CN107849980B - 具有防冰阀总成的涡轮发动机、放气阀和操作方法 - Google Patents

具有防冰阀总成的涡轮发动机、放气阀和操作方法 Download PDF

Info

Publication number
CN107849980B
CN107849980B CN201680045083.3A CN201680045083A CN107849980B CN 107849980 B CN107849980 B CN 107849980B CN 201680045083 A CN201680045083 A CN 201680045083A CN 107849980 B CN107849980 B CN 107849980B
Authority
CN
China
Prior art keywords
air
muscle
housing
heat exchanger
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680045083.3A
Other languages
English (en)
Other versions
CN107849980A (zh
Inventor
M.T.奥图尔
K.H.科亚茨
M.R.沃克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Aviation Systems LLC
Original Assignee
GE Aviation Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Aviation Systems LLC filed Critical GE Aviation Systems LLC
Publication of CN107849980A publication Critical patent/CN107849980A/zh
Application granted granted Critical
Publication of CN107849980B publication Critical patent/CN107849980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/02De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
    • B64D15/04Hot gas application
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/02De-icing means for engines having icing phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0233Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising de-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/57Kinematic linkage, i.e. transmission of position using servos, independent actuators, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明提供一种防冰阀、包括防冰阀总成的涡轮发动机和操作防冰阀的方法,其中防冰阀具有壳体和被配置成控制通过所述壳体的热放气流的阀元件、和延伸穿过所述壳体的肌空气通道、延伸穿过所述壳体的冷却空气通道以及位于所述壳体内且具有与所述肌空气通道和所述冷却空气通道热连通的传热表面的换热器。

Description

具有防冰阀总成的涡轮发动机、放气阀和操作方法
背景技术
燃气涡轮发动机通常包括将空气输送到界定于机舱内的旁路管道中并且还输送到发动机核心中的风扇。发动机核心中的空气通过压缩机区段,且接着到燃烧区段中。在燃烧区段中,将空气与燃料混合且点燃,且此燃烧的产物通过涡轮转子向下游传递。
例如发动机入口、机翼、控制表面、螺旋桨、助推器入口轮叶、入口框架等飞机结构上冰的形成为现代飞机的问题。冰添加重量,增大拖曳且更改翼型、控制表面和入口的空气动力轮廓,所有这些均降低性能且因此增大燃气涡轮发动机的燃料消耗。另外,经准许在飞机结构上形成的冰可移开且影响其它飞机部分和发动机部件,从而引起损坏。
现代飞机可包括从飞机的发动机获取热气以供在飞机内使用的***;例如机舱防冰***可使用来自发动机的热气加热机舱入口的部分。机舱防冰***通常从压缩机区段引出热气且选择性地将其输送到机舱的入口以在机舱的唇缘处提供防冰。选择性地执行此防冰功能且当情况指示在机舱的唇缘处可存在结冰时,可打开阀以将热气输送到所述位置。
发明内容
一方面,本发明的实施例涉及放气阀总成,其包括:具有壳体和被配置成控制通过所述壳体的热放气流的阀元件的放气阀;和延伸穿过所述壳体的肌空气通道(muscle airpassage);延伸穿过所述壳体的冷却空气通道;和位于所述壳体内且具有与所述肌空气通道和所述冷却空气通道热连通的传热表面的换热器,且其中通过所述传热表面将热从肌空气通道内的肌空气(muscle air)传输到冷却空气通道内的冷却空气以实现肌空气的冷却且界定较低温度肌空气流。
另一方面,本发明的实施例涉及燃气涡轮发动机,其包括:具有包括风扇总成、压缩机区段、燃烧区段和涡轮区段的内部壳体的发动机核心;被配置成将压缩空气从发动机核心引到机舱的一部分以界定热放气流的机舱防冰***;和防冰阀总成,所述防冰阀总成包括界定流动路径的阀元件壳体、安置在所述流动路径中被配置成控制到所述机舱的热放气流的阀元件、和伺服控制器,所述伺服控制器包括伺服壳体、延伸穿过所述壳体且流体连接到热放气流的肌空气通道、延伸穿过所述壳体的冷却空气通道和位于所述伺服壳体内且具有与肌空气通道和冷却空气通道热连通的传热表面的换热器,且其中通过所述传热表面将热从肌空气通道内的肌空气传输到冷却空气通道内的冷却空气以实现肌空气的冷却且界定较低温度肌空气流。
又一方面,本发明的实施例涉及操作防冰阀的方法,包括:将热压缩空气流供应到防冰阀;分流所述热压缩空气流的一部分以形成肌空气流;且使所述肌空气流传递通过位于防冰阀的伺服壳体内且具有带密集散热片的表面的紧凑换热器,同时将冷却空气供应到与肌空气流流体分离的紧凑换热器的一部分以从所述肌空气流提取热从而界定经冷却肌空气流。
附图说明
在附图中:
图1为具有多个涡轮发动机总成的飞机的侧视图。
图2为可包括在图1的飞机中的涡轮发动机总成的示意性部分剖视图。
图3为根据本发明的实施例的具有机舱防冰***的图2的发动机总成的外部的示意图。
图4为可包括在图3的***中的防冰阀的一部分的透视图。
图5为说明防冰阀内的换热器的图4的防冰阀的所述部分的部分剖视透视图。
图6为展示根据本发明的实施例的操作防冰阀的方法的流程图。
具体实施方式
本发明的实施例涉及放气阀和并入有呈机舱防冰(NAI)阀形式的放气阀的燃气涡轮发动机,所述机舱防冰阀包括集成在所述阀结构内以冷却呈供应到所述阀的肌空气形式的经提取热放气的换热器。虽然本说明书的剩余部分论述关于防冰阀的创造性的实施例,但应了解,本发明的实施例可用于利用高温肌空气的任何放气阀总成中。肌空气为提供到防冰阀以在防冰阀内提供内部功能的放气流的一部分。此肌空气在被引入到防冰阀中之前必须明显经冷却,由于其可在高达1000°F的温度下供应。在此类高温下供应肌空气可导致对防冰阀的包括但不限于O形环、包括弹性密封件的密封件、隔膜等内部部件的不合需要的加热,此将导致对此类内部部件的损坏。
应了解,术语“防冰”指代首先防止冰的形成,而术语“除冰”指代在冰已开始形成之后使冰减小或消除。应了解,虽然通篇一致地使用术语“防冰”,但本发明的实施例并非限于此,而是也适用于“除冰”***。
图1说明具有机身4的飞机2,其中机翼总成6从机身4向外延伸。因此,一个或多个涡轮发动机总成8可连接到飞机2以提供推进力。虽然已说明商用飞机2,但预期到,本发明的实施例可用于任何类型的飞机中,例如但不限于私人飞机、商务飞机和军用飞机。
如在图2中更清楚地说明,每一涡轮发动机总成8可包括涡轮发动机16、风扇总成18和机舱20。涡轮发动机16包括具有压缩机24、燃烧区段26、涡轮区段28和排气装置30的发动机核心22,压缩机24可包括低压和高压压缩机两者。内部壳体或内部机罩32径向环绕发动机核心22。
已出于清楚起见而切除机舱20的各部分。机舱20环绕包括内部机罩32的涡轮发动机16。以此方式,机舱20形成径向环绕内部机罩32的外部机罩34。外部机罩34与内部机罩32间隔开以在内部机罩32与外部机罩34之间形成环形通道36。环形通道36表征、形成或以其它方式界定喷嘴和大体上前后旁路气流路径。
外部机罩34具有入口或前向部分40。在一些飞行情况期间,水滴通常冲射于前向部分40上。如图3中示意性地说明,NAI总成或NAI***42可包括在涡轮发动机总成8中且可被配置成抑制水滴形成冰。更具体地说,NAI***42可将热气引导到通常被水滴冲射的前向部分40。虽然已说明NAI阀和***,但预期到本发明的实施例可在任何类型的防冰阀中使用。
作为实例,套管44可包括在NAI***42中且连接到涡轮发动机总成8的一部分以从涡轮发动机总成8的发动机核心22(图2)提取热压缩空气的一部分。此热压缩空气通常被称为放气。所述放气可从发动机核心22的任何合适部分处的放气端口46获取、接收或以其它方式引出,任何合适部分包括但不限于压缩机区段24(图2)中的一个或涡轮区段28(图2)中的一个。套管44将热气分流到前向部分40的合适的部分以防止前向部分40形成冰。喷嘴48可包括在前向部分40处以将热气引导到前向部分40的任何合适的部分。
防冰阀总成50可以可操作方式连接到套管44,包括通过任选的分支45,使得NAI阀总成50可控制到前向部分40的热放气流。用于放气的流动路径52延伸穿过防冰阀54的主体。更具体地说,流动路径52从放气入口60到放气出口62延伸穿过防冰阀54的壳体58。
NAI阀总成50被配置成从发动机核心22接收高温经加压放气,之后用于防冰。通常,防冰阀54并非始终保持打开,由于始终保持打开会降低涡轮发动机总成8的效率。阀元件56安置在流动路径52中以控制待供应到前向部分40的放气流。阀元件56可以可操作方式连接到控制阀元件56且调节通过流动路径52的放气的压力的气动伺服控制器64。作为非限制性实例,通过气动伺服控制器64以气动方式操作的阀致动器66可以可操作方式连接到阀元件56以控制其操作且调节通过流动路径52的放气。以此方式,防冰阀54和其对应气动伺服控制器64两者均包括在NAI阀总成50中。防冰阀54与气动伺服控制器64可彼此间隔开预定距离,包括但不限于其可通过任选的屏障68彼此分离。或者,阀致动器66可电操作。
气动伺服控制器64从与流动路径52连通的或与流动路径52上游的套管44连通的一个或多个管或套管55接收放气的一部分。气动伺服控制器64可尤其包括界定腔72且具有流体连接到套管55的肌空气入口74和提供肌空气的肌空气出口76以控制防冰阀54的操作的伺服壳体70。肌空气通道82界定于肌空气入口74与肌空气出口76之间。应了解,肌空气通道82可以任何合适方式形成,包括但不限于肌空气通道82可包括伺服壳体70的流体独立部分或可包括一个或多个结构通道。无论形成的方式如何,肌空气通道82形成供肌空气传递通过的肌空气线路。
冷却空气通道84从冷却空气入口86到冷却空气出口88延伸穿过伺服壳体70。应了解,冷却空气通道84可以任何合适方式形成,包括但不限于冷却空气通道84可仅包括伺服壳体70的流体独立部分或可包括一个或多个结构通道。无论形成的方式如何,冷却空气通道84形成供冷却空气传递通过的冷却空气线路。可从包括涡轮发动机总成8的风扇总成外的冷却管道的任何合适的气流获得所述冷却空气。可在任何合适的温度下提供所述冷却空气,所述温度包括但不限于低于机舱20中的环境空气的温度。冷却空气与热肌空气之间的温度差提供必需热力学势以允许在两个流体之间发生传热。冷却剂温度越低,所实现的冷却过程有效性越高。
另外,气动伺服控制器64可包括被配置成控制NAI阀总成50的剩余部分的调节的部分。此类部分在本文中将并不进一步描述,这是由于气动伺服控制器64可以任何合适方式操作,包括可基于NAI阀总成50内的压力而允许或限制热放气通过流动路径52的传递。
在肌空气入口74处所接收的肌空气可处于高达1000°F的温度,这可对NAI阀总成50的剩余部分有害。参考图4,紧凑换热器80可包括于伺服壳体70的腔72内且可具有传热表面90(图5)。换热器80可被配置成冷却换热器80内的肌空气流,这通过如肌空气通道82的箭头示意性地说明。虽然肌空气通道82与冷却空气通道84流体分离,但传热表面90(图5)可与肌空气通道82和冷却空气通道84两者热连通。以此方式,可通过传热表面90将热从肌空气通道82内的肌空气传输到冷却空气通道84内的冷却空气。以此方式经由对流和传导来传输热。
以此方式,具有传热表面90的换热器80位于NAI阀总成50的一部分内。应了解,取决于所要热性能和可允许的压降,可在NAI阀总成50内利用各种合适的换热器。作为非限制性实例,图5中的换热器80被说明为具有带密集散热片的表面的紧凑换热器。应了解,肌空气通道82和冷却空气通道84可为通过传热表面90分隔开的所述壳体内部的不同部分。或者,一系列内部流道92形成换热器80的传热表面90且界定肌空气通道82和冷却空气通道84两者。应了解,虽然换热器80已描述为包括带密集散热片的表面,但此并非必需的。在利用散热片的情况下,所述散热片可以任何合适方式塑形或形成,包括但不限于可利用平面折叠散热片、锯齿形(lanced)折叠散热片或人字形散热片设计。应了解,包括但不限于散热片间距、壁厚度和通道高度的经延伸表面的形状、大小、形成等可经改变以获得所要冷却和压降性能。另外,换热器80可为多通换热器,其中冷却流体和肌空气中的任一个或两者可具有两个或多于两个通道以实现所要对流性能和压降约束。
预期换热器80可形成为通过增材制造方法制造的单件式部件。作为非限制性实例,增材制造方法可包括3D打印。在此情况下,还预期换热器80可与伺服壳体70一体地形成。或者,换热器80可利用常规方法形成,包括但不限于钎焊或焊接,且换热器80可以任何合适方式安装或定向在伺服壳体70内。换热器80可由任何合适的材料形成,包括但不限于不锈钢。
在操作期间,可将热压缩空气流供应到防冰阀54以供选择性输送到机舱20的前向部分40。可在防冰阀54的上游分流热压缩空气流的一部分以形成肌空气流。可经由肌空气入口74将此肌空气引入到伺服壳体70中。肌空气流可通过换热器80。冷却空气也流动通过换热器80以从肌空气流提取热。更具体地说,传递通过冷却空气通道84的冷却空气流提供经由传热表面90从循环肌空气82到冷却空气通道84中的空气流的对流传热以形成较低温度肌空气流。经冷却肌空气流可接着提供到防冰阀54的任何合适的部分以控制其操作。举例来说,经冷却肌空气可从伺服控制器64(图3)提供到阀致动器66(图3)以控制阀元件56(图3)的操作。
以此方式,先前描述的防冰阀总成50可用以实施本发明的方法的一个或多个实施例。举例来说,图6说明操作例如防冰阀54的防冰阀的方法100的流程图。方法100在102处通过将热压缩空气流供应到防冰阀而开始;在104处分流热压缩空气流的一部分以形成肌空气流;且在106处使所述肌空气流传递通过位于防冰阀的伺服壳体内具有带密集散热片的表面的紧凑换热器,同时将冷却空气供应到与肌空气流流体分离的紧凑换热器的一部分以从所述肌空气流提取热从而界定经冷却肌空气流。所描绘的顺序仅用于说明性目的,而并非意图以任何方式限制方法100,应了解,在不偏离本发明的实施例的情况下,方法的各部分可以不同逻辑次序继续进行,可包括额外或介入部分,或所描述的方法的部分可划分成多个部分。举例来说,可在额外步骤中利用经冷却肌空气流以操作防冰阀的一部分。
上述实施例提供各种益处,包括,可提供具有整体换热器的阀总成,且换热器在放气阀内可最接近于使用点且在第一部件之前。当并不需要额外外部冷却装置时,上述实施例提供肌空气冷却。通过在所述阀内提供冷却功能,可获得***重量和封装体积的改进。通过降低肌空气温度,可提高密封件、隔膜和其它内部部件的使用寿命。通过确保这些内部部件的功能性,将改进阀可靠性和部件使用寿命。上述实施例还可导致成本降低,由于购买独立换热器的需要将消除。另一益处为通过排除多个部分和总成而降低总体阀复杂度,此产生***简化和改进功能性以及简化设备。
本书面描述使用实例来公开本发明,包括最佳模式,并且还使所属领域的技术人员能够实践本发明,包括制造和使用任何装置或***以及执行任何并入的方法。本发明的可获专利的范围由权利要求书界定,并且可以包括所属领域的技术人员所想到的其它实例。如果此类其它实例具有与权利要求书的字面语言没有不同的结构元件,或者如果它们包括与权利要求书的字面语言无实质差别的等同结构元件,那么此类其它实例既定在权利要求书的范围内。

Claims (20)

1.一种放气阀总成,包括:
放气阀,其具有壳体和被配置成控制通过所述壳体的热放气流的阀元件;
肌空气通道,其延伸穿过所述壳体;
冷却空气通道,其延伸穿过所述壳体;和
换热器,其位于所述壳体内且具有与所述肌空气通道和所述冷却空气通道热交换的传热表面,其中通过所述传热表面将热从所述肌空气通道内的肌空气传输到所述冷却空气通道中的冷却空气,以实现所述肌空气的冷却且界定较低温度肌空气流,
其中经冷却的肌空气能够提供到所述放气阀的任何合适的部分以控制其操作。
2.根据权利要求1所述的放气阀总成,其特征在于:所述肌空气通道包括形成肌空气回路的多个通道且所述冷却空气通道包括形成冷却空气回路的多个通道。
3.根据权利要求1所述的放气阀总成,其特征在于:所述壳体包括伺服壳体和独立的阀元件壳体。
4.根据权利要求3所述的放气阀总成,其特征在于:所述伺服壳体界定容纳所述换热器的腔。
5.根据权利要求4所述的放气阀总成,其特征在于:所述换热器与所述伺服壳体一体地形成。
6.根据权利要求4所述的放气阀总成,其特征在于:所述伺服壳体和阀元件壳体相互间隔开。
7.根据权利要求4所述的放气阀总成,其特征在于:进一步包括将所述伺服壳体流体连接到所述阀元件壳体的肌空气出口,使得较低温度肌放气通过所述肌空气出口提供到所述阀元件壳体。
8.根据权利要求1所述的放气阀总成,其特征在于:所述换热器为多通换热器。
9.根据权利要求1所述的放气阀总成,其特征在于:所述换热器为具有带密集散热片的表面的紧凑换热器。
10.一种燃气涡轮发动机,包括:
发动机核心,其具有包括风扇总成、压缩机区段、燃烧区段和涡轮区段的内部壳体;
机舱防冰***,其被配置成将压缩空气从所述发动机核心分流到所述机舱的一部分以界定热放气流;和
防冰阀总成,包括:
阀元件壳体,其界定流动路径;
阀元件,其安置在所述流动路径中且被配置成控制到所述机舱的所述热放气流;和
伺服控制器,包括:
伺服壳体;
肌空气通道,其延伸穿过所述伺服壳体且流体连接到所述热放气流;
冷却空气通道,其延伸穿过所述伺服壳体;以及
换热器,其位于所述伺服壳体内且具有与所述肌空气通道和所述冷却空气通道热交换的传热表面,且其中通过所述传热表面将热从所述肌空气通道内的肌空气传输到所述冷却空气通道中的冷却空气,以实现所述肌空气的冷却且界定较低温度肌空气流,
其中经冷却的肌空气能够提供到防冰阀的任何合适的部分以控制其操作。
11.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述肌空气通道包括形成肌空气回路的多个通道且所述冷却空气通道包括形成冷却空气回路的多个通道。
12.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述换热器与所述伺服壳体一体地形成。
13.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述伺服壳体和阀元件壳体相互间隔开。
14.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述换热器为多通换热器。
15.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述换热器为具有带密集散热片的表面的紧凑换热器。
16.根据权利要求10所述的燃气涡轮发动机,其特征在于:所述冷却空气通道流体连接到所述发动机核心的所述风扇总成。
17.根据权利要求10所述的燃气涡轮发动机,其特征在于:从所述发动机核心的所述涡轮区段分流出所述压缩空气。
18.一种操作防冰阀的方法,所述方法包括:
将热压缩空气流供应到所述防冰阀;
分流所述热压缩空气流的一部分以形成肌空气流;和
使所述肌空气流传递通过位于所述防冰阀的伺服壳体内的具有带密集散热片的表面的紧凑换热器,同时将冷却空气供应到与所述肌空气流流体分离的所述紧凑换热器的一部分以从所述肌空气流提取热,从而界定经冷却肌空气流,
其中经冷却的肌空气能够提供到所述防冰阀的任何合适的部分以控制其操作。
19.根据权利要求18所述的方法,其特征在于:进一步包括利用所述经冷却肌空气流操作所述防冰阀的一部分。
20.根据权利要求18所述的方法,其特征在于:分流所述热压缩空气流的所述部分包括分流所述防冰阀上游的所述部分。
CN201680045083.3A 2015-07-31 2016-07-21 具有防冰阀总成的涡轮发动机、放气阀和操作方法 Active CN107849980B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/814,656 US10100733B2 (en) 2015-07-31 2015-07-31 Turbine engine with anti-ice valve assembly, bleed air valve, and method of operating
US14/814656 2015-07-31
PCT/US2016/043244 WO2017023559A1 (en) 2015-07-31 2016-07-21 Turbine engine with anti-ice assembly, bleed air valve, and method of operating

Publications (2)

Publication Number Publication Date
CN107849980A CN107849980A (zh) 2018-03-27
CN107849980B true CN107849980B (zh) 2020-12-04

Family

ID=56682248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680045083.3A Active CN107849980B (zh) 2015-07-31 2016-07-21 具有防冰阀总成的涡轮发动机、放气阀和操作方法

Country Status (3)

Country Link
US (1) US10100733B2 (zh)
CN (1) CN107849980B (zh)
WO (1) WO2017023559A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007738B1 (fr) * 2013-06-28 2015-07-31 Aircelle Sa Dispositif de degivrage et de conditionnement pour aeronef
US10436064B2 (en) 2016-02-12 2019-10-08 United Technologies Corporation Bowed rotor start response damping system
US10125636B2 (en) 2016-02-12 2018-11-13 United Technologies Corporation Bowed rotor prevention system using waste heat
US10508601B2 (en) 2016-02-12 2019-12-17 United Technologies Corporation Auxiliary drive bowed rotor prevention system for a gas turbine engine
US10174678B2 (en) 2016-02-12 2019-01-08 United Technologies Corporation Bowed rotor start using direct temperature measurement
US10508567B2 (en) 2016-02-12 2019-12-17 United Technologies Corporation Auxiliary drive bowed rotor prevention system for a gas turbine engine through an engine accessory
US10443507B2 (en) 2016-02-12 2019-10-15 United Technologies Corporation Gas turbine engine bowed rotor avoidance system
US10539079B2 (en) 2016-02-12 2020-01-21 United Technologies Corporation Bowed rotor start mitigation in a gas turbine engine using aircraft-derived parameters
US10443505B2 (en) 2016-02-12 2019-10-15 United Technologies Corporation Bowed rotor start mitigation in a gas turbine engine
US9664070B1 (en) 2016-02-12 2017-05-30 United Technologies Corporation Bowed rotor prevention system
US10125691B2 (en) 2016-02-12 2018-11-13 United Technologies Corporation Bowed rotor start using a variable position starter valve
US10040577B2 (en) * 2016-02-12 2018-08-07 United Technologies Corporation Modified start sequence of a gas turbine engine
US10358936B2 (en) 2016-07-05 2019-07-23 United Technologies Corporation Bowed rotor sensor system
EP3587876B1 (en) 2018-06-22 2022-03-02 Microtecnica S.r.l. Pressure regulating shut-off valve, piston therefor and corresponding methods of manufacturing
FR3096410B1 (fr) * 2019-05-21 2021-04-30 Liebherr Aerospace Toulouse Sas Régulateur poreux à ventilation intégrée
US11486315B2 (en) 2020-11-06 2022-11-01 Ge Aviation Systems Llc Combustion engine including turbomachine
US20220145796A1 (en) * 2020-11-06 2022-05-12 Ge Aviation Systems Llc Combustion engine including turbomachine
US11788465B2 (en) 2022-01-19 2023-10-17 General Electric Company Bleed flow assembly for a gas turbine engine
US11808281B2 (en) 2022-03-04 2023-11-07 General Electric Company Gas turbine engine with variable pitch inlet pre-swirl features

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093794A (zh) * 1992-08-14 1994-10-19 罗基研究公司 为了得到高反应率改进的方法和装置
CN101272951A (zh) * 2005-09-26 2008-09-24 法国空中巴士公司 提供有预冷却器的双流涡轮发动机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647366A (en) * 1946-06-24 1953-08-04 William J Mccann Means for preventing ice formation in jet propulsion and gas turbine engines
US3834157A (en) * 1973-02-05 1974-09-10 Avco Corp Spinner de-icing for gas turbine engines
US3981466A (en) * 1974-12-23 1976-09-21 The Boeing Company Integrated thermal anti-icing and environmental control system
US5083423A (en) * 1989-01-11 1992-01-28 Stewart & Stevenson Services, Inc. Apparatus and method for optimizing the air inlet temperature of gas turbines
US5267608A (en) * 1992-07-27 1993-12-07 General Electric Company Heat exchanger and reactor for aircraft and propulsion systems
FR2774357B1 (fr) 1998-02-05 2000-04-07 Aerospatiale Systeme d'alimentation en air chaud pour aeronef
EP2243541B1 (en) * 2006-09-08 2012-12-05 Parker Hannifin Manufacturing Netherlands (Filtration and Separation) B.V. Sytem for aircraft air treatment comprising an ozone conversion means
US20090078828A1 (en) * 2007-09-25 2009-03-26 Honeywell International, Inc. Anti-ice valve components and methods of coupling a valve assembly to a servo controller of anti-ice valve components
US7959109B2 (en) 2008-07-02 2011-06-14 The Boeing Company Dual valve apparatus for aircraft engine ice protection and related methods
US9114877B2 (en) 2010-08-30 2015-08-25 Ge Aviation Systems, Llc Method and system for vehicle thermal management
US8661833B2 (en) * 2011-01-14 2014-03-04 Hamilton Sundstrand Corporation Bleed valve module
US9657844B2 (en) * 2011-09-14 2017-05-23 Honeywell International Inc. High temperature aluminum valve components
US9879599B2 (en) 2012-09-27 2018-01-30 United Technologies Corporation Nacelle anti-ice valve utilized as compressor stability bleed valve during starting
US20140230869A1 (en) * 2013-02-19 2014-08-21 Gmz Energy, Inc. Self-Powered Boiler Using Thermoelectric Generator
US10100729B2 (en) * 2015-01-19 2018-10-16 Hamilton Sundstrand Corporation Cooling device for electro-pneumatic controller
US10954858B2 (en) * 2015-06-18 2021-03-23 Hamilton Sunstrand Corporation Plate fin heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093794A (zh) * 1992-08-14 1994-10-19 罗基研究公司 为了得到高反应率改进的方法和装置
CN101272951A (zh) * 2005-09-26 2008-09-24 法国空中巴士公司 提供有预冷却器的双流涡轮发动机

Also Published As

Publication number Publication date
US20170030265A1 (en) 2017-02-02
WO2017023559A1 (en) 2017-02-09
US10100733B2 (en) 2018-10-16
CN107849980A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN107849980B (zh) 具有防冰阀总成的涡轮发动机、放气阀和操作方法
EP3179074B1 (en) Thermal management system
US10144520B2 (en) De-icing system with thermal management
EP3187684B1 (en) System and method of reducing post-shutdown engine temperatures
US9109514B2 (en) Air recovery system for precooler heat-exchanger
US11203437B2 (en) Assembly and method for conditioning engine-heated air onboard an aircraft
EP3092388B1 (en) Cross-stream heat exchanger
JP6239770B2 (ja) 熱交換回路
EP3121417B1 (en) Integral oiltank heat exchanger
US20160115864A1 (en) Conformal surface heat exchanger for aircraft
US20170335715A1 (en) Method and assembly for providing an anti-icing airflow
EP3282099B1 (en) Ice protection system for gas turbine engines
EP3428436B1 (en) Aircraft incorporating a thrust recovery system using cabin air
EP2980355B1 (en) Gas turbine engine with axial compressor with internal cooling pathways
EP3296208B1 (en) Aircraft incorporating a cabin air recovery system
EP3196441A1 (en) Methods and systems for cooling a coolant airflow
US11111856B2 (en) Turbofan engine and core link therefore
BR102016028789A2 (pt) Thermal management system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant