CN107843337A - 一种太阳能聚光光斑相对光强分布测量*** - Google Patents

一种太阳能聚光光斑相对光强分布测量*** Download PDF

Info

Publication number
CN107843337A
CN107843337A CN201711385201.8A CN201711385201A CN107843337A CN 107843337 A CN107843337 A CN 107843337A CN 201711385201 A CN201711385201 A CN 201711385201A CN 107843337 A CN107843337 A CN 107843337A
Authority
CN
China
Prior art keywords
hot spot
cooling water
front panel
metal foam
renderer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711385201.8A
Other languages
English (en)
Inventor
彭先德
彭忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201711385201.8A priority Critical patent/CN107843337A/zh
Publication of CN107843337A publication Critical patent/CN107843337A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • G01J2001/4285Pyranometer, i.e. integrating over space

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明的一种太阳能聚光光斑相对光强分布测量***属于太阳能利用技术的性能测量领域。本发明的测量***由光斑呈现器、水冷***、光斑测量器及辅助器件组成。光斑呈现器置于太阳能聚光***的聚焦光斑位置,以漫反射的方式将光斑相对光强分布呈现出来;水冷***用于保持光斑呈现器在较低温度下运行;光斑测量器由CCD成像仪及电脑等组成,用于测量光斑呈现器上的光斑相对光强分布;辅助器件用于辅助光斑呈现器及光斑测量器的工作。本发明的测量***能够准确的测量出太阳能聚光光斑的相对光强分布情况,具有很高的测量精度,能够为太阳能聚光***的性能提升提供有用的数据支持。

Description

一种太阳能聚光光斑相对光强分布测量***
技术领域
本发明涉及太阳能利用技术的性能测量领域,具体为一种太阳能聚光光斑相对光强分布测量***。
背景技术
随着技术进步及国内外鼓励政策的刺激,太阳能利用领域近年来呈现出爆发式增长的趋势。作为太阳能量利用领域的一个重要分支,太阳能聚光光伏技术也在快速发展。反射式聚光光伏技术,具有聚光面积大,聚光光强高,聚光均匀性好等特点而广受欢迎。
但是对于反射式聚光光伏技术而言,如碟式聚光光伏***,由于其聚光面积大,聚光光斑也较大,聚焦光斑处的聚光强度非常强,如果聚光镜存在设计缺陷或安装不当,很容易就烧坏接收器设备。在碟式聚光光伏***的安装现场,由于反射镜的形状和理论设计的形状存在一定的误差,安装位置也可能和理论设计位置存在一定误差,这就会导致实际的光斑相对光强分布与理论设计不一致。因此,就需要精确测量出碟式聚光光伏***实际的光斑相对光强分布情况,以此来判断聚光光伏***的聚光镜的安装位置是否合理,是否需要进行调整。目前虽然已经存在一些光斑测量方面的技术,但是现有的光斑测量技术在测量精度方面很难满足实际的测量要求。
发明内容
针对以上问题,本发明的一种太阳能聚光光斑相对光强分布测量***能够准确测量出太阳能聚光光斑相对光强分布情况,具有极高的测量精度,操作方便,很适合太阳能聚光***的施工现场测量。
本发明的一种太阳能聚光光斑相对光强分布测量***由光斑呈现器、水冷***、光斑测量器及辅助器件组成。
所述光斑呈现器由辅助支架将其固定在太阳能聚光***的聚焦光斑位置,用于将太阳能聚光光斑的相对光强分布呈现出来。所述光斑呈现器由前面板、金属泡沫、侧面挡板、后面板、冷却水入口管、冷却水出口管构成,同时兼备光能接收及光斑呈现功能。
所述前面板的材质为金属,具有很好的热传导性能;优选的,前面板的材质为金属铜。所述前面板的表面经过特殊处理,具有一定的灰度,具有均匀漫反射性能。前面板的表面具有一定的灰度,是为了吸收一部分入射光能而只反射一部分光能(即控制前面板表面的反射率),以免因反射光强度太高而影响呈现效果;前面板的表面具有均匀漫反射性能,是为了更好的呈现光斑相对光强分布情况。所述前面板为圆柱体,圆柱体的半径R为50~300mm,圆柱体的高H(即前面板的厚度)为1~5mm。
所述金属泡沫的材质为金属,具有很好的热传导性能;优选的,金属泡沫的材质为金属铜。所述金属泡沫也为圆柱体,其半径与前面板的半径尺寸一致,圆柱体的高(即金属泡沫的厚度)为5~30mm。所述金属泡沫的底面紧贴前面板的底面。
所述后面板及侧面挡板的材质为金属材质,具有很好的热传导性能;优选的,后面板及侧面挡板的材质为金属铜。所述后面板也为圆柱体,其半径与前面板的半径尺寸一致,圆柱体的高(即后面板的厚度)为1~5mm,侧面挡板的厚度也为1~5mm。后面板的底面紧贴金属泡沫的底面,侧面挡板紧贴金属泡沫的侧面,使得金属泡形成封闭的圆柱体空间,便于冷却水通过;前面板接收到的热量快速传递到金属泡沫,金属泡沫与其空隙中快速流过的冷却水发生热交换作用,金属泡沫将热量传递给冷却水,并由冷却水将热量迅速带走,使得整个光斑呈现器保持在较低温度下,防止光斑呈现器因高温而形变或损坏。
作为本发明的进一步改进,所述前面板的材质为金属,具有很好的热传导性能;优选的,前面板的材质为金属铜。所述前面板的表面经过特殊处理,具有一定的灰度,具有均匀漫反射性能。前面板表面具有一定的灰度,是为了吸收一部分入射光能而只反射一部分光能(即控制前面板表面的反射率),以免因反射光强度太高而影响呈现效果;前面板的表面具有均匀漫反射性能,是为了更好的呈现光斑相对光强分布情况。所述前面板为长方体,长方体的长L为100~500mm,长方体的宽W为100~500mm,长方体的高H(即为前面板的厚度)为1~5mm。
进一步,所述金属泡沫的材质为金属,具有很好的热传导性能;优选的,金属泡沫的材质为金属铜。所述金属泡沫也为长方体,其长、宽的尺寸与前面板长、宽的尺寸一致,长方体的高(即金属泡沫的厚度)为5~30mm。所述金属泡沫的底面紧贴前面板的底面。
进一步,所述后面板及侧面挡板的材质为金属材质,具有很好的热传导性能;优选的,后面板及侧面挡板的材质为金属铜。所述后面板也为长方体,其长、宽的尺寸与前面板长、宽的尺寸一致,长方体的高(即后面板的厚度)为1~5mm,侧面挡板的厚度也为1~5mm。后面板的底面紧贴金属泡沫的底面,侧面挡板紧贴金属泡沫的侧面,使得金属泡形成封闭的长方体空间,便于冷却水通过;前面板接收到的热量快速传递到金属泡沫,金属泡沫与其空隙中快速流过的冷却水发生热交换作用,金属泡沫将热量传递给冷却水,并由冷却水将热量迅速带走,使得整个光斑呈现器保持在较低温度下,防止光斑呈现器因高温而形变或损坏。
所述冷却水入口管位于后面板的一端,通过后面板与金属泡沫空间连通,便于冷却水进入金属泡沫。冷却水入口管的数目为1~10个,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀。
所述冷却水出口管位于后面板的另一端,通过后面板与金属泡沫空间连通,便于冷却水经过金属泡沫后带着热量流出。冷却水出口管的数目与冷却水入口管数目一致,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀。
所述冷却水***是为了控制光斑呈现器的温度,使得其在较低温度下运行,防止因温度过高而发生形变或损坏。冷却水***由水冷机、冷却水管、流量计、阀门等组件组成。水冷机提供持续的冷却水,冷却水通过冷却水管再经冷却水入口管进入光斑呈现器,与光斑呈现器发生热交换作用吸收光斑呈现器热量后,再经冷却水出口管及冷却水管回到水冷机,冷却后再重新进入光斑呈现器,周而复始形成循环冷却水***。
所述光斑测量器由CCD成像仪和电脑等附件组成,CCD成像仪由辅助支架固定在测量位置,用于测量光斑呈现器上的光斑相对光强分布,并将测量图片及数据传输到电脑上,通过电脑分析处理及存储,从而得出聚光光斑相对光强分布的精确数据。CCD成像仪的测量位置位于光斑呈现器的前面板一侧,距光斑呈现器前面板表面的距离为0.5~10m。
通过以上技术方案及设备,就能准确测量出太阳能聚光光斑相对光强分布情况。
与现有技术相比,本发明的一种太阳能聚光光斑相对光强分布测量***具有以下优点及有益效果:
(1)本发明的光斑呈现器前面板的表面经过特殊处理,具有一定的灰度,能够很好的控制光斑呈现器的表面反射率,防止因为高倍聚光光斑的光强过强而损坏CCD成像仪或影响其测量效果。
(2)本发明的光斑呈现器前面板的表面经过特殊处理,具有均匀漫反射性能,能够准确的呈现出光斑的相对光强分布情况,且使得光斑测量器的测量位置可以在更大范围内移动而不影响测量效果。
(3)本发明的光斑呈现器的材料都是金属材料,具有很好热传导性能,内部的金属泡沫与冷却水的接触面积非常大,其热交换率非常高,通过冷却水***,能够很好的控制光斑呈现器的工作温度。即使太阳能聚光***的聚焦光斑位置具有很高的光能量,冷却水***也能及时的带走热量,使得光斑呈现器一直处于较低温度下工作,防止光斑呈现器因高温而发生形变进而影响测量结果,防止光斑呈现器因过高温度而损坏。
(4)本发明的CCD成像仪测量得到的光斑相对光强分布的同时也能拍摄下整个光斑呈现器,以光斑呈现器的尺寸为参考,可以精确描述出光斑的形状及尺寸,并将光斑相对光强分布坐标化。
(5)本发明通过光斑呈现器将光斑相对光强分布呈现出来,再由CCD成像仪进行测量,很好的发挥了CCD成像仪的拍摄及测量精度,又能防止因光强过强而损坏CCD成像仪。
(6)本发明的一种太阳能聚光光斑相对光强分布测量***能够应用于不同聚光面积的太阳能聚光***的光斑相对光强分布的测量。
附图说明
图1光斑呈现器前面板、后面板示意图。
图2光斑呈现器竖切面、横切面示意图。
图3太阳能聚光光斑相对光强分布测量***示意图。
图4实施例中太阳能聚光光斑相对光强分布测量图。
具体实施方式
为了更加清楚的说明本发明,下面将结合附图及实施例对本发明进行详细描述。应当理解,下面的实施例是为了更加清楚的说明本发明,并不限定本发明的内容。
本实施例的一种太阳能聚光光斑相对光强分布测量***由光斑呈现器、水冷***、光斑测量器及辅助器件组成。
本实施例的光斑呈现器由辅助支架将其固定在聚光***的有效焦点位置,用于将太阳能聚光光斑的相对光强分布呈现出来。所述光斑呈现器由前面板、金属泡沫、侧面挡板、后面板、冷却水入口管、冷却水出口管构成,同时兼备光能接收及光斑呈现功能。光斑呈现器的结构参考图1、图2。
本实施例的前面板的材质为金属铜,具有很好的热传导性能。前面板的表面经过特殊处理,具有一定的灰度,具有均匀漫反射性能。前面板的表面具有一定的灰度,是为了吸收一部分入射光能而只反射一部分光能(即控制前面板表面的反射率),以免因反射光强度太高而影响呈现效果;前面板的表面具有均匀漫反射性能,是为了更好的呈现光斑相对光强分布情况。所述前面板为圆柱体,圆柱体的半径R为150mm,圆柱体的高H(即前面板的厚度)为1mm。
本实施例的金属泡沫的材质为金属铜,具有很好的热传导性能。金属泡沫也为圆柱体,其半径与前面板的半径尺寸一致为150mm,圆柱体的高(即金属泡沫的厚度)为10mm。金属泡沫的底面紧贴前面板的底面。
本实施例的后面板及侧面挡板的材质为金属铜,具有很好的热传导性能。后面板也为圆柱体,其半径与前面板的半径尺寸一致为150mm,圆柱体的高(即后面板的厚度)为1mm,侧面挡板的厚度也为1mm。后面板的底面紧贴金属泡沫的底面,侧面挡板紧贴金属泡沫的侧面,使得金属泡沫形成封闭的圆柱体空间,便于冷却水通过;前面板接收到的热量快速传递到金属泡沫,金属泡沫与其空隙中快速流过的冷却水发生热交换作用,金属泡沫将热量传递给冷却水,并由冷却水将热量迅速带走,使得整个光斑呈现器保持在较低温度下,防止光斑呈现器因高温而形变或损坏。
本实施例的冷却水入口管位于后面板的一端,通过后面板与金属泡沫空间连通,便于冷却水进入金属泡沫。冷却水入口管的数目为3个,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀。
本实施例的冷却水出口管位于后面板的另一端,通过后面板与金属泡沫空间连通,便于冷却水经过金属泡沫后带着热量流出。冷却水出口管的数目与冷却水入口管数目一致,也为3个,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀。
本实施例的冷却水***是为了控制光斑呈现器的温度,使得其在较低温度下运行,防止因温度过高而发生形变或损坏。冷却水***由水冷机、冷却水管、流量计、阀门等组件组成。水冷机提供持续的冷却水,冷却水通过冷却水管再经冷却水入口管进入光斑呈现器,与光斑呈现器发生热交换作用吸收光斑呈现器热量后,再经冷却水出口管及冷却水管回到水冷机,冷却后再重新进入光斑呈现器,周而复始形成循环冷却水***。
本实施例的光斑测量器由CCD成像仪和电脑等附件构成,CCD成像仪由辅助支架固定在测量位置,用于测量光斑呈现器上的光斑相对光强分布,并将测量图片及数据传输到电脑上,通过电脑分析处理及存储,从而得出聚光光斑相对光强分布的精确数据。附图3为光斑相对光强分布测量***结构示意图。
在本实施例中,对碟式聚光光伏***的光斑性能测量过程如下:
(1)将碟式聚光光伏***的聚光镜转到背光位置,以防在设备安装调试过程中灼伤人员及设备,完成聚光光斑相对光强分布测量***的安装准备工作。在本实施例中,碟式聚光光伏***的聚光镜的有效聚光面积为3.4*3.4m2,有效焦距(即聚光镜中心点位置到聚焦光斑中心点的位置)为2m。
(2)由辅助支架将光斑呈现器置于待测碟式聚光光伏***的聚焦光斑位置,并调整光斑呈现器,使得碟式聚光镜的旋转对称轴与光斑呈现器的前面板垂直,且过光斑呈现器前面板的中心位置,并保证聚光光伏***在运转过程中光斑呈现器相对于聚光镜的相对位置固定。
(3)将冷却水管分别连接到光斑呈现器的冷却水入口管和冷却水出口管上,开启水冷机,开通阀门,使得冷却水***处于正常工作状态。在本实施例中,流过光斑呈现器的冷却水的流量为10L/min,能够保证在正常工作下光斑呈现器表面的温度低于200oC。
(4)由辅助支架将CCD成像仪固定在测量位置,参考图3,CCD成像仪的测量位置位于光斑呈现器的前面板一侧,且CCD成像仪的镜头的旋转对称轴与碟式聚光镜的旋转对称轴重合,距光斑呈现器的距离为1.5m,并保证聚光光伏***在运转过程中CCD成像仪相对于光斑呈现器的相对位置固定,并开启CCD成像仪。
(5)开启碟式聚光光伏***的逐日跟踪***,使得碟式聚光光伏***的聚光镜正对太阳,并在光斑呈现器上形成聚光光斑。通过电脑程序,测量碟式聚光光伏***的聚光光斑光强相对分布情况,分析并存储聚光光斑相对光强分布测量数据。
(6)完成光斑相对光强分布测量后,将碟式聚光光伏***的聚光镜转到背光位置,拆卸下CCD成像仪,关闭冷却水***,拆卸下光斑呈现器,并将测量设备装箱,完成整个测量工作。
通过以上技术方案及操作步骤,就能准确测量出本实施例中的碟式聚光光伏***的聚光光斑相对光强分布情况,测量结果如附图4所示。
结合附图4对测量结果进行分析,可以精确描述出碟式聚光光伏***的聚光光斑的形状、尺寸及相对光强分布。在本实施例中,光斑呈现器的半径为150mm,对应CCD成像仪的成像尺寸为65μm,即实际尺寸与成像尺寸的比例为2300:1。在附图4中,可以观察到碟式聚光光伏***的聚光光斑大致为正方形,在测量数据中的正方形边长为46μm,考虑到实际尺寸与成像尺寸的比例,正方形聚光光斑的实际边长为105mm,但光斑的形状并不是非常规则的正方形。以正方形光斑的中心位置为坐标原点建立坐标轴,可以将光斑上的不同位置坐标化。在附图4中,可以观察到在正方形光斑上有4个相对光强明显偏高的区域,这4个相对光强明显偏高的区域的中心位置坐标分别为:A(-5,25),B(-41,25),C(-35,30),D(-46,44)。在碟式聚光光伏***正常运行过程中,这些相对光强明显偏高的区域处很容易出现光伏电池片损坏的情况。因此,本实施例中的碟式聚光光伏***的聚光镜需要进一步调整,以使得聚光光斑的相对光强分布更加均匀,从而防止因部分区域相对光强过高而损坏接收器的光伏电池片,进而提升碟式聚光光伏***的转换效率。
以上测量数据及分析结果,说明本发明的测量***能够准确的测量出太阳能聚光光斑的相对光强分布情况,为太阳能聚光***的性能提升提供有用的数据支持。

Claims (8)

1.一种太阳能聚光光斑相对光强分布测量***,其特征在于:太阳能聚光光斑相对光强分布测量***由光斑呈现器、水冷***、光斑测量器及辅助器件组成。
2.根据权利要求1所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述光斑呈现器由辅助支架将其固定在太阳能聚光***的聚焦光斑位置,用于将太阳能聚光光斑的相对光强分布呈现出来;所述光斑呈现器由前面板、金属泡沫、侧面挡板、后面板、冷却水入口管、冷却水出口管构成,同时兼备光能接收及光斑呈现的功能。
3.根据权利要求2所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述前面板为金属材质面板,具有很好的热传导性能;所述前面板的表面经过特殊处理,具有一定的灰度,具有均匀漫反射性能;所述前面板为圆柱体,圆柱体的半径R为50~300mm,圆柱体的高H(即前面板的厚度)为1~5mm;
所述金属泡沫的材质为金属,具有很好的热传导性能;所述金属泡沫也为圆柱体,其半径与前面板的半径尺寸一致,圆柱体的高(即金属泡沫的厚度)为5~30mm;所述金属泡沫的底面紧贴前面板的底面;
所述后面板及侧面挡板的材质为金属材质,具有很好的热传导性能;所述后面板也为圆柱体,其半径与前面板的半径尺寸一致,圆柱体的高(即后面板的厚度)为1~5mm,侧面挡板的厚度也为1~5mm;后面板的底面紧贴金属泡沫的底面,侧面挡板紧贴金属泡沫的侧面,使得金属泡形成封闭的圆柱体空间,便于冷却水通过,前面板接收到的热量快速传递到金属泡沫,金属泡沫与其空隙中快速流过的冷却水发生热交换作用,金属泡沫将热量传递给冷却水,并由冷却水将热量迅速带走,使得整个光斑呈现器保持在较低温度下,防止光斑呈现器因高温而形变或损坏。
4.根据权利要求2所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述前面板为金属材质面板,具有很好的热传导性能;所述前面板的表面经过特殊处理,具有一定的灰度,具有均匀漫反射性能;所述前面板为长方体,长方体的长L为100~500mm,长方体的宽W为100~500mm,长方体的高H(即为前面板的厚度)为1~5mm;
所述金属泡沫的材质为金属,具有很好的热传导性能;所述金属泡沫也为长方体,其长、宽的尺寸与前面板长、宽的尺寸一致,长方体的高(即金属泡沫的厚度)为5~30mm;所述金属泡沫的底面紧贴前面板的底面;
所述后面板及侧面挡板的材质为金属材质,具有很好的热传导性能;所述后面板也为长方体,其长、宽的尺寸与前面板长、宽的尺寸一致,长方体的高(即后面板的厚度)为1~5mm,侧面挡板的厚度也为1~5mm;后面板的底面紧贴金属泡沫的底面,侧面挡板紧贴金属泡沫的侧面,使得金属泡形成封闭的长方体空间,便于冷却水通过,前面板接收到的热量快速传递到金属泡沫,金属泡沫与其空隙中快速流过的冷却水发生热交换作用,金属泡沫将热量传递给冷却水,并由冷却水将热量迅速带走,使得整个光斑呈现器保持在较低温度下,防止光斑呈现器因高温而形变或损坏。
5.根据权利要求2所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述冷却水入口管位于后面板的一端,通过后面板与金属泡沫空间连通,便于冷却水进入金属泡沫;冷却水入口管的数目为1~10个,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀;
所述冷却水出口管位于后面板的另一端,通过后面板与金属泡沫空间连通,便于冷却水经过金属泡沫后带着热量流出;冷却水出口管的数目与冷却水入口管数目一致,是为了使得冷却水更加均匀的流过金属泡沫,使得前面板的表面温度更加均匀。
6.根据权利要求1所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述冷却水***是为了控制光斑呈现器的温度,使得其在较低温度下运行,防止因温度过高而发生形变或损坏;冷却水***由水冷机、冷却水管、流量计、阀门等组件组成;水冷机提供持续的冷却水,冷却水通过冷却水管再经冷却水入口管进入光斑呈现器,与光斑呈现器发生热交换作用吸收光斑呈现器热量后,再经冷却水出口管及冷却水管回到水冷机,冷却后再重新进入光斑呈现器,周而复始形成循环冷却水***。
7.根据权利要求1所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:所述光斑测量器由CCD成像仪和电脑等附件组成,CCD成像仪由辅助支架固定在测量位置,用于测量光斑呈现器上的光斑相对光强分布,并将测量图片及数据传输到电脑上,通过电脑分析处理及存储,从而得出聚光光斑相对光强分布的精确数据。
8.根据权利要求7所述的一种太阳能聚光光斑相对光强分布测量***,其特征在于:CCD成像仪的测量位置位于光斑呈现器的前面板一侧,距光斑呈现器的前面板表面的距离为0.5~10m。
CN201711385201.8A 2017-12-20 2017-12-20 一种太阳能聚光光斑相对光强分布测量*** Pending CN107843337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711385201.8A CN107843337A (zh) 2017-12-20 2017-12-20 一种太阳能聚光光斑相对光强分布测量***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711385201.8A CN107843337A (zh) 2017-12-20 2017-12-20 一种太阳能聚光光斑相对光强分布测量***

Publications (1)

Publication Number Publication Date
CN107843337A true CN107843337A (zh) 2018-03-27

Family

ID=61684391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711385201.8A Pending CN107843337A (zh) 2017-12-20 2017-12-20 一种太阳能聚光光斑相对光强分布测量***

Country Status (1)

Country Link
CN (1) CN107843337A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108326A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 梯形集热光斑能量与热流密度测量***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616913A (en) * 1994-12-23 1997-04-01 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Device for concentrating solar radiation
CN103411754A (zh) * 2013-07-24 2013-11-27 兰州大成科技股份有限公司 反射式聚光光伏聚光器光斑强度分布测量方法
CN103925993A (zh) * 2014-05-04 2014-07-16 湘电集团有限公司 一种碟式太阳能焦斑瞬态能量密度的检测装置和检测方法
CN105509998A (zh) * 2015-12-30 2016-04-20 中国科学院长春光学精密机械与物理研究所 聚焦型太阳模拟器能流密度测量装置及测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616913A (en) * 1994-12-23 1997-04-01 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Device for concentrating solar radiation
CN103411754A (zh) * 2013-07-24 2013-11-27 兰州大成科技股份有限公司 反射式聚光光伏聚光器光斑强度分布测量方法
CN103925993A (zh) * 2014-05-04 2014-07-16 湘电集团有限公司 一种碟式太阳能焦斑瞬态能量密度的检测装置和检测方法
CN105509998A (zh) * 2015-12-30 2016-04-20 中国科学院长春光学精密机械与物理研究所 聚焦型太阳模拟器能流密度测量装置及测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLEN JOHNSTON: "《Focal region measurements of the 20 m2 tiled dish at the Australian national university》", 《SOLAR ENERGY》 *
王一江: "《碟式太阳能聚光***光斑质量分析技术》", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108326A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 梯形集热光斑能量与热流密度测量***及方法
CN110108326B (zh) * 2019-06-06 2023-10-10 中国能源建设集团陕西省电力设计院有限公司 梯形集热光斑能量与热流密度测量***及方法

Similar Documents

Publication Publication Date Title
CN105319051B (zh) 一种用于测试槽式太阳能集热器光学效率的工作平台
CN201983486U (zh) 塔式太阳能热发电站的定日镜跟踪控制装置
CN105973505A (zh) 一种太阳能腔式吸热器开口处热流密度测定方法
CN108225552B (zh) 塔式电站定日镜场聚光能流密度分布测量方法
CN105387999A (zh) 一种测试槽式太阳能集热器光学效率的方法
CN107843337A (zh) 一种太阳能聚光光斑相对光强分布测量***
CN105987671A (zh) 一种便携式太阳能聚光器面型检测装置及方法
Li et al. A modified indirect flux mapping system for high-flux solar simulators
WO2020073541A1 (zh) 立面式太阳能热水器
CN107498156B (zh) 一种基于ccd相机的多角度电弧光强采集方法
CN103925993A (zh) 一种碟式太阳能焦斑瞬态能量密度的检测装置和检测方法
CN104596125B (zh) 带采光罩的空腔式太阳能接收器
CN207147757U (zh) 菲涅尔镜检测装置
CN202043057U (zh) 一种太阳能发电集热***
CN105577032B (zh) 单元式太阳能全光谱利用的光电‑热电‑热水复合***
CN102130629B (zh) 均匀反射聚焦式太阳能发电装置
CN106706271A (zh) 一种光学***的自动检测检测与性能分析优化设备及方法
CN107356413A (zh) 菲涅尔镜检测装置
CN102628618B (zh) 比重温度分布平衡式导流高效集热管装置
CN207335204U (zh) 一种可调镜面聚光式太阳能锅炉
CN102779868B (zh) 太阳能发电集热***
CN206281451U (zh) 一种聚光器面形精度检测***
CN205425472U (zh) 光电-热电-热水一体化集成的单元式太阳能复合装置
CN110118527B (zh) 一种bcs***精度检测方法及装置
Ochieng et al. Some techniques in configurational geometry as applied to solar collectors and concentrators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180327

RJ01 Rejection of invention patent application after publication