CN107910398B - P型perc双面太阳电池的制作方法 - Google Patents

P型perc双面太阳电池的制作方法 Download PDF

Info

Publication number
CN107910398B
CN107910398B CN201710946553.XA CN201710946553A CN107910398B CN 107910398 B CN107910398 B CN 107910398B CN 201710946553 A CN201710946553 A CN 201710946553A CN 107910398 B CN107910398 B CN 107910398B
Authority
CN
China
Prior art keywords
aluminum
silicon wafer
solar cell
laser
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710946553.XA
Other languages
English (en)
Other versions
CN107910398A (zh
Inventor
樊华
吴俊清
李慧
俞超
徐强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huansheng Photovoltaic Jiangsu Co Ltd
Original Assignee
Huansheng Photovoltaic Jiangsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huansheng Photovoltaic Jiangsu Co Ltd filed Critical Huansheng Photovoltaic Jiangsu Co Ltd
Priority to CN201710946553.XA priority Critical patent/CN107910398B/zh
Publication of CN107910398A publication Critical patent/CN107910398A/zh
Application granted granted Critical
Publication of CN107910398B publication Critical patent/CN107910398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种P型PERC双面太阳电池的制作方法,其特征在于包括以下步骤:①晶硅表面制绒;②扩散;③去PSG和单晶抛光;④背面沉淀钝化膜;⑤正面沉积减反射膜;⑥背面激光刻划接触区;⑦背面印刷背电极和铝栅线;⑧正面印刷银栅线;⑨高温烧结。本发明对传统产线进行改造升级,实现太阳电池产品由单面太阳电池向双面太阳电池的转变,增加太阳电池的PN结面积,提高太阳光的利用率,增加太阳电池的闭路电流,达到提高效率的目的。双面PERC电池铝浆料用量约为单面PERC电池的20‑30%。

Description

P型PERC双面太阳电池的制作方法
技术领域
本发明公开了一种晶硅太阳电池的制作方法,具体涉及一种P型PERC双面太阳电池的制作方法。
背景技术
从现在太阳电池发展环境上来说,随着太阳电池的发展,设备折旧和效率提升是越来越多的生产企业必须关注的重点问题,在不改变现有设备或者经过设备改造的方法提高现有产线的效率、提高产能是企业生存发展的动力;设备的整合和再利用也是减少固定资产浪费、提高企业竞争的一种方法。
国家能源局推出的光伏“超级领跑者”计划,涉及到较多新型高效产品,其中包括双面电池组件。几乎每个光伏制造商都将双面电池/双面组件列在其战略计划之中,双面电池也是目前最简单也最具成本效益的电池,不仅双面具备光的转换利用且不需要增加额外工序。
发明内容
本发明的目的就是对传统产线进行改造升级,实现太阳电池产品由单面太阳电池向双面太阳电池的转变,增加太阳电池的PN结面积,提高太阳光的利用率,增加太阳电池的闭路电流,达到提高效率的目的。
技术方案:
一种P型PERC双面太阳电池的制作方法,包括以下步骤:
①晶硅表面制绒:选择P型硅片,对选择的P型硅片的双面在碱液下进行表面绒面化,然后在酸性条件下进行化学清洗,除去表面杂质;
②扩散:采用B、P共扩工艺,正面P扩散,背面B扩散,硅片两片为一组,每组硅片采用竖直背靠背的方式进行扩散,两片硅片背面之间***纸状固态源B源,正面采用通三氯氧磷的方式进行正面磷扩散;推进扩散炉在进行高温共扩散,使硅片的正面形成n+掺杂层,背面形成p+掺杂层;
③去PSG和单晶抛光:刻蚀工序清洗去除硅片表面残留的磷硅玻璃和单晶背面抛光;
④背面沉淀钝化膜:背面单面依次沉积氧化铝/氮化硅叠层膜;
⑤正面沉积减反射膜:正面沉积氮化硅减反射膜;
⑥背面激光刻划接触区:背面局部打开薄膜,背面激光图形设计:光斑直径:10-35μm,激光线的间距:500-700μm;
⑦背面印刷背电极和铝栅线,背面采用铝栅线设计,铝背场网版设计:铝栅线宽度:100-300μm,副栅根数:96-115根;
⑧正面印刷银栅线;
⑨高温烧结。
优选的,步骤⑥中,光斑直径为10μm,激光线的间距为500μm。
优选的,步骤⑥中,光斑直径为20μm,激光线的间距为600μm。
优选的,步骤⑥中,光斑直径为35μm,激光线的间距为700μm。
优选的,步骤⑦中,铝栅线宽度:100μm,副栅根数:96根。
优选的,步骤⑦中,铝栅线宽度:200μm,副栅根数:105根。
优选的,步骤⑦中,铝栅线宽度:300μm,副栅根数:115根。
具体的,步骤①中,化学清洗的具体步骤为:用质量分数为1.2±0.2%的氢氧化钠或氢氧化钾溶液在80±2℃下对P型硅片表面进行化学腐蚀,制备出金字塔形状的绒面,随后用质量分数为15±3%的氢氟酸进行清洗。
具体的,步骤②中,纸状固态源B源的厚度为1μm-100μm,三氯氧磷的流速为1000±200sccm。
具体的,步骤②中,高温共扩散工艺为840±30℃。
本发明的有益效果
本发明的有益效果为:本发明的一种P型PERC双面太阳电池的制作方法,对传统产线进行改造升级,实现太阳电池产品由单面太阳电池向双面太阳电池的转变,增加太阳电池的PN结面积,提高太阳光的利用率,增加太阳电池的闭路电流,达到提高效率的目的。双面PERC电池铝浆料用量约为单面PERC电池的20-30%。
更进一步的,本发明在扩散工艺中采用B、P共扩工艺,正面沉积n型扩散源,背面沉积P型扩散源,背面正面共掺杂工艺,高温扩散后形成N+pp+结构,一步到位即可形成完整的,减少的工序,节约了成本,提高了效率。
为了进一步保证步骤②中,纸状固态源扩散方式的均匀性,本发明对步骤①中制绒及清洗进行了具体的工艺限定,以保证清洗的洁净度。
附图说明
图1为本发明制作方法的流程示意图。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明的保护范围不限于此:
实施例1:
一种P型PERC双面太阳电池的制作方法,包括以下步骤:
①晶硅表面制绒:选择P型硅片,对选择的P型硅片的双面在碱液下进行表面绒面化,然后在酸性条件下进行化学清洗,除去表面杂质;
化学清洗的具体步骤为:用质量分数为1.0%的氢氧化钠或氢氧化钾溶液在78℃下对P型硅片表面进行化学腐蚀,制备出金字塔形状的绒面,随后用质量分数为12%的氢氟酸进行清洗。
②扩散:采用B、P共扩工艺,正面P扩散,背面B扩散,硅片两片为一组,每组硅片采用竖直背靠背的方式进行扩散,两片硅片背面之间***纸状固态源B源,正面采用通三氯氧磷的方式进行正面磷扩散;推进扩散炉在进行高温共扩散,使硅片的正面形成n+掺杂层,背面形成p+掺杂层;
纸状固态源B源的厚度为1μm,三氯氧磷的流速为800sccm。
高温共扩散工艺为810℃。
③去PSG和单晶抛光:刻蚀工序清洗去除硅片表面残留的磷硅玻璃和单晶背面抛光;
④背面沉淀钝化膜:背面单面依次沉积氧化铝/氮化硅叠层膜;
⑤正面沉积减反射膜:正面沉积氮化硅减反射膜;
⑥背面激光刻划接触区:背面局部打开薄膜,背面激光图形设计:光斑直径:10μm,激光线的间距:500μm;
⑦背面印刷背电极和铝栅线,背面采用铝栅线设计,铝背场网版设计:铝栅线宽度:100μm,副栅根数:96根;
⑧正面印刷银栅线;
⑨高温烧结。
实施例2:
一种P型PERC双面太阳电池的制作方法,包括以下步骤:
①晶硅表面制绒:选择P型硅片,对选择的P型硅片的双面在碱液下进行表面绒面化,然后在酸性条件下进行化学清洗,除去表面杂质;
化学清洗的具体步骤为:用质量分数为1.2%的氢氧化钠或氢氧化钾溶液在80℃下对P型硅片表面进行化学腐蚀,制备出金字塔形状的绒面,随后用质量分数为15%的氢氟酸进行清洗。
②扩散:采用B、P共扩工艺,正面P扩散,背面B扩散,硅片两片为一组,每组硅片采用竖直背靠背的方式进行扩散,两片硅片背面之间***纸状固态源B源,正面采用通三氯氧磷的方式进行正面磷扩散;推进扩散炉在进行高温共扩散,使硅片的正面形成n+掺杂层,背面形成p+掺杂层;
纸状固态源B源的厚度为50μm,三氯氧磷的流速为1000sccm。
高温共扩散工艺为840℃。
③去PSG和单晶抛光:刻蚀工序清洗去除硅片表面残留的磷硅玻璃和单晶背面抛光;
④背面沉淀钝化膜:背面单面依次沉积氧化铝/氮化硅叠层膜;
⑤正面沉积减反射膜:正面沉积氮化硅减反射膜;
⑥背面激光刻划接触区:背面局部打开薄膜,背面激光图形设计:光斑直径:20μm,激光线的间距:600μm;
⑦背面印刷背电极和铝栅线,背面采用铝栅线设计,铝背场网版设计:铝栅线宽度:200μm,副栅根数:105根;
⑧正面印刷银栅线;
⑨高温烧结。
实施例3:
一种P型PERC双面太阳电池的制作方法,包括以下步骤:
①晶硅表面制绒:选择P型硅片,对选择的P型硅片的双面在碱液下进行表面绒面化,然后在酸性条件下进行化学清洗,除去表面杂质;
化学清洗的具体步骤为:用质量分数为1.4%的氢氧化钠或氢氧化钾溶液在82℃下对P型硅片表面进行化学腐蚀,制备出金字塔形状的绒面,随后用质量分数为18%的氢氟酸进行清洗。
②扩散:采用B、P共扩工艺,正面P扩散,背面B扩散,硅片两片为一组,每组硅片采用竖直背靠背的方式进行扩散,两片硅片背面之间***纸状固态源B源,正面采用通三氯氧磷的方式进行正面磷扩散;推进扩散炉在进行高温共扩散,使硅片的正面形成n+掺杂层,背面形成p+掺杂层;
纸状固态源B源的厚度为100μm,三氯氧磷的流速为1200sccm。
高温共扩散工艺为870℃。
③去PSG和单晶抛光:刻蚀工序清洗去除硅片表面残留的磷硅玻璃和单晶背面抛光;
④背面沉淀钝化膜:背面单面依次沉积氧化铝/氮化硅叠层膜;
⑤正面沉积减反射膜:正面沉积氮化硅减反射膜;
⑥背面激光刻划接触区:背面局部打开薄膜,背面激光图形设计:光斑直径:35μm,激光线的间距:700μm;
⑦背面印刷背电极和铝栅线,背面采用铝栅线设计,铝背场网版设计:铝栅线宽度:300μm,副栅根数:115根;
⑧正面印刷银栅线;
⑨高温烧结。
采用上述实施例方法制备P型PERC双面太阳电池,实现了太阳电池产品由单面太阳电池向双面太阳电池的转变,增加太阳电池的PN结面积,提高太阳光的利用率,增加太阳电池的闭路电流,达到提高效率的目的。双面PERC电池铝浆料用量约为单面PERC电池的20-30%。
本文中所描述的具体实施例仅仅是对本发明精神做举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (7)

1.一种P型PERC双面太阳电池的制作方法,其特征在于包括以下步骤:
①晶硅表面制绒:选择P型硅片,对选择的P型硅片的双面在碱液下进行表面绒面化,然后在酸性条件下进行化学清洗,除去表面杂质;化学清洗的具体步骤为:用质量分数为1.2±0.2%的氢氧化钠或氢氧化钾溶液在80±2℃下对P型硅片表面进行化学腐蚀,制备出金字塔形状的绒面,随后用质量分数为15±3%的氢氟酸进行清洗;
②扩散:采用B、P共扩工艺,正面P扩散,背面B扩散,硅片两片为一组,每组硅片采用竖直背靠背的方式进行扩散,两片硅片背面之间***纸状固态源B源,正面采用通三氯氧磷的方式进行正面磷扩散;推进扩散炉在进行高温共扩散,使硅片的正面形成n+掺杂层,背面形成p+掺杂层;纸状固态源B源的厚度为1μm-100μm,三氯氧磷的流速为1000±200sccm;高温共扩散工艺为840±30℃;
③去PSG和单晶抛光:刻蚀工序清洗去除硅片表面残留的磷硅玻璃和单晶背面抛光;
④背面沉淀钝化膜:背面单面依次沉积氧化铝/氮化硅叠层膜;
⑤正面沉积减反射膜:正面沉积氮化硅减反射膜;
⑥背面激光刻划接触区:背面局部打开薄膜,背面激光图形设计:光斑直径:10-35μm,激光线的间距:500-700μm;
⑦背面印刷背电极和铝栅线,背面采用铝栅线设计,铝背场网版设计:铝栅线宽度:100-300μm,副栅根数:96-115根;
⑧正面印刷银栅线;
⑨高温烧结。
2.根据权利要求1所述的制作方法,其特征在于步骤⑥中,光斑直径为10μm,激光线的间距为500μm。
3.根据权利要求1所述的制作方法,其特征在于步骤⑥中,光斑直径为20μm,激光线的间距为600μm。
4.根据权利要求1所述的制作方法,其特征在于步骤⑥中,光斑直径为35μm,激光线的间距为700μm。
5.根据权利要求1所述的制作方法,其特征在于步骤⑦中,铝栅线宽度:100μm,副栅根数:96根。
6.根据权利要求1所述的制作方法,其特征在于步骤⑦中,铝栅线宽度:200μm,副栅根数:105根。
7.根据权利要求1所述的制作方法,其特征在于步骤⑦中,铝栅线宽度:300μm,副栅根数:115根。
CN201710946553.XA 2017-10-12 2017-10-12 P型perc双面太阳电池的制作方法 Active CN107910398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710946553.XA CN107910398B (zh) 2017-10-12 2017-10-12 P型perc双面太阳电池的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710946553.XA CN107910398B (zh) 2017-10-12 2017-10-12 P型perc双面太阳电池的制作方法

Publications (2)

Publication Number Publication Date
CN107910398A CN107910398A (zh) 2018-04-13
CN107910398B true CN107910398B (zh) 2020-08-04

Family

ID=61840460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710946553.XA Active CN107910398B (zh) 2017-10-12 2017-10-12 P型perc双面太阳电池的制作方法

Country Status (1)

Country Link
CN (1) CN107910398B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444610A (zh) * 2019-07-08 2019-11-12 江苏润阳悦达光伏科技有限公司 正面氮氧化硅太阳电池的制作工艺
CN113421947A (zh) * 2021-06-21 2021-09-21 苏州潞能能源科技有限公司 双面太阳能电池制作工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100275995A1 (en) * 2009-05-01 2010-11-04 Calisolar, Inc. Bifacial solar cells with back surface reflector
WO2012036760A1 (en) * 2010-09-16 2012-03-22 Specmat, Inc. Method, process and fabrication technology for high-efficency low-cost crytalline silicon solar cells
CN102263159A (zh) * 2011-05-31 2011-11-30 江阴鑫辉太阳能有限公司 一种利用硼磷共扩散制备n型太阳电池的工艺
CN103996744A (zh) * 2014-05-23 2014-08-20 奥特斯维能源(太仓)有限公司 采用新型掺杂方式的pert晶体硅太阳电池的制作方法
CN105428450B (zh) * 2015-12-16 2018-01-19 晋能清洁能源科技有限公司 Perc晶体硅太阳能电池生产中的碱抛光方法
CN106449876B (zh) * 2016-10-17 2017-11-10 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Also Published As

Publication number Publication date
CN107910398A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN102169923B (zh) 钝化n型硅太阳能电池的p型掺杂层的方法及电池结构
AU2015101917A4 (en) High-efficiency N-type bifacial solar cell
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
CN102623517B (zh) 一种背接触型晶体硅太阳能电池及其制作方法
US9537037B2 (en) Wet etching method for an N-type bifacial cell
TWI536597B (zh) A low cost, suitable for mass production of back contact with the battery production methods
CN108172658B (zh) 一种n型异质结双面太阳能电池的制备方法
CN102683493A (zh) N型晶体硅双面背接触太阳电池的制备方法
CN102623563B (zh) 一种双面受光型晶体硅太阳电池的制备方法
CN104157740B (zh) 一种n型双面太阳能电池的制备方法
CN112820793A (zh) 太阳能电池及其制备方法
CN103646992A (zh) 一种p型晶体硅双面电池的制备方法
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
JPWO2014174613A1 (ja) 太陽電池の製造方法
CN107910398B (zh) P型perc双面太阳电池的制作方法
CN108538958B (zh) 一种n型ibc电池及其制备方法
CN207967020U (zh) 一种n型异质结双面太阳能电池结构
CN108682701B (zh) 太阳能电池及其制作工艺
CN103151398A (zh) 异质结电池及其制作方法
CN102522453B (zh) 一种场效应晶体硅太阳能电池的制作方法
TWI415272B (zh) 太陽能電池背面點接觸的製造方法
CN103943693A (zh) 一种p型硅衬底背面接触式太阳电池结构和制备方法
CN205231078U (zh) 全背极太阳电池结构
CN204332984U (zh) 太阳能光伏组件
CN113013293A (zh) 一种异质结电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 214203 No. 20 Wen Zhuang Road, Yixing Economic Development Zone, Jiangsu, Wuxi

Applicant after: Huansheng photovoltaic (Jiangsu) Co., Ltd

Address before: 214203 No. 20 Wen Zhuang Road, Yixing Economic Development Zone, Jiangsu, Wuxi

Applicant before: DZS SOLAR (JIANGSU) Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant