CN107833640A - 燃料组件导向管、燃料组件导向管用管材及其制造方法 - Google Patents

燃料组件导向管、燃料组件导向管用管材及其制造方法 Download PDF

Info

Publication number
CN107833640A
CN107833640A CN201711023134.5A CN201711023134A CN107833640A CN 107833640 A CN107833640 A CN 107833640A CN 201711023134 A CN201711023134 A CN 201711023134A CN 107833640 A CN107833640 A CN 107833640A
Authority
CN
China
Prior art keywords
guide pipe
fuel assembly
assembly guide
protective coating
tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711023134.5A
Other languages
English (en)
Inventor
高长源
陈刘涛
徐杨
温敦古
谭军
邓勇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Lingdong Nuclear Power Co Ltd
China Nuclear Power Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Lingdong Nuclear Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Technology Research Institute Co Ltd, CGN Power Co Ltd, Lingdong Nuclear Power Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN201711023134.5A priority Critical patent/CN107833640A/zh
Publication of CN107833640A publication Critical patent/CN107833640A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种燃料组件导向管、燃料组件导向管用管材及其制造方法,燃料组件导向管用管材包括管体、分别设置在所述管体内表面和外表面上的保护涂层,所述保护涂层与所述管体形成三层复合结构;在三层复合结构中,所述管体为无明显织构的锆合金中间层。本发明的燃料组件导向管用管材,改变了锆合金管材的织构,使其由径向基极织构变成近似随机的无明显织构,有效减小导向管的辐照生长,提高高燃耗下核反应堆燃料组件导向管的抗弯曲能力,满足核反应堆燃料组件提高燃耗的需求。管体内外表面设置的保护涂层,既保证了管材的辐照生长量少,同时保证了管材的耐腐性能。

Description

燃料组件导向管、燃料组件导向管用管材及其制造方法
技术领域
本发明涉及核燃料技术领域,尤其涉及一种燃料组件导向管、燃料组件导向管用管材及其制造方法。
背景技术
现有的反应堆燃料组件导向管所用材料主要有两种,分别为M5合金和Zr-4合金。现有的堆燃料组件导向管在运行到高燃耗后,会产生辐照生长过大的问题。而由于现有的导向管中管材具有织构,同时锆为六方晶体结构,在辐照后会沿管材轴向生长,过大的辐照生长会使燃料组件弯曲,影响使用。
此外,现有导向管主要为单一层锆合金结构,在服役时内外管壁都会被冷却水腐蚀。
发明内容
本发明要解决的技术问题在于,提供一种满足核反应堆燃料组件提高燃耗需求的燃料组件导向管用管材及其制造方法、该管材制成的燃料组件导向管。
本发明解决其技术问题所采用的技术方案是:提供一种燃料组件导向管用管材,包括管体、分别设置在所述管体内表面和外表面上的保护涂层,所述保护涂层与所述管体形成三层复合结构;在三层复合结构中,所述管体为无明显织构的锆合金中间层。
优选地,所述管体为Zr-4合金中间层。
优选地,所述锆合金中间层的厚度为0.5mm-0.7mm。
优选地,所述保护涂层为SiC涂层、Ti3AlC2涂层或Ti3SiC2涂层。
优选地,所述保护涂层的厚度为0.02mm-0.05mm。
本发明还提供一种燃料组件导向管用管材的制造方法,包括以下步骤:
S1、将锆合金材料冷轧制成管体;
S2、对所述管体进行β相淬火处理;
S3、对β相淬火处理后的管体进行退火处理,得到无明显织构的管体;
S4、分别在步骤S3得到的管体的内表面和外表面设置保护涂层,所述保护涂层与所述管体形成三层复合结构的燃料组件导向管用管材。
优选地,步骤S2中,β相淬火处理的温度为1000℃-1100℃。
优选地,步骤S3中,退火处理的温度为550℃-700℃。
优选地,步骤S4中,所述锆合金中间层的厚度为0.5mm-0.7mm;所述保护涂层的厚度为0.02mm-0.05mm。
优选地,步骤S4中,所述保护涂层为SiC涂层、Ti3AlC2涂层或Ti3SiC2涂层,通过化学气相沉积法沉积在所述管体上或者热喷涂法喷涂在所述管体上。
本发明还提供一种燃料组件导向管,采用上述任一项所述的燃料组件导向管用管材制成。
本发明的有益效果:本发明改变了锆合金管材的织构,使其由径向基极织构变成近似随机的无明显织构,有效减小导向管的辐照生长,提高高燃耗下核反应堆燃料组件导向管的抗弯曲能力,满足核反应堆燃料组件提高燃耗的需求。管体内外表面设置的保护涂层,既保证了管材的辐照生长量少,同时保证了管材的耐腐性能。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例的燃料组件导向管用管材的截面结构示意图;
图2是本发明一实施例的燃料组件导向管用管材制造方法流程图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明一实施例的燃料组件导向管用管材,包括管体10、分别设置在管体10内表面和外表面上的保护涂层20,保护涂层20与管体10形成三层复合结构;在三层复合结构中,管体10为无明显织构的锆合金中间层。
其中,管体10为锆合金材料通过β相淬火及退火等工艺处理制得,使得其由径向基极织构变成近似随机的无明显织构,随机织构的锆合金中间层的轴向辐照生长相对于径向基极织构的锆合金管要小,甚至不出现辐照生长。
管体10(锆合金中间层)的厚度为0.5mm-0.7mm。
优选地,管体10由Zr-4合金制成的Zr-4合金中间层。该Zr-4合金中间层中,锡(Sn)的质量百分比为1.5%,铁的质量百分比为0.2%,铬的质量百分比为0.1%,可表示为:Zr-1.5Sn-0.2Fe-0.1Cr。
保护涂层20设置在管体10的内外表面上,对管体10起到保护的作用,在导向管服役期间,可避免冷却水对锆合金的腐蚀。保护涂层20的厚度可为0.02mm-0.05mm。
由于SiC材料在高温水中具有良好的耐腐蚀性能,因此可以作为耐腐蚀层的材料。因此,本实施例中,保护涂层20为SiC涂层,可通过化学气相沉积的方式沉积在管体10上,也可以通过热喷涂法喷涂在管体10上。
在其他实施例中,保护涂层20也可为MAX相,即为Ti3AlC2涂层或Ti3SiC2涂层。
结合图1、2,本发明一实施例的燃料组件导向管用管材的制造方法,可包括以下步骤:
S1、将锆合金材料冷轧制成管体10。
锆合金材料可选用Zr-4合金,制成厚度0.5mm-0.7mm的管体10。
S2、对管体10进行β相淬火处理,使得管体10的织构由径向基极织构变成近似随机的无明显织构。
由于辐照生长与织构有关,随机的无明显织构的锆合金的轴向辐照生长相对于径向基极织构的锆合金要小,甚至不出现辐照生长。
其中,β相淬火处理的温度为1000℃-1100℃。
S3、对β相淬火处理后的管体10进行退火处理,得到无明显织构(随机织构)的管体10。
该步骤中,退火处理的温度为550℃-700℃,以对管体10进行完全再结晶。
此外,退火处理后,还可对管体10进行矫直、抛光等精整处理。
S4、分别在步骤S3得到的管体10的内表面和外表面设置保护涂层20,保护涂层20与管体10形成三层复合结构的燃料组件导向管用管材。
在三层复合结构中,管体10为无明显织构的锆合金中间层,保护涂层20分别为锆合金中间层两侧的内层和外层,对锆合金中间层起到保护的作用,在导向管服役期间,可避免冷却水对锆合金的腐蚀。
在三层复合结构中,锆合金中间层(管体10)的厚度为0.5mm-0.7mm;保护涂层20的厚度为0.02mm-0.05mm。
由于SiC材料在高温水中具有良好的耐腐蚀性能,因此可以作为耐腐蚀层的材料。本实施例中,保护涂层20为SiC涂层,通过化学气相沉积法沉积在管体10上。保护涂层20也可为MAX相,即为Ti3AlC2涂层或Ti3SiC2涂层;通过化学气相沉积法或热喷涂法形成在管体10上。
本发明的燃料组件导向管,采用上述图1所示的燃料组件导向管用管材制成,或者图2所示流程制得的燃料组件导向管用管材制成。
本发明的导向管中,具有三层复合结构,包括锆合金中间层以及分别设置在锆合金中间层内外表面的保护涂层;其中,由于锆合金中间层为近似随机的无明显织构,其轴向辐照生长相对于径向基极织构的锆合金要小,甚至不出现辐照生长,有效减小导向管的辐照生长。
内外保护涂层具有耐腐蚀性能,对锆合金中间层起到保护作用,避免导向管在服役期间,内外管壁受冷却水腐蚀。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种燃料组件导向管用管材,其特征在于,包括管体、分别设置在所述管体内表面和外表面上的保护涂层,所述保护涂层与所述管体形成三层复合结构;在三层复合结构中,所述管体为无明显织构的锆合金中间层。
2.根据权利要求1所述的燃料组件导向管用管材,其特征在于,所述管体为Zr-4合金中间层。
3.根据权利要求1所述的燃料组件导向管用管材,其特征在于,所述保护涂层为SiC涂层、Ti3AlC2涂层或Ti3SiC2涂层。
4.根据权利要求1所述的燃料组件导向管用管材,其特征在于,所述锆合金中间层的厚度为0.5mm-0.7mm;所述保护涂层的厚度为0.02mm-0.05mm。
5.一种燃料组件导向管用管材的制造方法,其特征在于,包括以下步骤:
S1、将锆合金材料冷轧制成管体;
S2、对所述管体进行β相淬火处理;
S3、对β相淬火处理后的管体进行退火处理,得到无明显织构的管体;
S4、分别在步骤S3得到的管体的内表面和外表面设置保护涂层,所述保护涂层与所述管体形成三层复合结构的燃料组件导向管用管材。
6.根据权利要求5所述的制造方法,其特征在于,步骤S2中,β相淬火处理的温度为1000℃-1100℃。
7.根据权利要求5所述的制造方法,其特征在于,步骤S3中,退火处理的温度为550℃-700℃。
8.根据权利要求5所述的制造方法,其特征在于,步骤S4中,所述锆合金中间层的厚度为0.5mm-0.7mm;所述保护涂层的厚度为0.02mm-0.05mm。
9.根据权利要求5所述的制造方法,其特征在于,步骤S4中,所述保护涂层为SiC涂层、Ti3AlC2涂层或Ti3SiC2涂层,通过化学气相沉积法沉积在所述管体上或者热喷涂法喷涂在所述管体上。
10.一种燃料组件导向管,其特征在于,采用权利要求1-4任一项或权利要求5-9任一项所述的燃料组件导向管用管材制成。
CN201711023134.5A 2017-10-25 2017-10-25 燃料组件导向管、燃料组件导向管用管材及其制造方法 Pending CN107833640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711023134.5A CN107833640A (zh) 2017-10-25 2017-10-25 燃料组件导向管、燃料组件导向管用管材及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711023134.5A CN107833640A (zh) 2017-10-25 2017-10-25 燃料组件导向管、燃料组件导向管用管材及其制造方法

Publications (1)

Publication Number Publication Date
CN107833640A true CN107833640A (zh) 2018-03-23

Family

ID=61650663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711023134.5A Pending CN107833640A (zh) 2017-10-25 2017-10-25 燃料组件导向管、燃料组件导向管用管材及其制造方法

Country Status (1)

Country Link
CN (1) CN107833640A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754452A (zh) * 2018-07-27 2018-11-06 国家电投集团科学技术研究院有限公司 在锆合金表面制备SiC涂层的方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223211A (en) * 1990-11-28 1993-06-29 Hitachi, Ltd. Zirconium based alloy plate of low irradiation growth, method of manufacturing the same, and use of the same
JPH0727884A (ja) * 1993-07-14 1995-01-31 Kobe Steel Ltd 耐食性に優れた原子炉燃料被覆管及びその製造方法
US5618356A (en) * 1993-04-23 1997-04-08 General Electric Company Method of fabricating zircaloy tubing having high resistance to crack propagation
US5876524A (en) * 1994-06-22 1999-03-02 Sandvik Ab Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
JP2002243881A (ja) * 2001-01-19 2002-08-28 Korea Atom Energ Res Inst 高燃焼度核燃料用ニオビウム含有ジルコニウム合金管材及び板材の製造方法
CN101175864A (zh) * 2004-03-23 2008-05-07 西屋电气有限责任公司 具有改良耐蚀性的锆合金及具有改良耐蚀性的锆合金的制造方法
CN102660719A (zh) * 2012-05-18 2012-09-12 重庆大学 一种用于锆合金的加工工艺
CN107116339A (zh) * 2017-05-03 2017-09-01 中国核动力研究设计院 一种锆合金包壳管材制备工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223211A (en) * 1990-11-28 1993-06-29 Hitachi, Ltd. Zirconium based alloy plate of low irradiation growth, method of manufacturing the same, and use of the same
US5618356A (en) * 1993-04-23 1997-04-08 General Electric Company Method of fabricating zircaloy tubing having high resistance to crack propagation
JPH0727884A (ja) * 1993-07-14 1995-01-31 Kobe Steel Ltd 耐食性に優れた原子炉燃料被覆管及びその製造方法
US5876524A (en) * 1994-06-22 1999-03-02 Sandvik Ab Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
JP2002243881A (ja) * 2001-01-19 2002-08-28 Korea Atom Energ Res Inst 高燃焼度核燃料用ニオビウム含有ジルコニウム合金管材及び板材の製造方法
CN101175864A (zh) * 2004-03-23 2008-05-07 西屋电气有限责任公司 具有改良耐蚀性的锆合金及具有改良耐蚀性的锆合金的制造方法
CN102660719A (zh) * 2012-05-18 2012-09-12 重庆大学 一种用于锆合金的加工工艺
CN107116339A (zh) * 2017-05-03 2017-09-01 中国核动力研究设计院 一种锆合金包壳管材制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨红艳等: "锆合金包壳表面涂层研究进展", 《表面技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754452A (zh) * 2018-07-27 2018-11-06 国家电投集团科学技术研究院有限公司 在锆合金表面制备SiC涂层的方法及其应用

Similar Documents

Publication Publication Date Title
ES2741832T3 (es) Acero inoxidable amorfo o semiamorfo o Ti-Al-C cerámico o Zr-Al-C cerámico de calidad aplicado cinéticamente con estructura metálica de aleación de zirconio de calidad nuclear
JP6999810B2 (ja) 高温耐酸化性が向上されたジルコニウム合金被覆管及びその製造方法
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
CN109881196B (zh) 一种包含内壁抗氧化涂层的主蒸汽管道及其制备方法
JP5108771B2 (ja) 耐高温水蒸気酸化性に優れたボイラ用オーステナイト系ステンレス鋼管
WO2018067425A3 (en) Duplex accident tolerant coating for nuclear fuel rods
RU2015128047A (ru) Ядерный тепловыделяющий элемент
US10126021B2 (en) Metal-ceramic coating for heat exchanger tubes of a central solar receiver and methods of preparing the same
CN104372338A (zh) 一种锅炉过/再热器用奥氏体不锈钢管表面合金化方法
CN107833640A (zh) 燃料组件导向管、燃料组件导向管用管材及其制造方法
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
CN101724301B (zh) 一种MCrAlY+AlSiY复合涂层及制备工艺
ES2253798T3 (es) Metodo para fabricacion de aelaciones de circonio estaño hierro para barras de combustibles nuclear y partes estructurales de alto quemado.
JPH0371507B2 (zh)
CN102409282A (zh) 一种钛铝基金属间化合物材料的低温表面渗碳方法
WO2020093246A1 (zh) 核燃料组件的管材及燃料包壳
CN102954611B (zh) 中高温光谱选择性吸收涂层
WO2015109552A1 (zh) 一种不锈钢无缝钢管
JP4975390B2 (ja) 高燃焼度用燃料被覆管の製造方法
KR100709389B1 (ko) 고내식성 지르코늄 합금 핵연료 피복관의 제조방법
CN203115982U (zh) 一种电站锅炉用不锈钢管
CN113789432B (zh) 一种改善sa508-4钢焊接组织局部硬化的方法
JPH0348193A (ja) 核燃料用被覆管
JPS6067648A (ja) 原子力燃料被覆管の製造方法
CN117721416A (zh) 一种核用锆合金表面复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180323