间为10—12小时;在步骤1中,在30—60min中向乙二醇中均匀滴入液态TiCl4
7.根据权利要求5所述的一种2D的二氧化钛高效光催化材料的制备方法,其特征在于,在步骤2中,步骤1制得的TiO2(B)前驱体溶液和去离子水的体积比为(15—30):1,优选(20—25):1。
8.根据权利要求5所述的一种2D的二氧化钛高效光催化材料的制备方法,其特征在于,在步骤3中,反应温度为150—160摄氏度,反应时间为2—6小时;密闭反应釜中气氛为空气。
9.如权利要求1—4之一所述的2D的二氧化钛高效光催化材料在光解水产氢中的应用。
10.根据权利要求9所述的应用,其特征在于,将100mg的光催化材料分散到50ml甲醇与250ml去离子水的溶液中进行光解水产氢。
CN201610911603.6A 2016-10-18 2016-10-18 一种2d的二氧化钛高效光催化材料及其制备方法 Pending CN107952423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610911603.6A CN107952423A (zh) 2016-10-18 2016-10-18 一种2d的二氧化钛高效光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610911603.6A CN107952423A (zh) 2016-10-18 2016-10-18 一种2d的二氧化钛高效光催化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107952423A true CN107952423A (zh) 2018-04-24

Family

ID=61953456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610911603.6A Pending CN107952423A (zh) 2016-10-18 2016-10-18 一种2d的二氧化钛高效光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107952423A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796679A (zh) * 2019-01-30 2019-05-24 中国科学院长春应用化学研究所 一种高韧性的二维超薄二氧化钛改性pp纳米复合材料及其制备方法
CN112892554A (zh) * 2021-02-07 2021-06-04 苏州华裕佳和新材料科技有限公司 一种具有双原子活性相的二维层状材料及制备方法和应用
CN113555572A (zh) * 2021-07-22 2021-10-26 广东工业大学 质子交换膜燃料电池催化剂及其制备方法
CN116272937A (zh) * 2023-03-28 2023-06-23 南京大学 一种TiO2纳米片材料的制备方法和应用
KR102672240B1 (ko) * 2020-07-29 2024-06-04 주식회사 동우 티엠씨 이산화티타늄의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275986A (zh) * 2011-05-27 2011-12-14 吉林大学 不同晶型二氧化钛纳米带的可控水热制备方法
CN102531050A (zh) * 2010-12-30 2012-07-04 北京大学 制备TiO2(B)纳米线的方法及制得的TiO2(B)纳米线的用途
CN102659178A (zh) * 2012-05-11 2012-09-12 上海师范大学 一种{001}面暴露的具有氧缺陷的可见光二氧化钛纳米片的合成工艺
CN103736513A (zh) * 2014-01-03 2014-04-23 北京工业大学 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法
CN104016405A (zh) * 2014-05-30 2014-09-03 武汉理工大学 一种花状介孔二氧化钛材料及其制备方法与应用
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531050A (zh) * 2010-12-30 2012-07-04 北京大学 制备TiO2(B)纳米线的方法及制得的TiO2(B)纳米线的用途
CN102275986A (zh) * 2011-05-27 2011-12-14 吉林大学 不同晶型二氧化钛纳米带的可控水热制备方法
CN102659178A (zh) * 2012-05-11 2012-09-12 上海师范大学 一种{001}面暴露的具有氧缺陷的可见光二氧化钛纳米片的合成工艺
CN103736513A (zh) * 2014-01-03 2014-04-23 北京工业大学 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法
CN104016405A (zh) * 2014-05-30 2014-09-03 武汉理工大学 一种花状介孔二氧化钛材料及其制备方法与应用
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MD. KAMAL HOSSAIN ET AL.: "First Synthesis of Highly Crystalline, Hexagonally Ordered, Uniformly Mesoporous TiO2–B and Its Optical and Photocatalytic Properties", 《CHEMISTRY OF MATERIALS》 *
PENGXIN LIU ET AL.: "Photochemical route for synthesizing atomically dispersed palladium catalysts", 《SCIENCE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796679A (zh) * 2019-01-30 2019-05-24 中国科学院长春应用化学研究所 一种高韧性的二维超薄二氧化钛改性pp纳米复合材料及其制备方法
KR102672240B1 (ko) * 2020-07-29 2024-06-04 주식회사 동우 티엠씨 이산화티타늄의 제조방법
CN112892554A (zh) * 2021-02-07 2021-06-04 苏州华裕佳和新材料科技有限公司 一种具有双原子活性相的二维层状材料及制备方法和应用
CN113555572A (zh) * 2021-07-22 2021-10-26 广东工业大学 质子交换膜燃料电池催化剂及其制备方法
CN116272937A (zh) * 2023-03-28 2023-06-23 南京大学 一种TiO2纳米片材料的制备方法和应用
CN116272937B (zh) * 2023-03-28 2024-05-03 南京大学 一种TiO2纳米片材料的制备方法和应用

Similar Documents

Publication Publication Date Title
Wu et al. Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution
Bai et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting
Han et al. Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity
Ye et al. Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets
Rosen et al. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst
Zheng et al. Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties
Wang et al. An anti-symmetric dual (ASD) Z-scheme photocatalytic system:(ZnIn2S4/Er3+: Y3Al5O12@ ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution
Cui et al. Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets
Yan et al. Through hydrogen spillover to fabricate novel 3DOM-HxWO3/Pt/CdS Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution
Zhang et al. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation
Yan et al. Titanium dioxide microsphere-derived materials for solar fuel hydrogen generation
Chai et al. Distortion of the coordination structure and high symmetry of the crystal structure in In4SnS8 microflowers for enhancing visible-light photocatalytic CO2 reduction
Mukhopadhyay et al. Shape transition of TiO2 nanocube to nanospindle embedded on reduced graphene oxide with enhanced photocatalytic activity
CN107952423A (zh) 一种2d的二氧化钛高效光催化材料及其制备方法
Liu et al. Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation
CN105597787B (zh) 一种单层二硫化钼/超细二氧化钛纳米带异质结构光催化剂及其制备方法
Xi et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution
Xiang et al. Cu/CdS/MnO x Nanostructure-Based Photocatalyst for Photocatalytic Hydrogen Evolution
Do et al. Dramatic CO2 photoreduction with H2O vapors for CH4 production using the TiO2 (bottom)/Fe–TiO2 (top) double-layered films
Cheng et al. S-scheme SrTiO3/porous ZnO derived by pyrolysis of ZIF-8 composite with efficient photocatalytic activity for pollutant degradation
Yang et al. Fabrication and behaviors of CdS on Bi 2 MoO 6 thin film photoanodes
CN107723777A (zh) 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
Ma et al. Amorphous CoS x Growth on CaTiO3 Nanocubes Formed S-Scheme Heterojunction for Photocatalytic Hydrogen Production
Liu et al. ZnCdS dotted with highly dispersed Pt supported on SiO2 nanospheres promoting photocatalytic hydrogen evolution
Liu et al. Enhanced photocatalytic performance of carbon-coated TiO2–x with surface-active carbon species

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180424