CN107817509A - 基于rtk北斗和激光雷达的巡检机器人导航***及方法 - Google Patents

基于rtk北斗和激光雷达的巡检机器人导航***及方法 Download PDF

Info

Publication number
CN107817509A
CN107817509A CN201710801741.3A CN201710801741A CN107817509A CN 107817509 A CN107817509 A CN 107817509A CN 201710801741 A CN201710801741 A CN 201710801741A CN 107817509 A CN107817509 A CN 107817509A
Authority
CN
China
Prior art keywords
rtk
navigation
laser radar
robot
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710801741.3A
Other languages
English (en)
Inventor
彭道刚
戚尔江
夏飞
关欣蕾
陈跃伟
王立力
赵晨洋
陈昱皓
刘世彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201710801741.3A priority Critical patent/CN107817509A/zh
Publication of CN107817509A publication Critical patent/CN107817509A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种基于RTK北斗和激光雷达的巡检机器人导航***及方法,包括机器人移动站和后台管理服务器,所述机器人移动站包括机器人机体以及设置于机器人机体上的控制模块、定位导航模块、无线通信模块和电源管理模块,所述定位导航模块包括激光雷达和RTK/SINS单元;导航地图采用全局地图与局部地图相结合的设计方案,全局地图构建采用机器人记录轨迹方式绘制,导航方式采用预瞄PID算法,局部地图构建采用激光雷达记录障碍物离散数据点,经聚类、曲线拟合等步骤还原障碍物边缘信息,采用人工势场路径规划避障方式。与现有技术相比,本发明具有导航定位精度高、无需路面改造、环境适应性强、工作稳定性好等优点。

Description

基于RTK北斗和激光雷达的巡检机器人导航***及方法
技术领域
本发明涉及一种导航***,尤其是涉及一种基于RTK北斗和激光雷达的巡检机器人导航***。
背景技术
移动巡检机器人可以节约大量人力,尤其是可以运用在不适宜人工巡检的危险场合,比如超高压巡检机器人和输油管线巡检机器人。发展移动巡检机器人和人工巡检相结合的方式势必是未来发展的一种趋势。
传统移动机器人较多采用磁轨道、无线射频识别技术RFID或固定导轨进行定位和导航。20世纪90年代,日本研发一款有轨巡检机器人,应用于500kV变电站。2014年1月,浙江国自机器人技术有限公司研制的变电站巡检机器人在瑞安变电站投入运行,采用的是多个声纳和激光测距传感器的导航方式。2015年常熟理工学院研究的一款校园巡检机器人采用定位、导航方式是普通的GPS和摄像头相结合的方案。2016年中信重工开诚智能装备有限公司生产了一款轨道式巡检机器人,文献中主要介绍了轨道式巡检机器人的轨道硬件组成、数据采集***方案和电源管理方案。中国专利CN103064416B公开一种巡检机器人室内外自主导航***,包括行走控制单元、行走决策单元和功能任务单元,维护较为简单。大多数参考文献并未涉及到***的构建和巡检路线上遇到突发障碍情况的避障方式。而且,虽然各地研发的移动机器人基本上能满足常规巡检需求,但存在环境干扰大、抗干扰能力弱、定位精度低且机器人灵活性较差等缺点。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于RTK北斗和激光雷达的巡检机器人导航***及方法。
本发明的目的可以通过以下技术方案来实现:
一种基于RTK北斗和激光雷达的巡检机器人导航***,包括采用无线路由组网通信的机器人移动站和后台管理服务器,所述机器人移动站包括机器人机体以及设置于机器人机体上的控制模块、定位导航模块、无线通信模块和电源管理模块,所述控制模块分别连接定位导航模块、无线通信模块和电源管理模块,所述定位导航模块包括激光雷达和RTK/SINS单元。
进一步地,所述控制模块包括通过串口通信连接的工控机和Cortex-M3内核控制芯片,所述工控机分别连接激光雷达和RTK/SINS单元,所述Cortex-M3内核控制芯片连接无线通信模块。
进一步地,所述无线通信模块为2.4G无线遥控模块。
进一步地,所述RTK/SINS单元包括定位天线和测向天线,所述定位天线和测向天线间的距离大于1m。
进一步地,所述激光雷达安装于机器人机体最前方,且离地面高度为20cm~30cm。
进一步地,还包括用于机器人移动站的无线遥控器,与所述无线通信模块连接。
进一步地,所述定位导航模块还包括超声波单元。
本发明还提供一种利用所述的巡检机器人导航***实现全局和局部结合导航的方法,该方法通过构建的全局地图与局部地图相结合的导航地图实现导航,具体为:
获取RTK/SINS单元的输出数据,进行卡尔曼滤波,融合输出所述机器人移动站的状态参数,基于该状态参数和全局地图采用预瞄PID控制策略实现全局导航控制;根据RTK/SINS单元输出的惯导数据、激光雷达采集的数据以及局部地图,采用人工势场法实现局部避障控制,并实时更新局部地图。
进一步地,所述全局地图的构建具体为:
机器人移动站接收遥控指令,沿待巡检指定轨道运行,RTK/SINS单元实时记录路径定位数据,形成全局地图。
进一步地,所述局部地图的构建具体为:
获取激光雷达数据,对该激光雷达数据进行中值滤波,获得障碍物离散数据点,设定一最短距离作为聚类的阈值距离,根据该阈值距离对所述障碍物离散数据点进行聚类,获得多个簇,对各个簇进行曲线拟合,得到障碍物边缘离散点,形成局部地图;
进行聚类时,删除数据点数目小于设定的聚类数目阈值的簇。
与现有技术相比,本发明具有以下有益效果:
1、本发明利用RTK/SINS单元进行导航,采用了高精度差分北斗定位模块,解决了使用GPS等其他定位设备的市场限制和安全隐患。
2、本发明RTK北斗定位设备集成高精度惯导模块,经卡尔曼滤波后融合输出,两者相互配合,实现优势互补,解决了因信号遮挡而造成的定位失败问题,保证定位可靠性和姿态角的精度值,实现精确定点定向巡检任务。
3、发明采用RTK/SINS单元和激光雷达构建全局和局部相结合的导航地图,导航地图精度高。
4、本发明采用激光雷达的避障方式,控制策略采用人工势场法,实时更新局部地图,实现复杂环境下局部路径规划及智能避障。
5、本发明进行局部地图构建时,对激光雷达记录的障碍物离散数据点,经聚类、曲线拟合等步骤还原障碍物边缘信息,障碍物信息准确可靠,方便机器人识别道路信息。
6、本发明对于巡检路径的规划无需对路面进行整改即可实现巡检需求,环境适应性强。
7、本发明RTK/SINS单元中定位天线和测向天线间的距离大于1m,数据采集精度高。
8、本发明激光雷达安装在机器人车身最前方,离地面高度在20cm~30cm之间,数据采集精度高。
附图说明
图1为本发明的结构示意图;
图2为差动转向巡检机器人运动物理模型示意图;
图3为激光雷达和RTK/SINS单元的安装设计示意图;
图4为遥控发送数据工作流程图;
图5为遥控接收数据工作流程图;
图6为全局和局部导航控制策略框图;
图7为聚类前后对比图,其中,(7a)为聚类前边缘离散激光点示意图,(7b)为聚类后边缘离散激光点示意图;
图8为不同聚类距离阈值deltad、聚类数据点阈值Ncluster、拟合方式的离散激光点曲线拟合对比图,其中,(8a)为deltad=10、Ncluster=3、整体拟合时的拟合结果,(8b)为deltad=10、Ncluster=3、分段拟合时的拟合结果,(8c)为deltad=10、Ncluster=10、整体拟合时的拟合结果,(8d)为deltad=10、Ncluster=10、分段拟合时的拟合结果,(8e)为deltad=15、Ncluster=10、整体拟合时的拟合结果,(8f)为deltad=15、Ncluster=10、分段拟合时的拟合结果;
图9为预瞄PID控制算法原理框图;
图10为机器人不同路况下避障轨迹图,其中,(10a)为直线道路中的机器人路径规划,(10b)为较为空旷场地中的机器人路径规划,(10c)为道路转弯路段中的机器人路径规划。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一、***结构
如图1所示,本实施例提供一种基于RTK北斗和激光雷达的巡检机器人导航***,用于智能巡检,包括采用无线路由组网通信的机器人移动站100和后台管理服务器200,通信协议采用TCP/IP协议,机器人移动站100包括机器人机体以及设置于机器人机体上的控制模块、定位导航模块101、无线通信模块102和电源管理模块103,控制模块分别连接定位导航模块101、无线通信模块102和电源管理模块103,定位导航模块101包括激光雷达和RTK/SINS(解算差分定位设备/捷联式惯导***,Real-time kinematic/SINS)单元。
控制模块包括通过串口通信连接的工控机104和Cortex-M3内核控制芯片105,工控机104分别连接激光雷达和RTK/SINS单元,Cortex-M3内核控制芯片105连接无线通信模块。本实施例中,Cortex-M3内核控制芯片105采用STM32F103ARM。在某些实施例中,工控机104负责实时采集RTK/INS、激光雷达、图像、热成像仪等数据,通过TCP/IP协议将刀闸、仪表等相关设备信息和机器人实时运行状态等信息传输至后台管理服务器200,供相关人员进行监控。在某些实施例中,定位导航模块101还包括超声波单元。Cortex-M3内核控制芯片105用于实现无线遥控解码、电机驱动、电池管理、超声波避障、报警指示等功能。
无线通信模块102为2.4G无线遥控模块,具有NRF24L01无线通信接口。在某些实施例中,该导航还包括用于机器人移动站的无线遥控器,与无线通信模块对应连接。
无线遥控器为命令发送模块,采用工业、科学和医疗ISM免费频段,NRF24L012.4G无线通信模块设计,控制器采用STM32F407 ARM Cortex-M3内核控制芯片,控制器采用STM32F407 ARM Cortex-M3内核控制芯片,用于近程操控巡检机器人前进和转向等功能。在构建地图命令模式下,可以通过遥控操作机器人沿待巡检指定轨道运行,实时记录路径定位数据来构建全局地图。命令发送模块设有前进、后退、前左转、前右转和紧急刹车等命令帧,并在软件中预留其他功能命令接口。每帧数据宽度设为5字节,NRF24L01自带数据校验,如果传输失败可以设定重新发送次数,考虑到使用场合和高传输波特率,故在帧格式设计中无需进行CRC等相关校验算法。具体帧格式设计如表1所示。
表1
前两个字节为帧头,后面三个字节为命令帧、数据帧长度和数据帧。如图4和图5所示,分别为遥控收发工作流程。命令发送模块根据按下的键值将遥控命令打包成完整帧格式,再将数据包逐字节发送出去。巡检机器人机身上携带的无线接收模块为命令接收解码模块,接收到发送模块发送的命令后,对遥控命令进行帧头检测和解码,最后执行相应的动作。
本实施例的RTK/SINS单元采用R60系列的双天线定位、定向型高精度接收机,包括定位天线和测向天线,如图3所示,定位天线和测向天线间的距离大于1m,静态定位精度达±(2.5+1×10-6×D)mm,具有较佳效果。RTK/SINS单元实现定位时,采用的是载波相位差分技术,基站将采集到的载波相位发送给移动站,经解算得到精确的差分解。基站和移动站之间通信采用大功率电台设备。基站安装在空旷的楼顶或其他较高的空旷位置,移动站安装在机器人机载体上对机器人进行实时定位、测向和测速。
本实施例采用DE01激光雷达,测量最远半径距离可达15m,对于正常巡检路面已能满足局部地图构建需求。该雷达通过发射近红外光,遇物体反射,传感器通过对光线发射和接收时间差或相位差进行解算得到机器人与障碍物之间的距离。安装于机器人机体最前方,且离地面高度为20cm~30cm,效果较佳。
二、巡检机器人运动物理模型
由于较多巡检场合的路面较为平坦和规则,可将WGS-84坐标系巡检机器人定位坐标用高斯变换算法转换至二维平面坐标系,对机器人进行运动模型建立。以机器人重心为载体坐标原点,机体纵轴方向为机器人y轴方向,以机器人前进方向右侧为x轴正方向。机器人姿态由两侧的车轮独立控制,通过协调两车轮的不同速度,可以实现机器人原地转动、沿直线行驶、转向或者其他轨迹运动。
如图2所示,为差动转向巡检机器人运动物理模型示意图。根据几何学原理,容易得到差动转向机器人的运动方程。R表示机器人运动轨迹的瞬时曲率半径,W表示机器人的宽度,ψ表示两坐标系之间的夹角。根据此模型示意图,建立相应的机器人机体运动模型。载体坐标系和地理坐标系之间采用旋转矩阵进行转换,将机体运动模型转换成地理坐标系下离散化运动模型。
三、导航控制
上述巡检机器人导航***改变传统的磁道轨等导航方式,采用带惯导的RTK北斗定位设计进行定位和导航,采用激光雷达进行避障,基于全局地图与局部地图相结合的导航地图、预瞄PID全局导航算法以及人工势场解算法实现全局-局部组合导航,实现优势互补、增强环境鲁棒性,如图6。采用扩展卡尔曼滤波将带里程计的惯导模块和RTK设备进行数据融合,解决了因信号遮挡而造成的定位失败问题。惯导存在长时间累计误差,又需要RTK设备进行精确定位、定向调整,两者优势互补。
全局地图的构建具体为:机器人移动站接收遥控指令,沿待巡检指定轨道运行,RTK/SINS单元实时记录路径定位数据,形成全局地图。
利用RTK/INS设备创建高精度全局环境地图,需要将全局地图路段和节点信息存储到数据库。RTK输出数据帧格式为NMEA-0183格式,对其进行解码得到经纬度信息。NMEA-0183主要包括GPGGA、GPRMC和PPNAV等数据帧。其中GPRMC包含推荐定位信息,PPNAV为惯导输出数据。在构建全局地图、机器人定位和机器人导航时,需要对GPRMC和PPNAV数据帧解码。全局地图采用存储道路拓扑结构离散点的方式,调用SQL语句操作Access数据库将RTK定位数据存放在数据库中。道路节点表中存储的每个节点对应的经纬度信息是WGS-84大地坐标系,而全局数字地图的构建通常采用的是平面坐标系。在上位机读取和显示节点信息时,选用高斯转换算法将WGS-84大地坐标(L,B)转换为椭球体相对应的高斯平面坐标系,然后将高斯平面坐标系通过旋转和平移矩阵与机体坐标系之间进行相互转换。
局部地图的构建具体为:获取激光雷达数据,对该激光雷达数据进行中值滤波,获得障碍物离散数据点,设定一最短距离作为聚类的阈值距离,根据该阈值距离对障碍物离散数据点进行聚类,获得多个簇,对各个簇进行曲线拟合,得到障碍物边缘离散点,形成局部地图;且进行聚类时,删除数据点数目小于设定的聚类数目阈值的簇。
局部地图构建采用激光雷达读取机器人与障碍物之间的距离和角度信息,实时、动态绘制而成。激光雷达读取的是分辨率为1°、范围为360°的离散数据点,需要对返回的数据进行处理才能表达出障碍物轮廓信息。
为表达出障碍物边缘信息,首先要对激光雷达数据进行中值滤波,滤除因机器人行进过程中抖动带来的影响。然后设定最短距离作为聚类的阈值距离,根据该阈值对各数据帧进行以距离为依据的简单聚类算法,并去除数据点不足N的聚类。激光雷达扫描角度分辨率为1°恒定值,距离越远,则同一障碍物被扫描到的信息点越少,甚至在距离过远时,单圈扫描而产生分辨率上的盲区,所以N值大小需根据实际设定距离递减。由于巡检机器人车速较低,根据经验和理论计算选取N值。如图7所示,为离散的数据点聚类前后对比图。
图(7a)为没有聚类的路沿和障碍物离散点,虽能看出大致轮廓,但机器无法识别道路信息,不进行聚类容易造成机器人无法规划出最优路径。图(7b)为经过聚类算法处理的路沿和障碍物离散点,基本能看出障碍物轮廓信息,为便于观察,同一聚类的离散点被直线相连。
如果要让机器人识别障碍物并安全避障,还需要对各个聚类进行曲线拟合,得到较为密集的障碍物边缘离散点。拟合方式、聚类数目阈值Ncluster、聚类的阈值距离deltad选取的不同对障碍物边缘的表达程度也有所不同。由图8中拟合结果的两两对比可以看出,整体曲线拟合所得障碍物边缘较为圆滑,分段线性拟合得到的障碍物边缘较为真实,更能凸显障碍物的实际形状。由图8中(8d)和(8f)可以看出当距离阈值系数过小时较远处的障碍物边缘出现丢失情况,所以应适当调整聚类距离阈值系数;(8b)和(8d)可以看出,聚类数据点个数较小时能更完整描述障碍物信息,聚类数据点个数过大时会丢失部分障碍物信息,不同聚类数据点阈值对障碍物恢复也存在较大影响。本实施例选择deltad=10、Ncluster=3、分段线性拟合的条件拟合出的障碍物边缘和路段信息,获得较为可靠的结果。
RTK设备在强磁环境中容易遭受干扰,采用扩展卡尔曼滤波将带里程计的惯导模块和RTK设备进行数据融合,解决了因信号遮挡而造成的定位失败问题。惯导存在长时间累计误差,又需要RTK设备进行精确定位、定向调整,两者优势互补。
如图9所示,为预瞄PID控制算法原理框图。预瞄PID控制算法策略的思想为:将采用RTK设备获取的全局高精度地图路径作为机器人预瞄的依据,从工控机的数据库中实时获取路经坐标和航向角信息,经仿人工预瞄和位置、角度PID调整沿预期巡检路径行走的策略。
移动巡检机器人行走在有不确定障碍物的巡检路线上,如果单纯采用预瞄PID控制算法,很可能会发生碰撞造成停机甚至损坏。人工势场法是在局部路径规划中是性能较好、鲁棒性较强的一种方法,采用人工势场算法进行路径规划的激光雷达避障法,较单纯避障***可以避免因偏离路线而停机的缺陷。将目标点设为与障碍物较远处的预瞄点,机器人经路径规划到达目标点后,将进入下个预瞄点继续执行预瞄PID控制策略。为此,采用人工势场法进行局部地图路径规划实现避障。
人工势场法的前提是假设机器人在一种虚拟的力场下运动。其力场有两种:引力场和斥力场。其中机器人需要前往的坐标点称为目标点,产生引力效果。环境中出现的障碍物产生斥力场,对机器人产生虚拟斥力的效果。引力场和斥力场均与距离有关,当机器人与障碍物逐渐接近时,该算法将迅速产生巨大的斥力场,从而防止机器人与障碍物发生碰撞;当机器人与目标点较远时,算法产生的引力场将对机器人产生巨大的引力作用,从而引导机器人以最短路径前往目标点。机器人在巡检路径上每一点受到合力为机器人在该点所受到的斥力和引力之和。引力和斥力可以通过引力场和斥力场对距离的导数计算得到。
实验通过车载激光雷达采集多组实验数据,对实验数据进行聚类、拟合、栅格化后,模拟仿真路径规划避障实验,取栅格步进长度为5cm。如图10所示,为机器人在各种不同路况下避障路径规划图,其中“方框”为机器人起始点,“加号”为机器人目标点。
图(10a)为直线道路,前方有处障碍物,将障碍物后方的预瞄点坐标设为目标点,机器人根据周围障碍物分布情况顺利抵达目标点,进入无障碍区,然后继续执行全局预瞄PID算法,仿真行走路径长度为1461.02cm。
图(10b)为较为空旷的场地,环境中设有几处障碍点,将目标点设置到障碍点后方,可以看出机器人能绕过障碍,到达目标点,仿真行走路径长度为1952.70cm。
图(10c)为道路转弯路段,从机器人运动轨迹可以看出机器人绕过障碍,进入转折路段,仿真行走路径长度为237.70cm。
可以看出该***设计能满足机器人导航需求,具有环境鲁棒性强、实时性高等优点。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种基于RTK北斗和激光雷达的巡检机器人导航***,其特征在于,包括采用无线路由组网通信的机器人移动站和后台管理服务器,所述机器人移动站包括机器人机体以及设置于机器人机体上的控制模块、定位导航模块、无线通信模块和电源管理模块,所述控制模块分别连接定位导航模块、无线通信模块和电源管理模块,所述定位导航模块包括激光雷达和RTK/SINS单元。
2.根据权利要求1所述的基于RTK北斗和激光雷达的巡检机器人导航***,其特征在于,所述控制模块包括通过串口通信连接的工控机和Cortex-M3内核控制芯片,所述工控机分别连接激光雷达和RTK/SINS单元,所述Cortex-M3内核控制芯片连接无线通信模块。
3.根据权利要求1所述的基于RTK北斗和激光雷达的巡检机器人导航***,其特征在于,所述RTK/SINS单元包括定位天线和测向天线,所述定位天线和测向天线间的距离大于1m。
4.一种利用如权利要求1所述的巡检机器人导航***实现全局和局部结合导航的方法,其特征在于,该方法通过构建的全局地图与局部地图相结合的导航地图实现导航,具体为:
获取RTK/SINS单元的输出数据,进行卡尔曼滤波,融合输出所述机器人移动站的状态参数,基于该状态参数和全局地图采用预瞄PID控制策略实现全局导航控制;根据RTK/SINS单元输出的惯导数据、激光雷达采集的数据以及局部地图,采用人工势场法实现局部避障控制,并实时更新局部地图。
5.根据权利要求4所述的方法,其特征在于,所述全局地图的构建具体为:
机器人移动站接收遥控指令,沿待巡检指定轨道运行,RTK/SINS单元实时记录路径定位数据,形成全局地图。
6.根据权利要求4所述的方法,其特征在于,所述局部地图的构建具体为:
获取激光雷达数据,对该激光雷达数据进行中值滤波,获得障碍物离散数据点,设定一最短距离作为聚类的阈值距离,根据该阈值距离对所述障碍物离散数据点进行聚类,获得多个簇,对各个簇进行曲线拟合,得到障碍物边缘离散点,形成局部地图;
进行聚类时,删除数据点数目小于设定的聚类数目阈值的簇。
CN201710801741.3A 2017-09-07 2017-09-07 基于rtk北斗和激光雷达的巡检机器人导航***及方法 Pending CN107817509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710801741.3A CN107817509A (zh) 2017-09-07 2017-09-07 基于rtk北斗和激光雷达的巡检机器人导航***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710801741.3A CN107817509A (zh) 2017-09-07 2017-09-07 基于rtk北斗和激光雷达的巡检机器人导航***及方法

Publications (1)

Publication Number Publication Date
CN107817509A true CN107817509A (zh) 2018-03-20

Family

ID=61600899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710801741.3A Pending CN107817509A (zh) 2017-09-07 2017-09-07 基于rtk北斗和激光雷达的巡检机器人导航***及方法

Country Status (1)

Country Link
CN (1) CN107817509A (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510734A (zh) * 2018-03-30 2018-09-07 深圳市金溢科技股份有限公司 一种路侧单元及一种路侧单元的车辆信息匹配方法
CN108921328A (zh) * 2018-06-07 2018-11-30 国网上海市电力公司 一种基于电力巡线网格图密集度的最优路径确定方法
CN109031373A (zh) * 2018-06-08 2018-12-18 北京航天光华电子技术有限公司 一种变电站巡检机器人导航***及方法
CN109341688A (zh) * 2018-09-05 2019-02-15 南京理工大学 一种基于构造顺序的地图调用定位算法
CN109445441A (zh) * 2018-12-14 2019-03-08 上海安吉四维信息技术有限公司 3d激光导航***、自动引导运输车及工作方法
CN109557912A (zh) * 2018-10-11 2019-04-02 同济大学 一种自动驾驶特种作业车辆的决策规划方法
CN109596078A (zh) * 2019-01-28 2019-04-09 吉林大学 多信息融合路面谱实时测试***和测试方法
CN109782756A (zh) * 2018-12-29 2019-05-21 国网安徽省电力有限公司检修分公司 具有自主绕障行走功能的变电站巡检机器人
CN109910008A (zh) * 2019-03-14 2019-06-21 烟台市广智微芯智能科技有限责任公司 用于数据型激光雷达机器人的避障预警***和预警方法
CN109947109A (zh) * 2019-04-02 2019-06-28 北京石头世纪科技股份有限公司 机器人工作区域地图构建方法、装置、机器人和介质
CN110187372A (zh) * 2019-06-20 2019-08-30 北京联合大学 一种低速无人车园区内组合导航方法及***
CN110222761A (zh) * 2019-05-31 2019-09-10 中国民航大学 基于数字地标地图的室内定位***及室内定位方法
CN110530366A (zh) * 2019-08-08 2019-12-03 广东电网有限责任公司 一种输电线路建模的航线规划***和方法
CN110806585A (zh) * 2019-10-16 2020-02-18 北京理工华汇智能科技有限公司 一种基于树干聚类跟踪的机器人定位方法及***
CN111025366A (zh) * 2019-12-31 2020-04-17 芜湖哈特机器人产业技术研究院有限公司 基于ins及gnss的网格slam的导航***及方法
CN111857121A (zh) * 2020-03-20 2020-10-30 北京国泰蓝盾科技有限公司 基于惯导和激光雷达的巡逻机器人行走避障方法及***
CN111906772A (zh) * 2020-04-28 2020-11-10 宁波大学 一种基于工业机器人的智能产品加工方法
CN112130132A (zh) * 2020-09-11 2020-12-25 广州大学 基于探地雷达和深度学习的地下管线探测方法和***
CN112162294A (zh) * 2020-10-10 2021-01-01 北京布科思科技有限公司 一种基于激光传感器的机器人结构检测方法
CN112462437A (zh) * 2020-10-20 2021-03-09 中科巨匠人工智能技术(广州)有限公司 一种深部雷达探测***
CN113190019A (zh) * 2021-05-26 2021-07-30 立得空间信息技术股份有限公司 一种基于虚拟仿真的巡检机器人任务点布置方法及***
CN113885544A (zh) * 2021-10-12 2022-01-04 中科开创(广州)智能科技发展有限公司 杆塔巡检机器人的控制方法、装置和计算机设备
CN113885523A (zh) * 2021-10-29 2022-01-04 北京红山信息科技研究院有限公司 巡检机器人、及巡检***
WO2022005825A1 (en) * 2020-07-02 2022-01-06 Saudi Arabian Oil Company Automation in a robotic pipe coating system
CN113945956A (zh) * 2021-10-15 2022-01-18 北京路凯智行科技有限公司 车载定位***以及包括其的矿山车辆
CN114047755A (zh) * 2021-11-04 2022-02-15 中南大学 农药喷洒机器人导航规划方法、计算机装置及程序产品
CN114137988A (zh) * 2021-12-01 2022-03-04 山东新坐标智能装备有限公司 机器人路径导航纠偏方法、***、及存储介质
CN115439949A (zh) * 2022-08-30 2022-12-06 中建三局智能技术有限公司 机器人自动巡检方法、装置、设备及存储介质
CN115617053A (zh) * 2022-12-19 2023-01-17 松灵机器人(深圳)有限公司 障碍物遍历方法、装置、割草机器人以及存储介质
CN115774280A (zh) * 2022-11-22 2023-03-10 哈尔滨师范大学 一种多源融合定位导航方法、电子设备及存储介质
CN116476099A (zh) * 2023-06-21 2023-07-25 中数智科(杭州)科技有限公司 一种列车巡检机器人控制***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535070A (zh) * 2014-12-26 2015-04-22 上海交通大学 高精细地图数据结构、采集和处理***及方法
CN106598039A (zh) * 2015-10-14 2017-04-26 山东鲁能智能技术有限公司 一种基于激光雷达的变电站巡检机器人避障方法
CN106707322A (zh) * 2016-12-30 2017-05-24 立得空间信息技术股份有限公司 基于rtk/sins的高动态定位定姿***及方法
CN106843212A (zh) * 2017-02-08 2017-06-13 重庆长安汽车股份有限公司 自动驾驶基于偏航角修正的车辆应急辅助定向***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535070A (zh) * 2014-12-26 2015-04-22 上海交通大学 高精细地图数据结构、采集和处理***及方法
CN106598039A (zh) * 2015-10-14 2017-04-26 山东鲁能智能技术有限公司 一种基于激光雷达的变电站巡检机器人避障方法
CN106707322A (zh) * 2016-12-30 2017-05-24 立得空间信息技术股份有限公司 基于rtk/sins的高动态定位定姿***及方法
CN106843212A (zh) * 2017-02-08 2017-06-13 重庆长安汽车股份有限公司 自动驾驶基于偏航角修正的车辆应急辅助定向***及方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
上海联适导航技术有限公司: "《http://allynav.cn/e/action/ShowInfo.php?classid=13&id=11#ecms》", 30 January 2016 *
姜勇: "一种汽车自动驾驶的方向与车速控制算法设计", 《科学技术与工程》 *
王可之: "基于Pioneer3-AT的变电站巡检控制***设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王国利: "《地面激光点云模型构建原理》", 30 June 2017, 测绘出版社 *
程磊: "《移动机器人***及其协同控制》", 31 December 2013, 武汉:华中科技大学出版社 *
韩峰: "《基于点云信息的既有铁路轨道状态检测与评估技术研究》", 31 December 2016, 武汉大学出版社 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510734A (zh) * 2018-03-30 2018-09-07 深圳市金溢科技股份有限公司 一种路侧单元及一种路侧单元的车辆信息匹配方法
CN108921328A (zh) * 2018-06-07 2018-11-30 国网上海市电力公司 一种基于电力巡线网格图密集度的最优路径确定方法
CN108921328B (zh) * 2018-06-07 2022-01-07 国网上海市电力公司 一种基于电力巡线网格图密集度的最优路径确定方法
CN109031373A (zh) * 2018-06-08 2018-12-18 北京航天光华电子技术有限公司 一种变电站巡检机器人导航***及方法
CN109341688A (zh) * 2018-09-05 2019-02-15 南京理工大学 一种基于构造顺序的地图调用定位算法
CN109557912A (zh) * 2018-10-11 2019-04-02 同济大学 一种自动驾驶特种作业车辆的决策规划方法
CN109557912B (zh) * 2018-10-11 2020-07-28 同济大学 一种自动驾驶特种作业车辆的决策规划方法
CN109445441A (zh) * 2018-12-14 2019-03-08 上海安吉四维信息技术有限公司 3d激光导航***、自动引导运输车及工作方法
CN109782756A (zh) * 2018-12-29 2019-05-21 国网安徽省电力有限公司检修分公司 具有自主绕障行走功能的变电站巡检机器人
CN109596078A (zh) * 2019-01-28 2019-04-09 吉林大学 多信息融合路面谱实时测试***和测试方法
CN109910008A (zh) * 2019-03-14 2019-06-21 烟台市广智微芯智能科技有限责任公司 用于数据型激光雷达机器人的避障预警***和预警方法
CN109910008B (zh) * 2019-03-14 2020-08-28 烟台市广智微芯智能科技有限责任公司 用于数据型激光雷达机器人的避障预警***和预警方法
CN109947109B (zh) * 2019-04-02 2022-06-21 北京石头创新科技有限公司 机器人工作区域地图构建方法、装置、机器人和介质
CN109947109A (zh) * 2019-04-02 2019-06-28 北京石头世纪科技股份有限公司 机器人工作区域地图构建方法、装置、机器人和介质
CN110222761A (zh) * 2019-05-31 2019-09-10 中国民航大学 基于数字地标地图的室内定位***及室内定位方法
CN110222761B (zh) * 2019-05-31 2023-01-17 中国民航大学 基于数字地标地图的室内定位***及室内定位方法
CN110187372A (zh) * 2019-06-20 2019-08-30 北京联合大学 一种低速无人车园区内组合导航方法及***
CN110187372B (zh) * 2019-06-20 2021-11-02 北京联合大学 一种低速无人车园区内组合导航方法及***
CN110530366A (zh) * 2019-08-08 2019-12-03 广东电网有限责任公司 一种输电线路建模的航线规划***和方法
CN110806585A (zh) * 2019-10-16 2020-02-18 北京理工华汇智能科技有限公司 一种基于树干聚类跟踪的机器人定位方法及***
CN110806585B (zh) * 2019-10-16 2021-10-19 北京理工华汇智能科技有限公司 一种基于树干聚类跟踪的机器人定位方法及***
CN111025366A (zh) * 2019-12-31 2020-04-17 芜湖哈特机器人产业技术研究院有限公司 基于ins及gnss的网格slam的导航***及方法
CN111857121A (zh) * 2020-03-20 2020-10-30 北京国泰蓝盾科技有限公司 基于惯导和激光雷达的巡逻机器人行走避障方法及***
CN111906772A (zh) * 2020-04-28 2020-11-10 宁波大学 一种基于工业机器人的智能产品加工方法
CN111906772B (zh) * 2020-04-28 2022-04-08 宁波大学 一种基于工业机器人的智能产品加工方法
WO2022005825A1 (en) * 2020-07-02 2022-01-06 Saudi Arabian Oil Company Automation in a robotic pipe coating system
US11731281B2 (en) 2020-07-02 2023-08-22 Saudi Arabian Oil Company Automation in a robotic pipe coating system
CN112130132B (zh) * 2020-09-11 2023-08-29 广州大学 基于探地雷达和深度学习的地下管线探测方法和***
CN112130132A (zh) * 2020-09-11 2020-12-25 广州大学 基于探地雷达和深度学习的地下管线探测方法和***
CN112162294B (zh) * 2020-10-10 2023-12-15 北京布科思科技有限公司 一种基于激光传感器的机器人结构检测方法
CN112162294A (zh) * 2020-10-10 2021-01-01 北京布科思科技有限公司 一种基于激光传感器的机器人结构检测方法
CN112462437A (zh) * 2020-10-20 2021-03-09 中科巨匠人工智能技术(广州)有限公司 一种深部雷达探测***
CN112462437B (zh) * 2020-10-20 2022-10-04 中科巨匠人工智能技术(广州)有限公司 一种深部雷达探测***
CN113190019A (zh) * 2021-05-26 2021-07-30 立得空间信息技术股份有限公司 一种基于虚拟仿真的巡检机器人任务点布置方法及***
CN113885544A (zh) * 2021-10-12 2022-01-04 中科开创(广州)智能科技发展有限公司 杆塔巡检机器人的控制方法、装置和计算机设备
CN113945956A (zh) * 2021-10-15 2022-01-18 北京路凯智行科技有限公司 车载定位***以及包括其的矿山车辆
CN113885523A (zh) * 2021-10-29 2022-01-04 北京红山信息科技研究院有限公司 巡检机器人、及巡检***
CN114047755A (zh) * 2021-11-04 2022-02-15 中南大学 农药喷洒机器人导航规划方法、计算机装置及程序产品
CN114047755B (zh) * 2021-11-04 2023-12-19 中南大学 农药喷洒机器人导航规划方法、计算机装置
CN114137988A (zh) * 2021-12-01 2022-03-04 山东新坐标智能装备有限公司 机器人路径导航纠偏方法、***、及存储介质
CN115439949A (zh) * 2022-08-30 2022-12-06 中建三局智能技术有限公司 机器人自动巡检方法、装置、设备及存储介质
CN115774280A (zh) * 2022-11-22 2023-03-10 哈尔滨师范大学 一种多源融合定位导航方法、电子设备及存储介质
CN115774280B (zh) * 2022-11-22 2023-06-02 哈尔滨师范大学 一种多源融合定位导航方法、电子设备及存储介质
CN115617053A (zh) * 2022-12-19 2023-01-17 松灵机器人(深圳)有限公司 障碍物遍历方法、装置、割草机器人以及存储介质
CN116476099A (zh) * 2023-06-21 2023-07-25 中数智科(杭州)科技有限公司 一种列车巡检机器人控制***
CN116476099B (zh) * 2023-06-21 2023-08-29 中数智科(杭州)科技有限公司 一种列车巡检机器人控制***

Similar Documents

Publication Publication Date Title
CN107817509A (zh) 基于rtk北斗和激光雷达的巡检机器人导航***及方法
Gao et al. Review of wheeled mobile robots’ navigation problems and application prospects in agriculture
US11814079B2 (en) Systems and methods for identifying potential communication impediments
CN110111566A (zh) 轨迹预测方法、装置和存储介质
US9222786B2 (en) Methods and systems for creating digital transportation networks
CN109145677A (zh) 障碍物检测方法、装置、设备及存储介质
CN109946731A (zh) 一种基于模糊自适应无迹卡尔曼滤波的车辆高可靠融合定位方法
CN116929401A (zh) 确定路面特征的线表示的方法、***和计算机可读介质
CN103313389B (zh) 基于无线定位技术实现反向寻车停车控制的***及方法
US11680801B2 (en) Navigation based on partially occluded pedestrians
CN110146910A (zh) 一种基于gps与激光雷达数据融合的定位方法及装置
CN104952278B (zh) 一种基于地图的停车场车辆定位***及方法
WO2020174279A2 (en) Systems and methods for vehicle navigation
US20220383755A1 (en) Unmanned aerial vehicle positioning method based on millimeter-wave radar
CN104408972A (zh) 一种基于dgps的矿用车辆防碰撞装置及其控制方法
Tschopp et al. Hough $^ 2$ Map–Iterative Event-Based Hough Transform for High-Speed Railway Mapping
EP4204768A1 (en) Systems and methods for map-based real-world modeling
WO2021191683A1 (en) Systems and methods for optimizing map tile requests for navigation
CN111717244A (zh) 一种列车自动驾驶感知方法和***
CN116560357A (zh) 一种基于slam的隧道巡检机器人***及巡检控制方法
CN202305805U (zh) 一种无盲区车载gps跟踪定位***
CN112505724A (zh) 道路负障碍检测方法及***
CN115424468A (zh) 一种基于多摄像头融合的停车位检测***
CN115046541A (zh) 一种地下矿山环境下的拓扑地图构建与矿车定位***
Lu et al. A hybrid fusion algorithm for integrated INS/UWB navigation and its application in vehicle platoon formation control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180320