CN107936417A - 一种可降解的塑料膜 - Google Patents

一种可降解的塑料膜 Download PDF

Info

Publication number
CN107936417A
CN107936417A CN201711416197.7A CN201711416197A CN107936417A CN 107936417 A CN107936417 A CN 107936417A CN 201711416197 A CN201711416197 A CN 201711416197A CN 107936417 A CN107936417 A CN 107936417A
Authority
CN
China
Prior art keywords
starch
plastic film
plastic foil
degredation
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711416197.7A
Other languages
English (en)
Inventor
汪子璇
王永梅
李璟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Agricultural University AHAU
Hangzhou Bite Greenpack Co Ltd
Original Assignee
Anhui Agricultural University AHAU
Hangzhou Bite Greenpack Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Agricultural University AHAU, Hangzhou Bite Greenpack Co Ltd filed Critical Anhui Agricultural University AHAU
Priority to CN201711416197.7A priority Critical patent/CN107936417A/zh
Publication of CN107936417A publication Critical patent/CN107936417A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及塑料膜技术领域,具体涉及一种可降解的塑料膜。所述塑料膜按重量百分比计,包括热塑性树脂66.7%~71.8%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.8%~1.2%、镥0.4%~0.7%、钪7.6%~9.1%和淀粉16.5%~23.2%。该塑料膜具有比通用的塑料膜更高的光透过性,并且能够在一定条件下发生降解,从而降低对环境的影响。

Description

一种可降解的塑料膜
技术领域
本发明涉及塑料膜技术领域,具体涉及一种可降解的塑料膜。此塑料膜具有与通用塑料膜相类似的性能,并且可以在一定环境下降解。
背景技术
塑料膜是采用聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯以及其他热塑性树脂制成的薄膜,用于包装,以及用作覆膜层。塑料包装及塑料包装产品在市场上所占的份额越来越大,特别是复合塑料软包装,已经广泛地应用于食品、医药、化工等领域,其中又以食品包装所占比例最大,比如饮料包装、速冻食品包装、蒸煮食品包装、快餐食品包装等,这些产品都给人们生活带来了极大的便利。
塑料膜虽然给人们带来了极大的好处,但是随着塑料膜的使用,给人们的生活及环境带来了很多问题,特别是对环境造成了非常大的污染。这都是由于塑料膜不能够及时降解导致的。即使塑料膜具有相当的负面影响,但是目前并不能将其舍弃,因此需要开发能够降解的塑料膜,以便在广泛使用塑料膜的前提下,尽可能地降低塑料膜带来的污染等负面影响。
发明内容
本发明的目的是为了解决上述问题,提供一种可降解的塑料膜。
本发明的塑料膜具备与其他由通用塑料制备的塑料膜相类似的性能,但是,本发明的塑料膜可以在一定环境下进行降解,从而降低塑料膜的广泛使用带来的环境污染。
为了达到上述发明目的,本发明采用以下技术方案:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括热塑性树脂66.7%~71.8%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.8%~1.2%、镥0.4%~0.7%、粗钪粉7.6%~9.1%和淀粉16.5%~23.2%。
目前的塑料膜的降解操作为:在塑料包装制品(塑料膜)的生产过程中加入一定量的添加剂(如淀粉、改性淀粉或其它纤维素、光敏剂、生物降解剂等),使塑料包装物的稳定性下降,较容易在自然环境中降解,但是,目前通过加入淀粉使塑料膜降解效果不好,利用生物降解原理在树脂中加入淀粉岁可以进行降解,但是降解的周期较长。
本发明创造性的采用淀粉作为降解的主要组分,并在加入淀粉的同时,加入辅助的配合剂钐,用于改善材料的结构,从而在结构上改变塑料的解决速度,加速塑料降解;配合剂镥,用于催化产品,对降解产生催化作用,加速降解;配合剂钪,不仅可以分解塑料,同时可以作为半引发剂,使塑料能够自发分解,从而加快降解速度;淀粉,作为主要的降解助剂,对塑料的降解产生促进作用。
优选的,所述淀粉为改性淀粉。
优选的,所述热塑性树脂为聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯。
优选的,所述热塑性树脂为聚乙烯。
优选的,所述塑料膜按重量百分比计,包括聚乙烯68.7%~70.1%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.95%~1.03%、镥0.7%~0.52%、粗钪粉8.3%~8.9%和淀粉19.2%~20.8%。
优选的,所述塑料膜按重量百分比计,包括聚乙烯69.2%、铈0.3%、镧0.5%、钐1.0%、镥0.5%、粗钪粉8.5 %和淀粉20.2%。
优选的,所述热塑性树脂为聚丙烯。
优选的,所述塑料膜按重量百分比计,聚丙烯66.7%~71.8%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.8%~1.2%、镥0.4%~0.7%、粗钪粉7.6%~9.1%和淀粉16.5%~23.2%。
优选的,还包括水合联氨0.5%-0.8%和四苯基锡0.3-0.5%。
加入水合联氨和四苯基锡的目的是为了改变树脂的结构,从结构上及结晶上对薄膜进行改进,使其能够在后续的降解过程中,降解反应及降解速率更加迅速。并且通过加入二者,可以对薄膜的有效寿命进行控制,使其降解过程更加可控,能够更加容易地掌控薄膜的寿命。通过水合联氨和四苯基锡可以对降解过程中的降解速率进行调节,从而对有效使用寿命和降解进行平衡。
优选的,所述粗钪粉中钪元素的含量为0.3%-3%。
本发明与现有技术相比,有益效果是:
本发明的塑料膜对光线的吸收较好,具有比通用的塑料膜更高的光透过性;
本发明的塑料膜能够在自然条件下超出使用寿命后开始降解,并在一定期间内由高分子量聚合物降低为低聚物,直到不会对环境形成有害影响,从而降低对环境的危害。
附图说明
图1是实施例1和对比文件1聚氯乙烯薄膜在户外使用3个月后的降解对比图;
图2是实施例2和对比文件2聚乙烯薄膜在在户外使用3个月后的降解对比图;
图3实施例3、4、5和对比文件3聚乙烯薄膜在在户外使用3个月后的降解对比图;
图4实施例8、9、10和对比文件3聚乙烯薄膜在在户外使用3个月后的降解对比图;
图5是实施例6、7和对比文件4的聚丙烯薄膜在在户外使用3个月后的降解对比图;
图6是实施例3、4、5和实施例8、9、10的的降解对比图。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。
如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
实施例1:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚氯乙烯66.7%、铈0.5%、镧0.3%、钐1.2%、镥0.4%、粗钪粉9.1%和淀粉21.8%。粗钪粉中钪元素的含量为0.3%-3%。
实施例2:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚苯乙烯71.8%、铈0.2%、镧0.6%、钐0.8%、镥0.7%、粗钪粉7.6%和淀粉18.3%。粗钪粉中钪元素的含量为0.3%-3%。
实施例3:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚乙烯68.7%、铈0.5%、镧0.3%、钐1.03%、镥0.47%、粗钪粉8.9%和淀粉20.1%。粗钪粉中钪元素的含量为0.3%-3%。
实施例4:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚乙烯70.1%、铈0.2%、镧0.6%、钐0.95%、镥0.52%、粗钪粉8.3%和淀粉19.33%。粗钪粉中钪元素的含量为0.3%-3%。
实施例5:
一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚乙烯69.2%、铈0.3%、镧0.5%、钐1.0%、镥0.5%、粗钪粉8.5 %和淀粉20%。粗钪粉中钪元素的含量为0.3%-3%。
实施例6:
一种可降解的塑料膜,所述塑料膜按重量百分比计,聚丙烯66.7%、铈0.2%、镧0.6%、钐0.8%、镥0.7%、粗钪粉7.8%和淀粉23.2%。粗钪粉中钪元素的含量为0.3%-3%。
实施例7:
一种可降解的塑料膜,所述塑料膜按重量百分比计,聚丙烯71.8%、铈0.2%、镧0.6%、钐0.8%、镥0.7%、粗钪粉7.6%和淀粉18.3%。粗钪粉中钪元素的含量为0.3%-3%。
实施例8:
与实施例3对应,一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚乙烯67.6%、铈0.5%、镧0.3%、钐1.03%、镥0.47%、粗钪粉8.9%、淀粉20.1%、水合联氨0.8%和四苯基锡0.3%。粗钪粉中钪元素的含量为0.3%-3%。
实施例9:
与实施例4对应,一种可降解的塑料膜,所述塑料膜按重量百分比计,包括聚乙烯69.1%、铈0.2%、镧0.6%、钐0.95%、镥0.52%、粗钪粉8.3%、淀粉19.33%、水合联氨0.5%和四苯基锡0.5%。粗钪粉中钪元素的含量为0.3%-3%。
实施例10:
与实施例5对应,所述塑料膜按重量百分比计,包括聚乙烯68.1%、铈0.3%、镧0.5%、钐1.0%、镥0.5%、粗钪粉8.5 %、淀粉20.2%、水合联氨0.7%和四苯基锡0.4%。粗钪粉中钪元素的含量为0.3%-3%。
对比例1
通用聚氯乙烯。
对比例2
通用聚苯乙烯。
对比例3
通用聚乙烯。
对比例4
通用聚丙烯。
结果比较分析。
将实施例1-实施例7以及对比例1-对比4的塑料,制备成厚度为1微米的薄膜,然后测试薄膜的性能。通过将上述各实施例制备的薄膜,以模拟老化试验,进行数据对比分析;
具体为:
将实施例1与对比文件1的聚氯乙烯薄膜进行对比;
将实施例2与对比文件2的聚苯乙烯进行对比;
将实施例3、4、5和对比文件3的聚乙烯进行对比;
将实施例6、7的聚丙烯与对比文件4的聚丙烯进行对比;
将实施例8、9、10和对比文件3的聚乙烯进行对比;
将实施例3、4、5和实施例8、9、10的聚乙烯进行对比;
图1是实施例1和对比文件1聚氯乙烯薄膜在户外使用3个月后的降解对比图;
图2是实施例2和对比文件2聚苯乙烯薄膜在在户外使用3个月后的降解对比图;
图3实施例3、4、5和对比文件3聚乙烯薄膜在在户外使用3个月后的降解对比图;
图4实施例8、9、10和对比文件3聚乙烯薄膜在在户外使用3个月后的降解对比图;
图5是实施例6、7和对比文件4的聚丙烯薄膜在在户外使用3个月后的降解对比图;
图6是实施例3、4、5和实施例8、9、10的的降解对比图。
对比上述数据结果可以看出(如图1、2、3、4和5所示),通用的薄膜是无法在短期内发生降解的,而本发明制备的薄膜具有比通用塑料薄膜更短的使用寿命,同时,能够在达到使用寿命后快速地进行降解,从而可以避免对环境造成污染危害。
如图6所示,在原有的配方基础上加入水合联氨和四苯基锡降解时间曲线发生微妙变化,在初始阶段,实施例8、9、10的降解速率并没有比实施例3、4、5快,但是在达到一定程度后,实施例8、9、10的塑料薄膜加快了降解速率,从而能够在更短的时间内降解成为聚合度更低的低聚物。

Claims (10)

1.一种可降解的塑料膜,其特征在于,所述塑料膜按重量百分比计,包括热塑性树脂66.7%~71.8%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.8%~1.2%、镥0.4%~0.7%、粗钪粉7.6%~9.1%和淀粉16.5%~23.2%。
2.根据权利要求1所述的一种可降解的塑料膜,其特征在于,所述淀粉为改性淀粉。
3.根据权利要求1或2所述的一种可降解的塑料膜,其特征在于,所述热塑性树脂为聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯。
4.根据权利要求3所述的一种可降解的塑料膜,其特征在于,所述热塑性树脂为聚乙烯。
5.根据权利要求4所述的一种可降解的塑料膜,其特征在于,所述塑料膜按重量百分比计,包括聚乙烯68.7%~70.1%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.95%~1.03%、镥0.7%~0.52%、粗钪粉8.3%~8.9%和淀粉19.2%~20.8%。
6.根据权利要求4所述的一种可降解的塑料膜,其特征在于,所述塑料膜按重量百分比计,包括聚乙烯69.2%、铈0.3%、镧0.5%、钐1.0%、镥0.5%、粗钪粉8.5 %和淀粉20.2%。
7.根据权利要求3所述的一种可降解的塑料膜,其特征在于,所述热塑性树脂为聚丙烯。
8.根据权利要求7所述的一种可降解的塑料膜,其特征在于,所述塑料膜按重量百分比计,聚丙烯66.7%~71.8%、铈0.2%~0.5%、镧0.3%~0.6%、钐0.8%~1.2%、镥0.4%~0.7%、粗钪粉7.6%~9.1%和淀粉16.5%~23.2%。
9.根据权利要求1或5或6或8所述的一种可降解的塑料膜,其特征在于,还包括水合联氨0.5%-0.8%和四苯基锡0.3-0.5%。
10.根据权利要求1或5或6或8所述的一种可降解的塑料膜,其特征在于,所述粗钪粉中钪元素的含量为0.3%-3%。
CN201711416197.7A 2017-12-25 2017-12-25 一种可降解的塑料膜 Pending CN107936417A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711416197.7A CN107936417A (zh) 2017-12-25 2017-12-25 一种可降解的塑料膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711416197.7A CN107936417A (zh) 2017-12-25 2017-12-25 一种可降解的塑料膜

Publications (1)

Publication Number Publication Date
CN107936417A true CN107936417A (zh) 2018-04-20

Family

ID=61939939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711416197.7A Pending CN107936417A (zh) 2017-12-25 2017-12-25 一种可降解的塑料膜

Country Status (1)

Country Link
CN (1) CN107936417A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082095A (zh) * 2018-06-21 2018-12-25 福建满山红新材料科技有限公司 一种用于包装的吸湿防潮塑料膜
CN114276600A (zh) * 2021-12-23 2022-04-05 南通宝加利新材料有限公司 一种可降解的pe膜制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181678A (zh) * 2007-10-26 2008-05-21 广东省生态环境与土壤研究所 一种稀土改性光催化剂及其制备的可降解塑料薄膜与制备方法
US20090056209A1 (en) * 2007-08-28 2009-03-05 Epi Environmental Technologies (Nevada) Inc. Biodegradable agricultural film
CN102352064A (zh) * 2011-07-06 2012-02-15 丁邦瑞 用于促进聚合物光氧化降解和生物降解的双降解添加剂
CN106987045A (zh) * 2017-05-18 2017-07-28 聂超 一种能引发多重降解的环保高分子新材料及其制备方法
CN107434867A (zh) * 2016-05-25 2017-12-05 鸿明环保科技股份有限公司 新型低碳可降解片材及其制品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056209A1 (en) * 2007-08-28 2009-03-05 Epi Environmental Technologies (Nevada) Inc. Biodegradable agricultural film
CN101181678A (zh) * 2007-10-26 2008-05-21 广东省生态环境与土壤研究所 一种稀土改性光催化剂及其制备的可降解塑料薄膜与制备方法
CN102352064A (zh) * 2011-07-06 2012-02-15 丁邦瑞 用于促进聚合物光氧化降解和生物降解的双降解添加剂
CN107434867A (zh) * 2016-05-25 2017-12-05 鸿明环保科技股份有限公司 新型低碳可降解片材及其制品
CN106987045A (zh) * 2017-05-18 2017-07-28 聂超 一种能引发多重降解的环保高分子新材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082095A (zh) * 2018-06-21 2018-12-25 福建满山红新材料科技有限公司 一种用于包装的吸湿防潮塑料膜
CN114276600A (zh) * 2021-12-23 2022-04-05 南通宝加利新材料有限公司 一种可降解的pe膜制备方法

Similar Documents

Publication Publication Date Title
Da Silva et al. Cassava starch‐based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals
CN112250899B (zh) 一种高气体阻隔性生物可降解的取向复合薄膜
CN107936417A (zh) 一种可降解的塑料膜
CN103374162A (zh) 增韧、增刚双功能填充母粒及其制备方法
CN104109362A (zh) 一种环保型果蔬包装用生物降解薄膜及其制备方法
Patni et al. An overview on the role of wheat gluten as a viable substitute for biodegradable plastics
CN104119594B (zh) 一种耐刮擦pe薄膜包装材料及其制备方法
GB2596033A (en) Biodegradable container
US20220275192A1 (en) Polyvinyl Alcohol-based Degradable Plastic, Preparation Method Therefor and Application Thereof, and Recycling Method Therefor
CN105949601A (zh) 一种食品用塑料包装袋
Li et al. Parameters characterizing the kinetics of the nonisothermal crystallization of thermoplastic starch/poly (lactic acid) composites as determined by differential scanning calorimetry
Syed et al. Investigation on physico-mechanical properties, water, thermal and chemical ageing of unsaturated polyester/turmeric spent composites
Mandal et al. Thermal degradation kinetics of oxo-degradable PP/PLA blends
Lin et al. The linear tearing properties of biaxially oriented PA6/MXD6 blending films
CN104927001A (zh) 一种高耐候型团状模塑料
CN102864689A (zh) 一种小麦蛋白质涂布食品包装纸及其制备方法
CN107474447A (zh) 一种用于饮品的包装材料及其制备方法
Guo et al. Effect of plasticizers on the properties of potato flour films
CN104403294A (zh) 一种可生物降解ppc与pbs多层阻隔膜及其制备方法
CN105602217A (zh) 一种环保高强度阻隔膜
CN104356471A (zh) 一种透明高分子包装材料
CN105623133A (zh) 双向拉伸聚苯乙烯组合物、制备方法及应用
Phupoksakul et al. Effect of storage temperature and time on stability of poly (lactide)–whey protein isolate laminated films
Konruang et al. Production of biodegradable plastics from sago fibers
CN211764024U (zh) 一种多层结构的pet发泡复合片材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420