CN107806163A - 一种降雨时控制排水***中的污水汇入污水干管的方法 - Google Patents

一种降雨时控制排水***中的污水汇入污水干管的方法 Download PDF

Info

Publication number
CN107806163A
CN107806163A CN201711040022.0A CN201711040022A CN107806163A CN 107806163 A CN107806163 A CN 107806163A CN 201711040022 A CN201711040022 A CN 201711040022A CN 107806163 A CN107806163 A CN 107806163A
Authority
CN
China
Prior art keywords
facility
shunting
shunting facility
pipe
dirty pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711040022.0A
Other languages
English (en)
Other versions
CN107806163B (zh
Inventor
周超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Shengyu Smart Ecological Environmental Protection Co ltd
Original Assignee
Wuhan Shengyu Drainage Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Shengyu Drainage Systems Co Ltd filed Critical Wuhan Shengyu Drainage Systems Co Ltd
Priority to CN201711040022.0A priority Critical patent/CN107806163B/zh
Publication of CN107806163A publication Critical patent/CN107806163A/zh
Application granted granted Critical
Publication of CN107806163B publication Critical patent/CN107806163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • E03F1/001Methods, systems, or installations for draining-off sewage or storm water into a body of water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/02Arrangement of sewer pipe-lines or pipe-line systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F2201/00Details, devices or methods not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F2201/00Details, devices or methods not otherwise provided for
    • E03F2201/20Measuring flow in sewer systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sewage (AREA)

Abstract

本发明公开了一种降雨时控制排水***中的污水汇入污水干管的方法,本发明所述方法在最大限度利用现有资源的情况下,通过合理配置,将各个雨污处理单元内水质较差、污染严重的初雨通过分流设施的截污管排放至污水干管中,再进入污水处理厂进行处理,将水质较好、污染较小的中后期雨水通过分流设施的出水管排放至自然水体中或排放至自然水体的管路中,同时将与污水管路相连的污水管中的污水排放至污水干管中,再进入污水处理厂进行处理。可以将污水对各个雨污处理单元内的污染程度尽量降低,同时也使较干净的雨水排入自然水体,避免二者混合造成污水处理厂在雨天时的负荷加剧,从而使现有资源实现最优化配置。

Description

一种降雨时控制排水***中的污水汇入污水干管的方法
技术领域
本发明属于排水***调控技术领域,具体涉及一种降雨时控制排水***中的污水汇入污水干管的方法。
背景技术
当前社会,城市化发展越来越迅速,城市的面积越来越大,城市排水管网结构越来越复杂,城市水体处理***的处理压力越来越大。
传统的城市管网***都是采用一个大的雨水处理***负责一片很大的汇水区域,因为汇水区域过大,没有充分考虑到雨水在管道或是地表径流上的延迟时间,导致初期雨水和后期雨水大量混合。例如,某城市在靠近城市污水处理***的地区修建有调蓄池,假设M地区距离该调蓄池1Km,M地区内的城市雨水通过管网直接排放到调蓄池,M地区的城市初期雨水完全排放到调蓄池的时间为T1。对于超出该区域的距离调蓄池较远的地区,假设N地区距离调蓄池的直线距离为10km,N地区的城市初期雨水完全排放到调蓄池的时间为T2,从时间长短来看,T2显然要远远大于T1。而当调蓄池蓄满后,超出的雨水就开始自动排放到自然水体中,调蓄池从开始收集雨水到开始向自然水体排放的时间为T3。实际运行时,如果仅仅顾及M地区的雨水排放情况,即M地区的初期雨水能够通过调蓄池进入到污水处理***中、后期的洁净雨水能够排放到自然水体中,需要T3大于T1,一旦超出T3,调蓄池立马向自然水体排放,而此时N地区流向调蓄池的雨水还是污染很严重的初期雨水,即T3小于T2,向自然水体排放无疑会造成很严重的污染。
如果仅仅考虑到N地区的雨水排放情况,即T3大于T2,那N地区的初期雨水能够通过调蓄池进入到城市污水处理***中,得到很好的处理。但是对于M地区来说,M地区有大量的后期洁净雨水也在调蓄池排放N地区的初期雨水的时间内排放到了城市污水处理厂中,这样的排放情况会给城市污水***造成很大的处理压力。另外,实际运行时M地区和N地区的管网一般为连通情况,由于距离的不同,路途上的滞留作用,N地区的初期雨水可能会严重污染M地区的后期洁净雨水,也会导致雨水排放情况的不合理。而对于必须要排放到污水处理厂的污水管路中的生活污水能够排放到污水处理厂的流量势必受到限制,若发生内涝现象,则对区域内的污染大大提高。
目前,现有技术中已经提出了一种解决上述问题的技术方案,即通过采用分片处理的方式对城市管网***按照单元区域进行重新划分,但是目前的管网***通常是适用于晴天状态下,当雨水降临时,由于管网中污水处理厂的处理能力有限,污水干管的最大过流量有限;对于大雨、暴雨出现时,无法及时将各单元区域内的水体(例如生活污水、初期雨水和中后期雨水)同时排向污水处理厂,造成了各单元区域内不同程度的水涝灾害的出现。
发明内容
为了改善现有技术的不足,本发明的目的是提供一种降雨时控制排水***中的污水汇入污水干管的方法。该方法适用于降雨时流入污水干管的污水总量大于此刻污水干管可以流通的最大流量和/或污水处理厂可以处理的最大容量,所述方法可以有针对性地将具有不同污染程度的区域内的水体快速有效的排放处理。
本发明目的是通过如下技术方案实现的:
一种降雨时控制排水***中的污水汇入污水干管的方法,所述排水***包括按照区域划分的多个雨污处理单元和污水干管;所述雨污处理单元包括雨水管路和污水管路,以及与污水管路相连的污水管,与雨水管路相连的分流设施;所述分流设施包括截污管和出水管,每个分流设施中的截污管与污水干管相连,每个分流设施中的出水管与自然水体或与通往自然水体的管路相连;所述污水管与污水干管相连;所述排水***末端(即污水干管的末端)与污水处理厂相连;
假设***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,则Q取(Q1-Q3)和(Q2-Q3)中的最小值,其中,Q1为污水处理厂能够处理污水的最大流量,Q2为污水干管的最大流量,Q3为污水管的流量;
所述方法包括:
1)当降雨时,控制每个分流设施的截污管的流量,使每个分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择如下方法中的一种:
(a)控制每个分流设施的截污管的流量相同;
(b)按每个分流设施对应的汇水区域面积的比例来控制对应的每个分流设施的截污管的流量;
(c)按每个分流设施的截污管的流道面积的比例控制对应的每个分流设施的截污管的流量;
2)当某分流设施截污完毕时,则关闭对应分流设施的截污管,开启对应分流设施的出水管,控制设置在其他分流设施的截污管的流量,使其他分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择上述步骤1)中(a)、(b)和(c)中的一种。
根据本发明,所述方法还包括如下步骤:
3)当某分流设施内的水位高于警戒水位时,开启对应分流设施的出水管,水体通过出水管直接排放至自然水体或排放至与自然水体相连的管路。
根据本发明,所述污水干管末端通过调蓄***与污水处理厂相连,当调蓄***打开时,污水干管末端实际能接纳的雨水的最大流量Q为(Q2-Q3);当调蓄***关闭时,Q为(Q1-Q3)和(Q2-Q3)的最小值。
根据本发明,所述按各个分流设施的截污管的流道面积的比例控制对应的各个分流设施的截污管的流量是指,按各个分流设施的截污管的流道面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施截污管流道面积的比例与对应各个分流设施截污管分配的流量的比例相同。
根据本发明,所述按各个分流设施对应的汇水区域面积的比例来控制对应的各个分流设施的截污管的流量是指,按各个分流设施对应的汇水区域面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施对应的汇水区域面积的比例与对应的各个分流设施截污管分配的流量的比例相同。
根据本发明,所述污水干管沿线包括一个或多个调蓄***,所述调蓄***可以是串联或并联连接。所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
根据本发明,所述排水***还包括设置在各个分流设施的截污管上的水利开关和/或设置在各个分流设施的出水管上的水利开关。
根据本发明,所述排水***还包括控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
根据本发明,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置选自液位传感器、液位计、液位开关等。
根据本发明,所述各个分流设施的截污管上的水利开关和各个分流设施的出水管上的水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
根据本发明,根据各个分流设施对应汇水区域内所需要收集的初雨毫米数设定各个分流设施需要截流的初雨雨量L1,所述初雨雨量可以在该控制***的控制单元中设定。
根据本发明,所述监测雨量的装置为雨量计,其设置在分流设施内。
根据本发明,根据初期雨水的降雨时间和各个分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间设定各个分流设施的初雨降雨时间T1,所述初雨降雨时间可以在该控制***的控制单元中设定。
根据本发明,所述监测时间的装置为计时器,其设置在分流设施内。
根据本发明,所述截污完毕是指分流设施对应汇水区域内所需要收集的初雨毫米数达到该分流设施需要截流的初雨雨量L1,所述分流设施对应汇水区域内所需要收集的初雨毫米数可以根据天气和地域等因素进行选择,例如可以是5-20mm;或者,
所述截污完毕是指对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间达到该分流设施的初雨降雨时间T1,所述分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间可以根据天气和地域等因素进行选择,例如可以是5-40min。
根据本发明,所述按照区域划分没有一定限制,可涵盖较大区域,也可涵盖较小区域,例如可以按0.04-2平方公里的面积进行区域划分。
根据本发明,所述分流设施选自调蓄设施、分流井、截流井和弃流井中的一种或两种组合。
根据本发明,根据各个分流设施对应汇水区域内地势最低点在发生积水风险时的高度设定各个分流设施的警戒水位。
根据本发明,所述雨污处理单元还包括在线处理设施。
根据本发明,每个分流设施中的出水管通过在线处理设施与自然水体相连。
根据本发明,每个分流设施中的出水管通过调蓄设施与自然水体相连。
根据本发明,每个分流设施中的出水管通过调蓄设施和在线处理设施与自然水体。
根据本发明,所述调蓄设施可以是串联或并联多个调蓄设施;所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
根据本发明,所述在线处理设施可以是串联或并联的多个在线处理设施;所述在线处理设施包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
本发明还提供一种适用于上述方法的控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
根据本发明,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置为液位传感器、液位计、液位开关等。
本发明的有益效果:
(1)本发明所述方法在最大限度利用现有资源的情况下,通过合理配置,将各个雨污处理单元内水质较差、污染严重的初雨通过分流设施的截污管排放至污水干管中,再进入污水处理厂进行处理,将水质较好、污染较小的中后期雨水通过分流设施的出水管排放至自然水体中或排放至自然水体的管路中,同时将与污水管路相连的污水管中的污水排放至污水干管中,再进入污水处理厂进行处理。通过合理的分配来自于与污水管路相连的污水管中的污水和分流设施的截污管中的污水进入污水干管的量,可以将污水对各个雨污处理单元内的污染程度尽量降低,同时也使较干净的雨水排入自然水体,避免二者混合造成污水处理厂在雨天时的负荷加剧,从而使现有资源实现最优化配置。
(2)本发明的方法针对***中不同管路同一时间汇入污水干管的污水(尤其是指与污水管路相连的污水管中的生活污水和与雨水管路相连的截污管中的初期雨水)和雨水的污染程度不同,根据各个分流设施内的初雨雨量或初雨时间进行合理分配,有针对性地将具有不同污染程度的区域内的水体快速有效的进行排放处理,从而实现水体的合理排放。
(3)本发明的方法简单、操作容易。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。此外,应理解,在阅读了本发明所公开的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的保护范围之内。
实施例1
一种降雨时控制排水***中的污水汇入污水干管的方法,所述排水***包括按照区域划分的多个雨污处理单元和污水干管;所述雨污处理单元包括雨水管路和污水管路,以及与污水管路相连的污水管,与雨水管路相连的分流设施;所述分流设施包括截污管和出水管,每个分流设施中的截污管与污水干管相连,每个分流设施中的出水管与自然水体或与通往自然水体的管路相连;所述污水管与污水干管相连;所述排水***末端(即污水干管的末端)与污水处理厂相连;
假设***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,则Q取(Q1-Q3)和(Q2-Q3)中的最小值,其中,Q1为污水处理厂能够处理污水的最大流量,Q2为污水干管的最大流量,Q3为污水管的流量;
所述方法包括:
1)当降雨时,控制每个分流设施的截污管的流量,使每个分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择如下方法中的一种:
(a)控制每个分流设施的截污管的流量相同;
(b)按每个分流设施对应的汇水区域面积的比例来控制对应的每个分流设施的截污管的流量;
(c)按每个分流设施的截污管的流道面积的比例控制对应的每个分流设施的截污管的流量;
2)当某分流设施截污完毕时,则关闭对应分流设施的截污管,开启对应分流设施的出水管,控制设置在其他分流设施的截污管的流量,使其他分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择上述步骤1)中(a)、(b)和(c)中的一种。
在本发明的一个优选实施方式中,所述方法还包括如下步骤:
3)当某分流设施内的水位高于警戒水位时,开启对应分流设施的出水管,水体通过出水管直接排放至自然水体或排放至与自然水体相连的管路。
在本发明的一个优选实施方式中,所述污水干管末端通过调蓄***与污水处理厂相连,当调蓄***打开时,污水干管末端实际能接纳的雨水的最大流量Q为(Q2-Q3);当调蓄***关闭时,Q为(Q1-Q3)和(Q2-Q3)的最小值。
在本发明的一个优选实施方式中,所述按各个分流设施的截污管的流道面积的比例控制对应的各个分流设施的截污管的流量是指,按各个分流设施的截污管的流道面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施截污管流道面积的比例与对应各个分流设施截污管分配的流量的比例相同。
在本发明的一个优选实施方式中,所述按各个分流设施对应的汇水区域面积的比例来控制对应的各个分流设施的截污管的流量是指,按各个分流设施对应的汇水区域面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施对应的汇水区域面积的比例与对应的各个分流设施截污管分配的流量的比例相同。
在本发明的一个优选实施方式中,所述污水干管沿线包括一个或多个调蓄***,所述调蓄***可以是串联或并联连接。所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
在本发明的一个优选实施方式中,所述排水***还包括设置在各个分流设施的截污管上的水利开关和/或设置在各个分流设施的出水管上的水利开关。
在本发明的一个优选实施方式中,所述排水***还包括控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
在本发明的一个优选实施方式中,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置选自液位传感器、液位计、液位开关等。
在本发明的一个优选实施方式中,所述各个分流设施的截污管上的水利开关和各个分流设施的出水管上的水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
在本发明的一个优选实施方式中,根据各个分流设施对应汇水区域内所需要收集的初雨毫米数设定各个分流设施需要截流的初雨雨量L1,所述初雨雨量可以在该控制***的控制单元中设定。
在本发明的一个优选实施方式中,所述监测雨量的装置为雨量计,其设置在分流设施内。
在本发明的一个优选实施方式中,根据初期雨水的降雨时间和各个分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间设定各个分流设施的初雨降雨时间T1,所述初雨降雨时间可以在该控制***的控制单元中设定。
在本发明的一个优选实施方式中,所述监测时间的装置为计时器,其设置在分流设施内。
在本发明的一个优选实施方式中,所述截污完毕是指分流设施对应汇水区域内所需要收集的初雨毫米数达到该分流设施需要截流的初雨雨量L1,所述分流设施对应汇水区域内所需要收集的初雨毫米数可以根据天气和地域等因素进行选择,例如可以是5-20mm;或者,
所述截污完毕是指对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间达到该分流设施的初雨降雨时间T1,所述分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间可以根据天气和地域等因素进行选择,例如可以是5-40min。
在本发明的一个优选实施方式中,所述按照区域划分没有一定限制,可涵盖较大区域,也可涵盖较小区域,例如可以按0.04-2平方公里的面积进行区域划分。
在本发明的一个优选实施方式中,所述分流设施选自调蓄设施、分流井、截流井和弃流井中的一种或两种组合。
在本发明的一个优选实施方式中,根据各个分流设施对应汇水区域内地势最低点在发生积水风险时的高度设定各个分流设施的警戒水位。
在本发明的一个优选实施方式中,所述雨污处理单元还包括在线处理设施。
在本发明的一个优选实施方式中,每个分流设施中的出水管通过在线处理设施与自然水体相连。
在本发明的一个优选实施方式中,每个分流设施中的出水管通过调蓄设施与自然水体相连。
在本发明的一个优选实施方式中,每个分流设施中的出水管通过调蓄设施和在线处理设施与自然水体。
在本发明的一个优选实施方式中,所述调蓄设施可以是串联或并联多个调蓄设施;所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
在本发明的一个优选实施方式中,所述在线处理设施可以是串联或并联的多个在线处理设施;所述在线处理设施包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
实施例2
一种降雨时控制排水***中的污水汇入污水干管的方法,所述排水***包括按照区域划分的多个雨污处理单元和污水干管;所述雨污处理单元包括雨水管路和污水管路,以及与污水管路相连的污水管,与雨水管路相连的分流设施;所述分流设施包括截污管和出水管,每个分流设施中的截污管与污水干管相连,每个分流设施中的出水管与自然水体或与通往自然水体的管路相连;所述污水管与污水干管相连;所述排水***末端(即污水干管的末端)与污水处理厂相连;
所述排水***还包括设置在各个分流设施的截污管上的水利开关和/或设置在各个分流设施的出水管上的水利开关;所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;
假设***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,则Q取(Q1-Q3)和(Q2-Q3)中的最小值,其中,Q1为污水处理厂能够处理污水的最大流量,Q2为污水干管的最大流量,Q3为污水管的流量;
若所述污水干管末端通过调蓄***与污水处理厂相连,当调蓄***打开时,污水干管末端实际能接纳的雨水的最大流量Q为(Q2-Q3);当调蓄***关闭时,Q为(Q1-Q3)和(Q2-Q3)的最小值;
所述方法包括:
1)当降雨时,控制每个分流设施的截污管的流量,使每个分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择如下方法中的一种:
(a)控制各个分流设施的截污管的流量相同;即将***末端(即污水干管末端)实际能接纳的雨水的最大流量Q平均分配各个分流设施的截污管,使各个分流设施的截污管上的流量相同,且之和为Q;例如,***中包括三个分流设施,则这三个分流设施的截污管的流量均为Q/3;
(b)按各个分流设施对应的汇水区域面积的比例来控制对应的各个分流设施的截污管的流量;即将***末端(即污水干管末端)实际能接纳的雨水的最大流量Q按照各个分流设施对应的汇水区域面积的比例,来分配对应的各个分流设施的截污管的流量。例如,***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,***中包括三个分流设施,所述三个分流设施对应的汇水区域面积的比例为2:1:3,则三个分流设施的截污管的流量比应为2:1:3,即三个分流设施的截污管的流量分别为2Q/6、Q/6和3Q/6;
(c)按各个分流设施的截污管的流道面积的比例控制对应的各个分流设施的截污管的流量;即将***末端(即污水干管末端)实际能接纳的雨水的最大流量Q按照各个分流设施的截污管的流道面积的比例,来分配对应的各个分流设施的截污管的流量;例如,***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,***中包括三个分流设施,所述三个分流设施的截污管的流道面积的比例为4:5:6,则三个分流设施的截污管的流量比为4:5:6,即三个分流设施的截污管的流量分别为4Q/15、5Q/15和6Q/15;
2)当某分流设施截污完毕时,则关闭对应分流设施的截污管,开启对应分流设施的出水管,控制设置在其他分流设施的截污管的流量,使其他分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择上述步骤1)中(a)、(b)和(c)中的一种;
例如,***中包括三个分流设施,记为第一个分流设施、第二分流设施和第三分流设施,当第一分流设施达到设定的需要截流的初雨雨量L1时,此时认为第一分流设施截污完全,关闭第一分流设施的截污管上的水利开关,开启第一分流设施的出水管,对***末端(即污水干管末端)实际能接纳的雨水的最大流量Q重新分配,分配方法同步骤1)中的(a)、(b)和(c);
某段时间后,第二分流设施达到设定的需要截流的初雨雨量L1时,此时认为第二分流设施截污完全,关闭第二分流设施的截污管上的水利开关,开启第二分流设施的出水管,对***末端(即污水干管末端)实际能接纳的雨水的最大流量Q重新分配,分配方法同步骤1)中的(a)、(b)和(c);
3)当某分流设施内的水位高于警戒水位时,开启对应分流设施的出水管,水体通过出水管直接排放至自然水体或排放至与自然水体相连的管路。
实施例3
本实施例提供一种适用于实施例1或实施例2所述方法的控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
在本发明的一个优选实施方式中,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置为液位传感器、液位计、液位开关等。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种降雨时控制排水***中的污水汇入污水干管的方法,所述排水***包括按照区域划分的多个雨污处理单元和污水干管;所述雨污处理单元包括雨水管路和污水管路,以及与污水管路相连的污水管,与雨水管路相连的分流设施;所述分流设施包括截污管和出水管,每个分流设施中的截污管与污水干管相连,每个分流设施中的出水管与自然水体或与通往自然水体的管路相连;所述污水管与污水干管相连;所述排水***末端(即污水干管的末端)与污水处理厂相连;
假设***末端(即污水干管末端)实际能接纳的雨水的最大流量为Q,则Q取(Q1-Q3)和(Q2-Q3)中的最小值,其中,Q1为污水处理厂能够处理污水的最大流量,Q2为污水干管的最大流量,Q3为污水管的流量;
所述方法包括:
1)当降雨时,控制每个分流设施的截污管的流量,使每个分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择如下方法中的一种:
(a)控制每个分流设施的截污管的流量相同;
(b)按每个分流设施对应的汇水区域面积的比例来控制对应的每个分流设施的截污管的流量;
(c)按每个分流设施的截污管的流道面积的比例控制对应的每个分流设施的截污管的流量;
2)当某分流设施截污完毕时,则关闭对应分流设施的截污管,开启对应分流设施的出水管,控制设置在其他分流设施的截污管的流量,使其他分流设施的截污管的流量之和等于***末端(即污水干管末端)实际能接纳的雨水的最大流量Q,所述控制方法选择上述步骤1)中(a)、(b)和(c)中的一种。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括如下步骤:
3)当某分流设施内的水位高于警戒水位时,开启对应分流设施的出水管,水体通过出水管直接排放至自然水体或排放至与自然水体相连的管路。
3.根据权利要求1或2所述的方法,其特征在于,所述污水干管末端通过调蓄***与污水处理厂相连,当调蓄***打开时,污水干管末端实际能接纳的雨水的最大流量Q为(Q2-Q3);当调蓄***关闭时,Q为(Q1-Q3)和(Q2-Q3)的最小值。
4.根据权利要求1-3中任一项所述的方法,其特征在于,所述按各个分流设施的截污管的流道面积的比例控制对应的各个分流设施的截污管的流量是指,按各个分流设施的截污管的流道面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施截污管流道面积的比例与对应各个分流设施截污管分配的流量的比例相同。
优选地,所述按各个分流设施对应的汇水区域面积的比例来控制对应的各个分流设施的截污管的流量是指,按各个分流设施对应的汇水区域面积的比例,来分配对应的各个分流设施的截污管的流量,并使各个分流设施的截污管的流量之和等于Q。
优选地,所述各个分流设施对应的汇水区域面积的比例与对应的各个分流设施截污管分配的流量的比例相同。
5.根据权利要求1-4中任一项所述的方法,其特征在于,所述污水干管沿线包括一个或多个调蓄***,所述调蓄***可以是串联或并联连接。所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
6.根据权利要求1-5中任一项所述的方法,其特征在于,所述排水***还包括设置在各个分流设施的截污管上的水利开关和/或设置在各个分流设施的出水管上的水利开关。
7.根据权利要求1-6中任一项所述的方法,其特征在于,所述排水***还包括控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
优选地,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置选自液位传感器、液位计、液位开关等。
优选地,所述各个分流设施的截污管上的水利开关和各个分流设施的出水管上的水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
8.根据权利要求1-7中任一项所述的方法,其特征在于,根据各个分流设施对应汇水区域内所需要收集的初雨毫米数设定各个分流设施需要截流的初雨雨量L1,所述初雨雨量可以在该控制***的控制单元中设定。
优选地,所述监测雨量的装置为雨量计,其设置在分流设施内。
优选地,根据初期雨水的降雨时间和各个分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间设定各个分流设施的初雨降雨时间T1,所述初雨降雨时间可以在该控制***的控制单元中设定。
优选地,所述监测时间的装置为计时器,其设置在分流设施内。
9.根据权利要求1-8中任一项所述的方法,其特征在于,所述截污完毕是指分流设施对应汇水区域内所需要收集的初雨毫米数达到该分流设施需要截流的初雨雨量L1,所述分流设施对应汇水区域内所需要收集的初雨毫米数可以根据天气和地域等因素进行选择,例如可以是5-20mm;或者,
所述截污完毕是指对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间达到该分流设施的初雨降雨时间T1,所述分流设施对应汇水区域内初期雨水全部径流到各个分流设施截污管中所需要的时间可以根据天气和地域等因素进行选择,例如可以是5-40min。
优选地,所述按照区域划分可以按0.04-2平方公里的面积进行区域划分。
优选地,所述分流设施选自调蓄设施、分流井、截流井和弃流井中的一种或两种组合。
优选地,根据各个分流设施对应汇水区域内地势最低点在发生积水风险时的高度设定各个分流设施的警戒水位。
优选地,所述雨污处理单元还包括在线处理设施。
优选地,每个分流设施中的出水管通过在线处理设施与自然水体相连。
优选地,每个分流设施中的出水管通过调蓄设施与自然水体相连。
优选地,每个分流设施中的出水管通过调蓄设施和在线处理设施与自然水体。
优选地,所述调蓄设施可以是串联或并联多个调蓄设施;所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
优选地,所述在线处理设施可以是串联或并联的多个在线处理设施;所述在线处理设施包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
10.一种适用于权利要求1-9中任一项所述方法的控制***,所述控制***包括监测雨量的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关信号连接;所述监测装置用于监测雨量,生成雨量监测信号,将生成的雨量监测信号输送给控制单元,控制单元根据接收的雨量监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测时间的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上的信号连接;所述监测装置用于监测时间,生成时间监测信号,将生成的时间监测信号输送给控制单元,控制单元根据接收的时间监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度;或者,
所述控制***包括监测水体液位的装置和与其信号连接的控制单元;所述控制单元与各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关上信号连接;所述监测装置用于监测水体液位,生成水体液位监测信号,将生成的水体液位监测信号输送给控制单元,控制单元根据接收的水体液位监测信号控制各个分流设施的截污管上的水利开关和/或各个分流设施的出水管上的水利开关的开度。
优选地,所述监测雨量的装置选自雨量计等;所述监测时间的装置选自计时器等;所述监测水体液位的装置为液位传感器、液位计、液位开关等。
CN201711040022.0A 2017-10-30 2017-10-30 一种降雨时控制排水***中的污水汇入污水干管的方法 Active CN107806163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711040022.0A CN107806163B (zh) 2017-10-30 2017-10-30 一种降雨时控制排水***中的污水汇入污水干管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711040022.0A CN107806163B (zh) 2017-10-30 2017-10-30 一种降雨时控制排水***中的污水汇入污水干管的方法

Publications (2)

Publication Number Publication Date
CN107806163A true CN107806163A (zh) 2018-03-16
CN107806163B CN107806163B (zh) 2021-06-08

Family

ID=61582353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711040022.0A Active CN107806163B (zh) 2017-10-30 2017-10-30 一种降雨时控制排水***中的污水汇入污水干管的方法

Country Status (1)

Country Link
CN (1) CN107806163B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811735A (zh) * 2021-01-15 2021-05-18 上海电力大学 一种可调蓄污水处理装置及工艺、组合***
CN116768298A (zh) * 2023-08-10 2023-09-19 深圳市深水环境科技有限公司 一种基于污水处理监测的可调式控制方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108537A (ja) * 2007-10-29 2009-05-21 Sekisui Chem Co Ltd 雨水貯留設備
KR20150055807A (ko) * 2013-11-14 2015-05-22 주식회사 포스코건설 용수저장탱크 및 이를 이용한 용수제공방법
CN204401775U (zh) * 2015-01-14 2015-06-17 上饶市华晟环保技术有限公司 无人看守初期雨水收集池控制装置
CN105544698A (zh) * 2016-02-15 2016-05-04 武汉圣禹排水***有限公司 一种基于分流制管网的区域分片雨水弃流处理***
CN205314224U (zh) * 2015-12-14 2016-06-15 广东省建筑设计研究院 一种新型初雨水力自动控制弃流井
CN105888046A (zh) * 2016-04-19 2016-08-24 武汉圣禹排水***有限公司 新型防倒灌截流井控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108537A (ja) * 2007-10-29 2009-05-21 Sekisui Chem Co Ltd 雨水貯留設備
KR20150055807A (ko) * 2013-11-14 2015-05-22 주식회사 포스코건설 용수저장탱크 및 이를 이용한 용수제공방법
CN204401775U (zh) * 2015-01-14 2015-06-17 上饶市华晟环保技术有限公司 无人看守初期雨水收集池控制装置
CN205314224U (zh) * 2015-12-14 2016-06-15 广东省建筑设计研究院 一种新型初雨水力自动控制弃流井
CN105544698A (zh) * 2016-02-15 2016-05-04 武汉圣禹排水***有限公司 一种基于分流制管网的区域分片雨水弃流处理***
CN105888046A (zh) * 2016-04-19 2016-08-24 武汉圣禹排水***有限公司 新型防倒灌截流井控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811735A (zh) * 2021-01-15 2021-05-18 上海电力大学 一种可调蓄污水处理装置及工艺、组合***
CN116768298A (zh) * 2023-08-10 2023-09-19 深圳市深水环境科技有限公司 一种基于污水处理监测的可调式控制方法及***
CN116768298B (zh) * 2023-08-10 2023-11-07 深圳市深水环境科技有限公司 一种基于污水处理监测的可调式控制方法及***

Also Published As

Publication number Publication date
CN107806163B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN107605006B (zh) 一种排水***及排水控制方法
CN107620374A (zh) 一种降雨时控制排水***中的污水汇入污水干管的方法
CN107806163A (zh) 一种降雨时控制排水***中的污水汇入污水干管的方法
CN104234171B (zh) 基于面源污染控制的排水干渠水质调控***及方法
CN207761004U (zh) 一种带有溢流堰的分流井及包括该分流井的排水***
CN107869177A (zh) 一种降雨时控制排水***中各个片区截污管中的污水汇入污水干管和调蓄设施的方法
CN107806162A (zh) 一种降雨时控制排水***中各个分流设施截污管中的污水汇入污水干管的方法
CN107859139A (zh) 一种降雨时控制排水***中各个片区雨水管路和污水管路中的污水汇入污水干管的方法
CN107761896A (zh) 一种用于分流制排水管网***的面污染控制***与方法
CN207436183U (zh) 一种带有截污管、调蓄设施和在线处理设施的排水***
CN107620373A (zh) 一种降雨时控制排水***中各个片区截污管中的污水汇入调蓄设施的方法
CN107620372A (zh) 一种降雨时控制排水***中各个分流设施截污管中的污水汇入污水干管的方法
CN107859137A (zh) 一种降雨时控制排水***中各个片区截污管中的污水汇入调蓄设施的方法
CN107859138A (zh) 一种降雨时控制排水***中各个片区雨水管路和污水管路中的污水汇入调蓄设施的方法
CN107620367A (zh) 一种带有截污管和调蓄设施的排水***及排水控制方法
CN107761904A (zh) 一种降雨时控制排水***中各个片区中的污水汇入污水干管和调蓄设施的方法
CN107859136A (zh) 一种降雨时控制排水***中各个片区雨水管路和污水管路中的污水汇入污水干管的方法
CN103643735A (zh) 一种合流制管网溢流雨水拦截分流控制装置
CN107806154A (zh) 一种带有在线处理设施的排水***及排水控制方法
CN107587579A (zh) 一种带有截污管和雨水处理设施的排水***及排水控制方法
CN107675771A (zh) 一种降雨时控制排水***中各个片区雨水管路和污水管路中的污水汇入调蓄设施的方法
CN107675770A (zh) 一种降雨时控制排水***中各个片区截污管中的污水汇入污水干管的方法
CN207436182U (zh) 一种排水***
CN207760980U (zh) 一种带有截污管和调蓄设施的排水***
CN107761905A (zh) 一种降雨时控制排水***中各个片区中的污水汇入污水干管和调蓄设施的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 509 Weihu Road, Shamao Street, Hannan District, Wuhan City, Hubei Province, 430000

Patentee after: Wuhan Shengyu Smart Ecological Environmental Protection Co.,Ltd.

Address before: 430000, No. 189, Minli North Road, Wuhan Economic and Technological Development Zone, Hubei Province

Patentee before: WUHAN SHENGYU DRAINAGE SYSTEM Co.,Ltd.

CP03 Change of name, title or address
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method of controlling the sewage in the drainage system to flow into the sewage main during rainfall

Effective date of registration: 20230922

Granted publication date: 20210608

Pledgee: Hubei Science and Technology Financing Guarantee Co.,Ltd.

Pledgor: Wuhan Shengyu Smart Ecological Environmental Protection Co.,Ltd.

Registration number: Y2023980058076

PE01 Entry into force of the registration of the contract for pledge of patent right