CN107803700B - The machining center of manipulator automatic loading/unloading - Google Patents

The machining center of manipulator automatic loading/unloading Download PDF

Info

Publication number
CN107803700B
CN107803700B CN201711264769.4A CN201711264769A CN107803700B CN 107803700 B CN107803700 B CN 107803700B CN 201711264769 A CN201711264769 A CN 201711264769A CN 107803700 B CN107803700 B CN 107803700B
Authority
CN
China
Prior art keywords
feeding
cylinder
workpiece
manipulator
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711264769.4A
Other languages
Chinese (zh)
Other versions
CN107803700A (en
Inventor
余胜东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing Xiongxintai Hardware Products Co ltd
Original Assignee
Wenzhou Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Polytechnic filed Critical Wenzhou Polytechnic
Priority to CN201711264769.4A priority Critical patent/CN107803700B/en
Publication of CN107803700A publication Critical patent/CN107803700A/en
Application granted granted Critical
Publication of CN107803700B publication Critical patent/CN107803700B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1069Filtration systems specially adapted for cutting liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Workpieces (AREA)

Abstract

The present invention relates to field of machining, provide a kind of machining center of manipulator automatic loading/unloading, for carrying out drilling processing to workpiece, comprising: feeding machanism, feeding mechanism, clamping device, drilling sector, cutting fluid filter mechanism and receiving mechanism;Feeding machanism is used to provide workpiece to feeding mechanism for discharge position;Feeding mechanism is for will be sent to Working position for the workpiece of discharge position, and feeding mechanism is also used to for the workpiece of Working position to be sent to rewinding position, and feeding mechanism is also used in Working position workpiece pressing;Clamping device is used to workpiece being fixed on Working position;Drilling sector is used to carry out drilling processing to the workpiece of Working position;Receiving mechanism is for collecting the workpiece that feed device is sent to rewinding position.The machining center of the manipulator automatic loading/unloading is convenient to feeding, drilling and rewinding operation very simple is carried out to workpiece, can be improved operating efficiency, shortens the time-consuming of drilling process, promotes production capacity.

Description

Cutting machining center with automatic feeding and discharging mechanical arms
Technical Field
The invention relates to the field of machining, in particular to a cutting machining center with a manipulator capable of automatically feeding and discharging.
Background
In the prior art, the feeding and discharging of the drilling device are completed through different mechanisms, the operation is usually complex, the efficiency is low, and the productivity of automatic production is influenced. The mechanism is complex, the cost is high, and the universality to workpieces with different sizes is not high. In addition, the stability of automatic processing is still to be improved.
Therefore, in order to solve the above problems, it is necessary to provide a new cutting center with a robot for automatic loading and unloading.
Disclosure of Invention
The invention provides a novel cutting machining center with a manipulator capable of automatically feeding and discharging, which can meet the requirements of automatic production, high-efficiency feeding, high precision, good stability, simple structure and strong universality.
The invention provides a cutting machining center with a manipulator capable of automatically feeding and discharging, which is used for drilling and machining a workpiece and comprises the following components: the device comprises a feeding mechanism, a clamping mechanism, a drilling mechanism, a cutting fluid filtering mechanism and a receiving mechanism; the feeding mechanism is used for supplying workpieces to the feeding mechanism at a feeding position; the feeding mechanism is used for conveying the workpieces at the feeding position to a processing position, the feeding mechanism is also used for conveying the workpieces at the processing position to a receiving position, the feeding mechanism is also used for pressing the workpieces at the processing position, and the cutting fluid filtering mechanism is used for collecting scrap iron and filtering cutting fluid; the clamping mechanism is used for fixing the workpiece at the machining position; the drilling mechanism is used for drilling the workpiece at the machining position; the receiving mechanism is used for collecting the workpieces conveyed to the receiving position by the feeding device; the feeding mechanism further comprises a cross beam, a transverse moving cylinder, a feeding manipulator, a pressing manipulator and a material receiving manipulator; two ends of the cross beam are respectively close to the feeding mechanism and the receiving mechanism, and the middle point of the cross beam is positioned above the processing position; the transverse air cylinder is used for driving the feeding manipulator, the pressing manipulator and the receiving manipulator to move along the longitudinal extension direction of the cross beam; when the feeding mechanical arm is close to the feeding mechanism, the feeding mechanical arm can clamp the workpiece at the feeding position, and when the feeding mechanical arm is close to the machining position, the workpiece can be placed at the machining position; when the material pressing mechanical arm is positioned above the processing position, the material pressing mechanical arm can press or release the workpiece on the processing position; when the material receiving manipulator is close to the processing position, the workpiece at the processing position can be clamped, and when the material receiving manipulator is close to the material receiving mechanism, the workpiece can be placed at the material receiving position.
The automatic cutting machining center who goes up unloading of this manipulator carries out material loading, drilling and receipts material operation to the work piece very simply convenient, can improve the operating efficiency, shortens consuming time of drilling process, promotes the productivity.
Preferably, the cutting fluid filtering mechanism comprises a water receiving box, a filtering box and a water storage box, the table-board slide rail is positioned at the upper part of the water receiving box, the filtering box is positioned at the lower part of the water receiving box, and the water storage box is positioned at the lower part of the filtering box; the water receiving box comprises a water receiving chassis, rails arranged on the periphery of the water receiving chassis and an opening channel arranged on the water receiving chassis, guide plates for guiding the flow direction of cutting fluid are arranged on the periphery of the opening channel, and the guide plates are used for preventing the cutting fluid from flowing to the rails along the lower wall of the water receiving chassis; cutting fluid and scrap iron enter the filter box after passing through the opening channel, the scrap iron is left in the filter box, the cutting fluid enters the water storage box, and the cutting fluid in the water storage box is conveyed to the table top by the water pump; the filter box comprises a filter bottom plate, a filter front plate positioned in the front of the filter bottom plate, a filter rear plate positioned in the rear of the filter bottom plate and filter side plates positioned on two sides of the filter plate, wherein filter holes for circulating cutting fluid are formed in the filter bottom plate, and the positions of the filter holes are the lowest positions of the filter bottom plate; two handles are arranged on the outer side of the filtering front plate; the filtering front plate is arranged in an inclined mode; an observation port is arranged between the filtering front plate and the water storage box, and the filtering front plate is positioned at the upper part of the observation port.
Preferably, the feeding manipulator comprises a first cylinder, a second cylinder and a feeding clamping jaw, the first cylinder is used for driving the second cylinder and the feeding clamping jaw to move along the vertical direction, so that the feeding clamping jaw is close to or far away from the feeding position along the vertical direction, and the feeding clamping jaw is close to or far away from the processing position along the vertical direction, the second cylinder is fixedly connected with a piston rod of the first cylinder, and the second cylinder is used for enabling the feeding clamping jaw to clamp or loosen the workpiece.
Preferably, the material pressing manipulator comprises a third cylinder and a workpiece pressing block, and the third cylinder is used for driving the workpiece pressing block to move along the vertical direction, so that the workpiece pressing block presses or releases the workpiece at the processing position.
Preferably, the material receiving manipulator further comprises a fourth cylinder, a fifth cylinder, a sixth cylinder and a material receiving clamping jaw, wherein the fourth cylinder is used for driving the fifth cylinder, the sixth cylinder and the material receiving clamping jaw to move along the vertical direction, so that the material receiving clamping jaw is close to or far away from a processing position along the vertical direction, and the material receiving clamping jaw is close to or far away from a material receiving position along the vertical direction, the fifth cylinder is fixedly connected with a piston rod of the fourth cylinder, the fifth cylinder is used for driving the sixth cylinder and the material receiving clamping jaw to move along the horizontal direction and the vertical direction of the cross beam, so that the material receiving clamping jaw is close to or far away from the position along the direction, the sixth cylinder is fixedly connected with the piston rod of the fifth cylinder, and the sixth cylinder is used for enabling the clamping jaw to clamp or loosen the workpiece.
Preferably, still include the device pedestal, feeding mechanism, fixture, drilling mechanism and receiving agencies all set up on the device pedestal, the device pedestal includes base, mesa slide rail and support, the mesa passes through mesa slide rail slidable ground sets up on the base, the mesa is roughly horizontally set up and can slide horizontally, the support with base fixed connection.
Preferably, the feeding mechanism includes the feed base, the feed base with mesa fixed connection, the feeding mechanism is still including fixing the feed slide rail on the feed base, the feed slide rail with the mesa becomes certain angle setting.
Preferably, the bottom of feed slide rail is provided with stock stop, stock stop includes material blocking support and material blocking cylinder, can be used for blockking when the shelves material piston rod of material blocking cylinder stretches out the state the work piece is followed roll-off in the feed slide rail.
Preferably, both sides of feed slide rail below are provided with feed mechanism and material loading spout respectively, feed mechanism includes material loading cylinder and material loading support, the material loading support with feed slide rail fixed connection is used for blockking the follow the work piece of roll-off in the feed slide rail, the material loading cylinder is used for promoting by the work piece that the material loading support blockked gets into, the material loading slide rail one side of material loading slide rail still is provided with iron fillings and blocks the mechanism. So set up the iron fillings that produce when can blockking the drilling work piece and splash and influence stifled material loading slide rail.
Preferably, the clamping mechanism comprises a processing seat and a clamping seat, the processing seat comprises a plurality of layers, the layers are detachably connected with each other, the clamping seat is detachably fixed above the processing seat, the clamping seat is approximately in a box shape with an opening from the upper part, an opening is formed in the side wall of the clamping seat, and the height of the side wall of the clamping seat is smaller than that of the workpiece. The clamping mechanism can be adapted to workpieces with different sizes, and the universality of the cutting machining center for automatic feeding and discharging of the manipulator is improved.
Preferably, the drilling mechanism includes four drilling devices, the drilling device pass through bolt detachably fixed to on the mesa, the drilling device includes the base, be provided with a plurality of regulation holes on the base, the drilling device includes drilling motor and drilling head, the drilling motor is used for driving the high-speed rotation of drilling head and feeding forward.
Drawings
FIG. 1 is a perspective view of a machining center with robotic automatic loading and unloading according to one embodiment of the present invention;
FIG. 2 is a perspective view of the machining center with the robot arm feeding and discharging automatically shown in FIG. 1 with the bracket hidden;
FIGS. 3 and 7 are perspective views of a feeding mechanism of the cutting center with automatic loading and unloading of the robot shown in FIG. 1;
FIG. 4 is a perspective view of a feeding mechanism of the machining center with the robot shown in FIG. 1 for automatically feeding and discharging material;
FIG. 5 is a top view of the machining center with the robot arm shown in FIG. 1 feeding and discharging automatically with the bracket hidden;
FIG. 6 is a rear plan view of the machining center hidden support and feed mechanism of the robot of FIG. 1 for automatic loading and unloading;
FIG. 8 is a perspective view of a device base of a machining center with a robot for automatic loading and unloading according to an embodiment of the present invention;
FIG. 9 is a perspective view of a cutting fluid filtering mechanism of a machining center with a robot for automatically loading and unloading material according to an embodiment of the present invention;
fig. 10 is a perspective view of a water receiver of a cutting machining center with a robot capable of automatically feeding and discharging material according to an embodiment of the present invention.
Wherein,
1. cutting machining center with automatic feeding and discharging mechanical arms
10. Workpiece 20. device base
30. Feeding mechanism 40, feeding mechanism 50 and clamping mechanism
60. Drilling mechanism 70, receiving mechanism 201, base
203. Table top 205, table top slide rail 207 and support
301. Feeding base 303, feeding slide 305, feeding chute
307. Stock stop 309 stock stop support 311 stock stop cylinder
313. Feeding support 315, feeding cylinder 317, feeding mechanism
319. Feeding slide rail 321, scrap iron blocking mechanism 401 and feeding support
403a, b, legs 405, cross beam 407, traversing cylinder
409. Feeding manipulator 411, pressing manipulator 413 and receiving manipulator
415. Dovetail sliding table 417, first cylinder 419 and second cylinder
421. Feeding clamping jaw 423, third cylinder 425 and workpiece pressing block
427. Fourth cylinder 429, fifth cylinder 431, sixth cylinder
433. Material receiving clamping jaw 501, processing seat 503 and clamping seat
505. Opening 601, drilling device 603, base
605. Adjusting hole 607, drilling motor 609, and drilling head
Detailed Description
The present invention will be described in detail below with reference to specific embodiments shown in the drawings of the specification. These embodiments are not intended to limit the present invention, and simple modifications made by those skilled in the art according to these embodiments are included in the scope of the present invention.
Fig. 1 to 10 show a cutting center 1 for automatic loading and unloading of a spindle robot according to an embodiment of the present invention. Specifically, referring to fig. 1 and 2, the machining center 1 with automatic loading and unloading of a robot is used for drilling a workpiece 10. The cutting machining center 1 with the manipulator capable of automatically feeding and discharging comprises a device base 20, a feeding mechanism 30, a feeding mechanism 40, a clamping mechanism 50, a drilling mechanism 60, a receiving mechanism 70 and a cutting fluid filtering mechanism. The feeding mechanism 30, the feeding mechanism 40, the clamping mechanism 50, the drilling mechanism 60, the cutting fluid filtering mechanism and the receiving mechanism 70 are all arranged on the device base 20, and the device base 20 is used for providing support and protection. The feeding mechanism 30 is used to feed the workpieces 10 to the feeding mechanism 40 in a feeding position. The feeding mechanism 40 is used to convey the workpiece 10 at the feeding position to the processing position. The feeding mechanism 40 is also used to convey the work pieces 10 at the processing position to the receiving position. The feed mechanism 40 is also used to press the workpiece in the machining position. The clamping mechanism 50 is used to fix the workpiece 10 in the machining position. The drilling mechanism 60 is used for drilling the workpiece 10 in the machining position. The material receiving mechanism 70 is used for collecting the workpieces conveyed to the material receiving position by the feeding device 40. The cutting fluid filtering mechanism is used for collecting the scrap iron and filtering the cutting fluid.
With continued reference to fig. 1, the device housing 20 includes a base 201, a table 203, table slides 205, and a bracket 207. The base 201 is used to provide support. The table 203 has a substantially rectangular plate-like structure. The table 203 is slidably disposed on the base 201 by a table slide 205. The table 203 is disposed substantially horizontally and can slide horizontally. The bracket 207 is fixedly connected with the base 201. The feeding mechanism 30, the feeding mechanism 40, the clamping mechanism 50, the drilling mechanism 60 and the receiving mechanism 70 are all fixedly arranged on the table-board 203.
Fig. 3 and 7 show a feeding mechanism 30. The feed mechanism 30 includes a feed base 301. The feeding base 301 is fixedly connected with the table-board 203. The feeding mechanism 30 further comprises a feeding slide 303 fixed to the feeding base 301. The supply slide 303 is arranged at an angle to the table top 203. The supply slide 303 and the table top 203 are arranged inclined at an angle of approximately 30 to 45. So that the workpiece 10 slides automatically along the feed shoe. In this embodiment, the supply chute 303 has a substantially rectangular plate shape, and a plurality of supply chutes 305 are provided along the longitudinal extension direction thereof. The feed chute 305 is formed recessed downward from the upper surface of the feed slide 303. Preferably, the feed chutes 305 are arranged parallel to each other. In this embodiment, three feeding chutes 305 are provided on the feeding slide rail 303. The bottom end of the feeding slide rail 303 is provided with a material blocking mechanism 307. The material blocking mechanism 307 comprises a material blocking bracket 309 and a material blocking cylinder 311. The material blocking bracket 309 is transversely and fixedly arranged above the bottom end of the feeding slide rail 303. The material blocking cylinder 311 is arranged on the material blocking bracket 309. When the blocking piston rod 311a of the blocking cylinder 311 is in an extended state, the blocking piston rod can be used for blocking the workpiece 10 from sliding out of the feeding chute 305. A feeding mechanism 317 and a feeding chute 319 are respectively arranged at two sides below the feeding slide rail 303. Wherein, the feeding mechanism 317 comprises a feeding cylinder 315 and a feeding bracket 313. The feeding support 313 is fixedly connected with the feeding slide rail 303 and is used for blocking the workpiece 10 sliding out of the feeding slide rail 303. The feeding cylinder 315 is fixedly disposed on the feeding bracket 313. The loading piston rod of the loading cylinder 315 moves in a direction perpendicular to the longitudinal extension of the feeding slide 303 for pushing the workpiece 10 blocked by the loading bracket 313 into the loading slide 319 on the other side of the feeding slide 303. The feeding slide 319 is arranged at an angle to the table 203. The loading piston rod of the loading cylinder 315 pushes the workpiece 10 into the loading slide 319 from one side of the top end of the loading slide 319. The workpiece 10 pushed into the feeding slide rail 319 can slide down along the feeding slide rail 319 to the bottom end of the feeding slide rail 319 under the pushing of the mini pushing cylinder 322. The bottom end of the feeding slide rail 319 is the feeding position. The other side of the feeding slide rail 319 opposite to the feeding slide rail 303 is further provided with an iron scrap blocking mechanism 321 for blocking the feeding slide rail 319 from being affected by iron scrap splashing generated during workpiece drilling. The iron scrap blocking mechanism 321 is a baffle transversely arranged on one side of the feeding slide rail 319.
Referring to fig. 4, the feeding mechanism 40 includes a feeding bracket 401 fixedly attached to the table 203. The feeder carriage 401 comprises two legs 403a, 403 b. The lower ends of the legs 403a, 403b are fixedly disposed on the table 203. One of the legs 403a is disposed adjacent to the feeding mechanism 30, and the other leg 403b is disposed adjacent to the receiving mechanism 70. The feeder carriage 401 also includes a cross member 405 connecting the upper ends of the two legs 403a, 403 b. The cross beam 405 has two ends respectively adjacent to the feeding mechanism 30 and the receiving mechanism 70. The midpoint of the beam 405 is above the machining position.
As shown in fig. 4, the feeding mechanism 40 further includes a traverse cylinder 407, a feeding manipulator 409, a pressing manipulator 411, and a receiving manipulator 413. Wherein, walk cylinder 407 setting on crossbeam 405 violently for drive material loading manipulator 409, swager manipulator 411 and receive material manipulator 413 and remove along the lengthwise extending direction of crossbeam 405. When the feeding manipulator 409 approaches the feeding mechanism 30, the workpiece 10 at the feeding position can be gripped, and when the feeding manipulator 409 approaches the processing position, the workpiece 10 can be placed at the processing position; when the material pressing robot 411 is located above the processing position, the material pressing robot 411 may press or release the workpiece 10 at the processing position; when the material receiving manipulator 413 is close to the processing position, the workpiece 10 at the processing position can be gripped, and when the material receiving manipulator 413 is close to the material receiving mechanism 70, the workpiece 10 can be placed at the material receiving position. Specifically, a dovetail groove sliding table 415 is provided below the cross beam 405. The longitudinal extension direction of the dovetail groove sliding table 415 and the longitudinal extension direction of the cross beam 405 are parallel. The feeding manipulator 409, the pressing manipulator 411 and the receiving manipulator 413 are all arranged on the dovetail groove sliding table 415 and can be driven by the transverse air cylinder 407 to move along the dovetail groove sliding table 41.
With continued reference to fig. 4, the loading robot 409 includes a first cylinder 417, a second cylinder 419, and a loading jaw 421. The first cylinder 417 is suspended on the dovetail sliding table 415, and is configured to drive the second cylinder 419 and the feeding claw 421 to move in a direction perpendicular to the table 203, so that the feeding claw 421 is close to or away from the feeding position in a vertical direction, and the feeding claw 421 is close to or away from the processing position in the vertical direction. The piston rods of the second cylinder 419 and the first cylinder 417 are fixedly connected. The second cylinder 419 is used to cause the feeding claw 421 to clamp or unclamp the workpiece 10. Specifically, the traverse cylinder 407 drives the first cylinder 417 to move transversely to a position close to the feeding position, the first cylinder 417 drives the second cylinder 419 to move vertically to a position close to the feeding position, and the second cylinder 419 drives the feeding claw 421 to clamp the workpiece 10 located at the feeding position. Then the first cylinder 417 drives the second cylinder 419 to vertically move away from the feeding position, the traverse cylinder 407 drives the first cylinder traverse 417 to move away from the feeding position and approach the processing position, then the first cylinder 417 drives the second cylinder 419 to vertically move towards the processing position, and then the second cylinder 419 controls the feeding claw 421 to release the workpiece 10 to place the workpiece 10 at the processing position.
With continued reference to fig. 4, the material pressing robot 411 includes a third cylinder 423 and a workpiece pressing block 425. The third cylinder 423 is suspended on the dovetail sliding table 415 and is used for driving the workpiece pressing block 425 to move along a direction perpendicular to the table surface 203, so that the workpiece pressing block 425 presses or releases the workpiece 10 at the machining position. Specifically, after the feeding manipulator 409 delivers the workpiece 10 to the processing position, the traverse cylinder 407 drives the third cylinder 423 to move transversely to a position where the workpiece pressing block 425 is close to the processing position. Next, the third cylinder 423 drives the workpiece pressing block 425 to approach the processing position in the vertical direction, so that the workpiece pressing block 425 presses the workpiece 10 located at the processing position. After the workpiece 10 at the machining position is drilled, the third cylinder 423 drives the workpiece pressing block 425 to move away from the machining position along the vertical direction, so that the workpiece pressing block 425 loosens the workpiece 10.
With continued reference to FIG. 4, the material receiving robot 413 further includes a fourth cylinder 427, a fifth cylinder 429, a sixth cylinder 431, and a material receiving jaw 433. The fourth cylinder 427 is suspended on the dovetail groove sliding table 415 and is used for driving the fifth cylinder 429, the sixth cylinder 431 and the material receiving clamping jaw 433 to move along the direction perpendicular to the table surface 203, so that the material receiving clamping jaw 433 is close to or far away from the processing position along the vertical direction, and the material receiving clamping jaw 433 is close to or far away from the material receiving position along the vertical direction. The piston rods of the fifth and fourth cylinders 429, 427 are fixedly connected. The fifth cylinder 429 is used for driving the sixth cylinder 431 and the material receiving claw 433 to move along the direction which is parallel to the table-board 203 and is perpendicular to the cross beam 405, so that the material receiving claw 433 is close to or far away from the material receiving position along the direction. Piston rods of the sixth cylinder 431 and the fifth cylinder 429 are fixedly connected. The sixth cylinder 431 is used to cause the material receiving jaw 433 to clamp or unclamp the workpiece 10. Specifically, after the workpiece pressing block 425 loosens the workpiece 10 at the machining position, the traverse cylinder 407 drives the fourth cylinder 427 to transversely move to a position close to the machining position, the fourth cylinder 417 drives the fifth cylinder 429 to vertically move to a position close to the machining position, the fifth cylinder 429 drives the sixth cylinder 431 to move to a position close to the machining position along a direction parallel to the table top and perpendicular to the cross beam 405, and the sixth cylinder 431 drives the material receiving clamping jaws 433 to clamp the workpiece 10 at the machining position. Then fourth cylinder 427 drives fifth cylinder 429 vertical motion and keeps away from the feed position, violently walk cylinder 407 and drive the fourth cylinder and violently 427 keep away from the processing position and be close to the material receiving position, then fourth cylinder 417 drives fifth cylinder 429 vertical motion and is close to the material receiving position, fifth cylinder 429 drives sixth cylinder 431 and moves along the direction that is on a parallel with the mesa and perpendicular to crossbeam 405 and be close to the material receiving position, sixth cylinder 431 drives material receiving claw 433 and loosens work piece 10, places work piece 10 in the material receiving position. By adopting the structure, the workpiece can be simply and conveniently loaded and received, the operation efficiency can be improved, the time consumed in the drilling process can be shortened, and the productivity can be improved.
Referring to fig. 2, the chucking mechanism 50 includes a machining seat 501 and a chucking seat 503. The processing base 501 includes a plurality of layers, and the bottom layer is detachably fixed on the table 203. The layers are detachably connected with each other, and the height of the machining position can be adjusted by adjusting the number of the layers, so that the height of a workpiece to be machined is adjusted. By adopting the mode to arrange the clamping mechanism, the flexible adjustment of the position of the workpiece can be realized by using a low-cost simple structure, and the clamping mechanism is suitable for various different working conditions. The holder 503 is detachably fixed above the machining seat 501. The holder 503 has a substantially box shape opened from the upper portion, and the work 10 can be placed inside the holder 503 from above the holder 503. And an opening 505 is provided on the sidewall of the clamping seat 503. The drilling mechanism 60, the feeding jaw 421 and the receiving jaw 433 can go out from the opening 505 into the clamping seat 503 to drill the workpiece 10 or clamp the workpiece 10. The height of the sidewall of the clamping seat 503 is less than the height of the workpiece 10. The holder 503 may be replaced with another holder 503 according to the different work 10.
Referring to fig. 5 and 6, the drilling mechanism 60 includes four drilling devices 601. The drilling device 601 is detachably fixed to the table 203 by means of bolts. Specifically, the drilling device 601 includes a base 603, and a plurality of adjustment holes 605 are disposed on the base 603. The position of the drilling device 601 can be adjusted by fitting a number of different adjustment holes 605 with the table 203. And the adjustment holes 605 are flat holes, the relative positions of the bolts and holes that secure the drilling device can also be adjusted, thereby allowing the position of the drilling device 601 to be adjusted. Further, four drilling devices 601 are evenly distributed on the table 203. Adjacent drilling devices 601 are arranged at an angle of 90 °. More specifically, the rear ends of the two drilling devices 601 are disposed at two opposite corners of the table 203, and the front ends are disposed toward the center of the table 203. Two further drilling devices 601 are arranged beside the table-top 203 opposite the other two corners. Further, the feeding device and the receiving device are respectively disposed at one side of the drilling device 601 located at opposite corners of the table 203. The arrangement can provide enough space for installing the feeding device 40 and provide space for the feeding device 40 to work. Further, the drilling device 601 comprises a drilling motor 607 and a drilling head 609. The drilling motor 607 is used to drive the drill head 609 to rotate at high speed and feed forward.
Referring to fig. 5 and 6, the material receiving device 70 has a generally elongated chute shape. And the material receiving device 70 is arranged at an angle with the table-board 203. The upper end of the receiving manipulator 413 is close to the feeding mechanism 40, and the upper end is a receiving position for receiving the workpiece 10 received from the processing position by the receiving manipulator. After the material receiving robot 413 places the workpiece 10 at the receiving position, the workpiece 10 slides along the material receiving device 70 away from the table 203 for storage or further processing.
Referring to fig. 6, the extending directions X2 and X3 of the projection of the sliding direction of the workpiece 10 on the feeding slide 303 and the receiving mechanism 70 on the table 203 and the extending direction X1 of the drilling device 601 adjacent to the feeding slide 303 and the receiving mechanism 70 are substantially parallel. And the extension direction X4 of the cross beam 405 of the feeding mechanism 40 and the extension direction X1 of the drilling device 601 form an angle of approximately 45 °. And the center of the beam 405 is located directly above the machining position. By adopting the layout mode, the large enough drilling operation space can be ensured, the blockage of scrap iron in a narrow space is avoided, and the sufficient operation space of the feeding mechanism is also provided.
As shown in fig. 1 to 6, the operation process of the cutting machining center 1 with the robot capable of automatically feeding and discharging is as follows: the workpiece 10 slides down to the stop mechanism 307 from the upper end of the feeding slide rail 303, and after the stop cylinder 311 drives the stop piston rod 311a to retract, the workpiece 10 continues to slide down and leave the feeding slide rail 303. The feeding cylinder 315 pushes the exiting workpiece 10 into the feeding chute 319 and slides along the feeding chute 319 to the feeding position. Then, the traverse cylinder 407 drives the first cylinder 417 to move laterally to a position close to the feeding position, the first cylinder 417 drives the second cylinder 419 to move vertically to a position close to the feeding position, and the second cylinder 419 drives the feeding claw 421 to clamp the workpiece 10 at the feeding position. Then the first cylinder 417 drives the second cylinder 419 to vertically move away from the feeding position, the traverse cylinder 407 drives the first cylinder traverse 417 to move away from the feeding position and approach the processing position, then the first cylinder 417 drives the second cylinder 419 to vertically move towards the processing position, and then the second cylinder 419 controls the feeding claw 421 to release the workpiece 10 to place the workpiece 10 at the processing position. Then, the traverse cylinder 407 drives the third cylinder 423 to move transversely to a position where the workpiece pressing block 425 is close to the processing position. Next, the third cylinder 423 drives the workpiece pressing block 425 to approach the processing position in the vertical direction, so that the workpiece pressing block 425 presses the workpiece 10 located at the processing position. Next, the drilling device 601 performs drilling on the workpiece 10. After the workpiece 10 at the machining position is drilled, the third cylinder 423 drives the workpiece pressing block 425 to move away from the machining position along the vertical direction, so that the workpiece pressing block 425 loosens the workpiece 10. Then, the traverse cylinder 407 drives the fourth cylinder 427 to move transversely to a position close to the machining position, the fourth cylinder 417 drives the fifth cylinder 429 to move vertically to a position close to the machining position, the fifth cylinder 429 drives the sixth cylinder 431 to move to a position close to the machining position along a direction parallel to the table top and perpendicular to the cross beam 405, and the sixth cylinder 431 drives the material receiving claw 433 to clamp the workpiece 10 located at the machining position. Then fourth cylinder 427 drives fifth cylinder 429 vertical motion and keeps away from the feed position, violently walk cylinder 407 and drive the fourth cylinder and violently 427 keep away from the processing position and be close to the material receiving position, then fourth cylinder 417 drives fifth cylinder 429 vertical motion and is close to the material receiving position, fifth cylinder 429 drives sixth cylinder 431 and moves along the direction that is on a parallel with the mesa and perpendicular to crossbeam 405 and be close to the material receiving position, sixth cylinder 431 drives material receiving claw 433 and loosens work piece 10, places work piece 10 in the material receiving position. The workpiece 10 is then slid along the collector 70 away from the table 203 for storage or further processing. The above is the working principle and the operation process of the cutting machining center with the automatic feeding and discharging of the mechanical arm. The workpiece 10 is simply and conveniently fed, drilled and received by adopting the mode. Can improve the operating efficiency greatly, shorten consuming time of drilling process, promote the productivity.
Referring to fig. 8 to 10, the cutting fluid filtering mechanism includes a water-receiving box 212, a filter box 211, and a water storage box 210, the table slide rail 205 is located at an upper portion of the water-receiving box 212, the filter box 211 is located at a lower portion of the water-receiving box 212, and the water storage box 210 is located at a lower portion of the filter box 211. The water receiving box 212 includes a water receiving chassis 221, a rail 210 disposed around the water receiving chassis 221, and an opening channel 222 opened on the water receiving chassis 221, wherein a guide plate 223 for guiding the flow direction of the cutting fluid is disposed around the opening channel 222, and the guide plate 223 is used for preventing the cutting fluid from flowing to the rail 210 along the lower wall of the water receiving chassis 221. The cutting fluid and the scrap iron enter the filter box 211 after passing through the opening channel 222, the scrap iron is left in the filter box 211, the cutting fluid enters the water storage box 210, and the cutting fluid in the water storage box 210 is conveyed to the table top 203 through the water pump. The filter cassette 211 includes a filter base plate 214, a filter front plate 213 disposed in front of the filter base plate 214, a filter rear plate 215 disposed in rear of the filter base plate 214, and filter side plates 217 disposed at both sides of the filter plate 214, wherein the filter base plate 214 is provided with filter holes 216 for allowing cutting fluid to flow therethrough, and the filter holes 216 are disposed at the lowest position of the filter base plate 214. Two handles 218 are provided on the outer side of the filter front plate 213. The filtering front plate 213 is disposed in an inclined arrangement. A viewing port 219 is provided between the filter front plate 213 and the reservoir box 210, and the filter front plate 213 is positioned at an upper portion of the viewing port 219.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the present invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present invention should be subject to the claims.

Claims (10)

1. The utility model provides a cutting process center of unloading in manipulator automation for carry out drilling to the work piece, its characterized in that includes: the device comprises a feeding mechanism, a clamping mechanism, a drilling mechanism, a cutting fluid filtering mechanism and a receiving mechanism; the feeding mechanism is used for supplying workpieces to the feeding mechanism at a feeding position; the feeding mechanism is used for conveying the workpieces at the feeding position to a processing position, the feeding mechanism is also used for conveying the workpieces at the processing position to a receiving position, and the feeding mechanism is also used for pressing the workpieces at the processing position; the clamping mechanism is used for fixing the workpiece at the machining position; the drilling mechanism is used for drilling the workpiece at the machining position; the receiving mechanism is used for collecting the workpieces conveyed to the receiving position by the feeding device; the cutting fluid filtering mechanism is used for collecting scrap iron and filtering the cutting fluid; the feeding mechanism further comprises a cross beam, a transverse moving cylinder, a feeding manipulator, a pressing manipulator and a material receiving manipulator; two ends of the cross beam are respectively close to the feeding mechanism and the receiving mechanism, and the middle point of the cross beam is positioned above the processing position; the transverse air cylinder is used for driving the feeding manipulator, the pressing manipulator and the receiving manipulator to move along the longitudinal extension direction of the cross beam;
the cutting fluid filtering mechanism comprises a water receiving box, a filtering box and a water storage box, wherein a table-board slide rail is positioned at the upper part of the water receiving box, the filtering box is positioned at the lower part of the water receiving box, and the water storage box is positioned at the lower part of the filtering box; the water receiving box comprises a water receiving chassis, rails arranged on the periphery of the water receiving chassis and an opening channel arranged on the water receiving chassis, guide plates for guiding the flow direction of cutting fluid are arranged on the periphery of the opening channel, and the guide plates are used for preventing the cutting fluid from flowing to the rails along the lower wall of the water receiving chassis; cutting fluid and scrap iron enter the filter box after passing through the opening channel, the scrap iron is left in the filter box, the cutting fluid enters the water storage box, and the cutting fluid in the water storage box is conveyed to the table top by the water pump; the filter box comprises a filter bottom plate, a filter front plate positioned in the front of the filter bottom plate, a filter rear plate positioned in the rear of the filter bottom plate and filter side plates positioned on two sides of the filter plate, wherein filter holes for circulating cutting fluid are formed in the filter bottom plate, and the positions of the filter holes are the lowest positions of the filter bottom plate; two handles are arranged on the outer side of the filtering front plate; the filtering front plate is arranged in an inclined mode; an observation port is arranged between the filtering front plate and the water storage box, and the filtering front plate is positioned at the upper part of the observation port.
2. The robotic cutting machining center of claim 1 wherein the work piece at the feeding position is gripped by the feeding robot when the feeding robot is proximate to the feeding mechanism and the work piece is placed at the machining position when the feeding robot is proximate to the machining position; when the material pressing mechanical arm is positioned above the processing position, the material pressing mechanical arm can press or release the workpiece on the processing position; when the material receiving manipulator is close to the processing position, the workpiece at the processing position can be clamped, and when the material receiving manipulator is close to the material receiving mechanism, the workpiece can be placed at the material receiving position.
3. The cutting machining center with the manipulator capable of automatically feeding and discharging as claimed in claim 1, wherein the feeding manipulator includes a first cylinder, a second cylinder and a feeding chuck, the first cylinder is used for driving the second cylinder and the feeding chuck to move along a vertical direction, so that the feeding chuck is close to or away from the feeding position along the vertical direction, and the feeding chuck is close to or away from the machining position along the vertical direction, a piston rod of the second cylinder is fixedly connected with a piston rod of the first cylinder, and the second cylinder is used for enabling the feeding chuck to clamp or release the workpiece.
4. The cutting machining center with the manipulator capable of feeding and discharging automatically as claimed in claim 1, wherein the material pressing manipulator comprises a third cylinder and a workpiece pressing block, and the third cylinder is used for driving the workpiece pressing block to move along a vertical direction, so that the workpiece pressing block presses or releases the workpiece at the machining position.
5. The cutting machining center with robot automatic loading and unloading as claimed in claim 1, the material receiving manipulator further comprises a fourth cylinder, a fifth cylinder, a sixth cylinder and a material receiving clamping jaw, wherein the fourth cylinder is used for driving the fifth cylinder, the sixth cylinder and the material receiving clamping jaw to move along the vertical direction, so that the material receiving clamping jaw is close to or far away from the processing position along the vertical direction, and the material receiving clamping jaws are close to or far away from the material receiving position along the vertical direction, piston rods of the fifth air cylinder and the fourth air cylinder are fixedly connected, the fifth cylinder is used for driving the sixth cylinder and the material receiving clamping jaw to move along the direction which is horizontal and vertical to the cross beam, therefore, the material receiving clamping jaws are close to or far away from the material receiving position along the direction, the piston rods of the sixth air cylinder and the fifth air cylinder are fixedly connected, and the sixth air cylinder is used for enabling the material receiving clamping jaws to clamp or loosen the workpiece.
6. The cutting center with the robot capable of feeding and discharging material automatically as claimed in claim 1, further comprising a device base, wherein the feeding mechanism, the clamping mechanism, the drilling mechanism and the material receiving mechanism are all disposed on the device base, the device base comprises a base, a table slide rail and a bracket, the table is slidably disposed on the base through the table slide rail, the table is disposed substantially horizontally and can slide horizontally, and the bracket is fixedly connected to the base.
7. The cutting machining center with the manipulator capable of feeding and discharging automatically as claimed in claim 6, wherein the feeding mechanism comprises a feeding base fixedly connected with the table top, and further comprises a feeding slide rail fixed on the feeding base, and the feeding slide rail and the table top are arranged at a certain angle.
8. The cutting machining center with the manipulator capable of feeding and discharging automatically as claimed in claim 7, wherein a material blocking mechanism is arranged at the bottom end of the feeding slide rail and comprises a material blocking support and a material blocking cylinder, and a material blocking piston rod of the material blocking cylinder can be used for blocking the workpiece from sliding out of the feeding slide rail when in an extending state.
9. The cutting machining center with the manipulator capable of feeding and discharging automatically as claimed in claim 8, wherein a feeding mechanism and a feeding chute are respectively arranged on two sides below the feeding slide rail, the feeding mechanism comprises a feeding cylinder and a feeding support, the feeding support is fixedly connected with the feeding slide rail and used for blocking a workpiece sliding out of the feeding slide rail, the feeding cylinder is used for pushing the workpiece blocked by the feeding support into the feeding slide rail, and an iron scrap blocking mechanism is further arranged on one side of the feeding slide rail.
10. The cutting machining center with the robot arm capable of feeding and discharging automatically as claimed in claim 1, wherein the clamping mechanism includes a machining seat and a clamping seat, the machining seat includes a plurality of layers which are detachably connected with each other, the clamping seat is detachably fixed above the machining seat, the clamping seat is substantially box-shaped and is opened from the upper part, an opening is provided on a side wall of the clamping seat, and the height of the side wall of the clamping seat is smaller than that of the workpiece.
CN201711264769.4A 2017-11-22 2017-11-22 The machining center of manipulator automatic loading/unloading Expired - Fee Related CN107803700B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711264769.4A CN107803700B (en) 2017-11-22 2017-11-22 The machining center of manipulator automatic loading/unloading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711264769.4A CN107803700B (en) 2017-11-22 2017-11-22 The machining center of manipulator automatic loading/unloading

Publications (2)

Publication Number Publication Date
CN107803700A CN107803700A (en) 2018-03-16
CN107803700B true CN107803700B (en) 2019-07-05

Family

ID=61588849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711264769.4A Expired - Fee Related CN107803700B (en) 2017-11-22 2017-11-22 The machining center of manipulator automatic loading/unloading

Country Status (1)

Country Link
CN (1) CN107803700B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202119B (en) * 2018-10-25 2023-09-22 杭州职业技术学院 Automatic intelligent drilling manufacturing equipment with cooperative assistance of double manipulators
CN113618471B (en) * 2021-08-23 2022-07-01 津上精密机床(浙江)有限公司 Automatic unloading system of digit control machine tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190679A (en) * 1992-12-25 1994-07-12 Isobe Tekkosho:Kk Cutting machine
CN202114293U (en) * 2011-05-25 2012-01-18 中铁电气化局集团有限公司 High-precision multistation numerical-control drilling center for overlength workpiece
CN102601618A (en) * 2012-03-30 2012-07-25 无锡华联精工机械有限公司 Numerical control drilling and cutting combination machine
CN202684627U (en) * 2012-07-12 2013-01-23 王志坚 Automatic feeding-discharging double-manipulator system
CN205660171U (en) * 2016-04-18 2016-10-26 王剑 Feeding mechanical arm on lathe
CN107243953A (en) * 2017-06-12 2017-10-13 浙江双枪竹木有限公司 Chopping block automatic drilling machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190679A (en) * 1992-12-25 1994-07-12 Isobe Tekkosho:Kk Cutting machine
CN202114293U (en) * 2011-05-25 2012-01-18 中铁电气化局集团有限公司 High-precision multistation numerical-control drilling center for overlength workpiece
CN102601618A (en) * 2012-03-30 2012-07-25 无锡华联精工机械有限公司 Numerical control drilling and cutting combination machine
CN202684627U (en) * 2012-07-12 2013-01-23 王志坚 Automatic feeding-discharging double-manipulator system
CN205660171U (en) * 2016-04-18 2016-10-26 王剑 Feeding mechanical arm on lathe
CN107243953A (en) * 2017-06-12 2017-10-13 浙江双枪竹木有限公司 Chopping block automatic drilling machine

Also Published As

Publication number Publication date
CN107803700A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP7239735B2 (en) A processing system that combines two gantry workstations that automatically reverse and process the workpiece.
US6745455B2 (en) Automatic milling and drilling machine
CN107983985B (en) Mechanical Hand supplementary intelligent machining center
US9358653B2 (en) Double-spindle machining apparatus
CN106112073B (en) Piston pin both ends facing attachment
CN102729100A (en) Double-main-shaft machine tool, installing and dismounting method thereof
CN107803700B (en) The machining center of manipulator automatic loading/unloading
CN108857791B (en) Bilateral grinding device for automobile part crankshaft connecting rod
CN108015305A (en) Automatic drilling processing machine tool based on intelligence manufacture
CN112372354A (en) Loading and unloading device of numerical control lathe
CN108890460B (en) Double-side grinding processing equipment for crankshaft connecting rod
CN111085701B (en) Efficient silver contact drilling equipment
CN208895706U (en) A kind of loading and unloading manipulator of spray head numerical control machine tool
CN106573352B (en) Machining center
CN208556200U (en) A kind of iron hoop beveler
CN108908041B (en) Machining device for double-side grinding of automobile part crankshaft connecting rod
JP2002538978A (en) Machine Tools
CN205271566U (en) Compound charging -discharging of machine tool device of section of thick bamboo wall drilling
CN108857722B (en) Crankshaft connecting rod double-side grinding machine
CN210147261U (en) Laser cutting machine
CN209792651U (en) efficient drilling machine
CN209736644U (en) Lathe for processing straight pipe joint
CN209793247U (en) Drilling machine feeding system
CN215845733U (en) Automatic feeding device
CN210360489U (en) Feeding device and machine tool

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 325000 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai Economic Development Zone, Wenzhou, Zhejiang

Applicant after: Wenzhou Vocational & Technical College

Address before: 325000 Ouhai science and Technology Park, Ouhai, Wenzhou, Zhejiang, No. 38 Dongfang Road, Ouhai Economic Development Zone, Wenzhou

Applicant before: Wenzhou Vocational & Technical College

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220527

Address after: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd.

Address before: 325000 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai Economic Development Zone, Wenzhou, Zhejiang

Patentee before: WENZHOU VOCATIONAL & TECHNICAL College

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220728

Address after: 526000 plant No. 145, area D, behind the shop of Shilin commercial square, Shilin community (Zhujiang Avenue), Jinli Town, Gaoyao District, Zhaoqing City, Guangdong Province

Patentee after: Zhaoqing xiongxintai Hardware Products Co.,Ltd.

Address before: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee before: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

CF01 Termination of patent right due to non-payment of annual fee