CN107795618B - Brake cylinder clearance adjustment mechanism and brake cylinder - Google Patents

Brake cylinder clearance adjustment mechanism and brake cylinder Download PDF

Info

Publication number
CN107795618B
CN107795618B CN201710761855.XA CN201710761855A CN107795618B CN 107795618 B CN107795618 B CN 107795618B CN 201710761855 A CN201710761855 A CN 201710761855A CN 107795618 B CN107795618 B CN 107795618B
Authority
CN
China
Prior art keywords
adjusting
wedge
cylinder
piston
brake cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710761855.XA
Other languages
Chinese (zh)
Other versions
CN107795618A (en
Inventor
曾梁彬
韩红文
王永胜
张洪波
霍伟
雷国伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qishuyan Institute Co Ltd
CRRC Changzhou Tech Mark Industrial Co Ltd
Original Assignee
CRRC Qishuyan Institute Co Ltd
CRRC Changzhou Tech Mark Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qishuyan Institute Co Ltd, CRRC Changzhou Tech Mark Industrial Co Ltd filed Critical CRRC Qishuyan Institute Co Ltd
Publication of CN107795618A publication Critical patent/CN107795618A/en
Application granted granted Critical
Publication of CN107795618B publication Critical patent/CN107795618B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/56Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut
    • F16D65/567Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut for mounting on a disc brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/56Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/005Components of axially engaging brakes not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • F16D2121/04Fluid pressure acting on a piston-type actuator, e.g. for liquid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/04Cylinders

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Fluid-Damping Devices (AREA)
  • Springs (AREA)

Abstract

The invention relates to a brake cylinder clearance adjusting mechanism and a brake cylinder, and belongs to the technical field of vehicle braking. The inner end of a piston tube nested in the inner cavity of a cylinder cover tube of the mechanism is axially fixedly connected with a piston; the outer end of the piston tube is fixedly connected with the guide adjuster body, and a square key groove and a wedge-shaped adjusting block mounting groove are axially formed in the cylinder cover tube; a taper sleeve and a guide nut with meshed end surfaces are arranged in the guide resistance adjuster body, and one ends, far away from the meshing, of the taper sleeve and the guide nut are respectively abutted against the resistance adjusting spring and the guide spring; an adjusting screw rod shaft screwed with the adjusting nut is arranged in the inner hole of the guide nut, and a bevel gear sliding sleeve is arranged outside the adjusting nut; the outer circle of the bevel gear sliding sleeve is fixedly connected with a square key which radially extends out of a key groove above the cylinder cover pipe, a wedge-shaped adjusting block with an adjustable radial position is arranged in a wedge-shaped adjusting block mounting groove of the cylinder cover pipe, and the adjacent ends of the square key and the wedge-shaped adjusting block are respectively provided with an outer wedge-shaped surface and an inner wedge-shaped surface. The invention realizes the adjustment of the maximum non-adjustment travel value of the brake cylinder and ensures the stability of the gap adjustment quantity.

Description

Brake cylinder clearance adjustment mechanism and brake cylinder
Technical Field
The invention relates to a clearance adjusting mechanism, in particular to a brake cylinder clearance adjusting mechanism and a brake cylinder, and belongs to the technical field of vehicle braking.
Background
To the applicant's knowledge, in the currently common brake caliper unit constructions with a lash adjustment function, the relief clearance in its steady state is generally determined by the maximum non-adjustment travel of the brake cylinder, which travel depends on the relative part dimensions of the brake cylinder lash adjustment mechanism. For a long time, the structure of the traditional brake cylinder determines the maximum non-adjustment travel after the size of the parts is determined, so that the release clearance of the brake clamp in the stable state is a determined value. To change the relief clearance, the relevant parts in the brake cylinder clearance adjustment mechanism must be replaced.
The search discovers that the Chinese patent document with the application number of CN201210221661.8 discloses a unit brake cylinder which comprises a brake cylinder body, a reset mechanism and a clearance adjusting mechanism, wherein an air inlet is arranged on the brake cylinder body, a brake piston is arranged in the brake cylinder body, and the brake piston comprises a piston body matched with the inner wall of the brake cylinder body and a piston tube extending from the middle part of the piston body to one side; one end of the brake cylinder body is fixedly connected with a cylinder cover; a release spring is arranged between the cylinder cover and the piston body of the brake piston; the cylinder cover is provided with a central pipe, the periphery of a piston pipe of the brake piston is in sliding fit with the inner wall of the central pipe of the cylinder cover, and the end part of the piston pipe extends out of the central pipe; the reset mechanism comprises a screw rod; the clearance adjustment mechanism comprises a guide nut assembly and an adjusting nut assembly, the guide nut assembly comprises a piston tube cover, a guide nut, a guide spring, a first bearing and a taper sleeve, the adjusting nut assembly comprises an adjusting nut, a bevel gear sliding sleeve, an adjusting spring and a second bearing, the technical scheme is simple in structure and sensitive and accurate in adjustment compared with the prior art (see 200980853.2), however, the clearance of the clearance adjustment mechanism cannot be adjusted under the condition that parts are not replaced, and therefore the adaptability is poor.
In addition, chinese patent application number CN200820218260.6 discloses a clearance adjustment mechanism in a service unit brake cylinder, which can adjust the clearance adjustment amount without replacing parts, so that the flexibility of adapting the brake cylinder and even the whole brake clamp device to different disc clearance requirements is improved. However, the basic structure and the action principle of the brake cylinder are obviously different from those of the two patents, the clearance adjusting block and the adjusting clamping ring of the adjusting mechanism are subjected to the axial load, and the adjusting direction of the adjusting clamping ring is also axial, so that the screw thread is easy to loosen due to the working load, other anti-loosening measures are necessary to ensure the stability of clearance adjustment, and the complexity of the structure is increased.
Disclosure of Invention
The invention aims at: aiming at the problems in the prior art, through structural improvement, the brake cylinder clearance adjusting mechanism and the brake cylinder which can adjust the maximum non-adjusting stroke value of the brake cylinder as required through simple and convenient adjustment and are stable and reliable are provided, so that the adaptive adjustment and control of the clearance relieving value under the stable state of the brake clamp are realized.
In order to achieve the above purpose, the basic technical scheme of the brake cylinder clearance adjusting mechanism of the invention is as follows: the cylinder comprises a cylinder body, a cylinder cover and a cylinder cover pipe which are mutually and fixedly connected, wherein a piston pipe which forms an axial moving pair with the cylinder cover pipe is nested in the inner cavity of the cylinder cover pipe, the inner end of the piston pipe is axially and fixedly connected with a piston positioned in the cylinder body, and a release spring is arranged between the cylinder cover pipe and the piston; the outer end of the piston tube is fixedly connected with a tubular guide resistance adjuster body, and a square key groove and a wedge-shaped adjusting block mounting groove are axially formed in the cylinder cover tube; the guide anti-adjustment device comprises a guide anti-adjustment device body, wherein a taper sleeve and a guide nut with end faces meshed are arranged in the guide anti-adjustment device body, and one ends, far away from the meshing, of the taper sleeve and the guide nut are respectively abutted against an anti-adjustment spring and a guide spring; an adjusting screw shaft with the inner end screwed with the adjusting nut is arranged in the inner hole of the guide nut, and a bevel gear sliding sleeve with the end face meshed with the adjusting screw shaft is arranged outside the adjusting nut; the excircle of awl tooth sliding sleeve links firmly with the square key that radially extends cylinder cap pipe top keyway, the wedge adjusting block mounting groove of cylinder cap pipe is equipped with radial position adjustable wedge adjusting block, the adjacent end of square key and wedge adjusting block has outer wedge face and interior wedge face respectively.
After the invention is adopted, the original functions of the unit brake cylinder are unchanged, and because the radial position of the wedge-shaped adjusting block is adjustable, when the wedge-shaped adjusting block is radially displaced, the axial distance between the outer wedge-shaped surface and the inner wedge-shaped surface at the adjacent end of the square key is changed, thereby realizing the adjustment of the maximum non-adjustment stroke value of the brake cylinder, which is determined by the maximum axial relative displacement of the square key in the square key groove of the cylinder cover pipe. In addition, the adjusting direction of the wedge-shaped adjusting block is radial and is orthogonal to the axial load direction, and the plurality of guide pins arranged on the wedge-shaped adjusting block mounting groove provide effective axial support for the wedge-shaped adjusting block, so that looseness caused by axial load during operation is effectively prevented, and the stability of a brake clamp release clearance value is ensured.
The improvement of the invention is as follows:
The cylinder cover pipe is connected with the cylinder cover through threads, and a square key groove and a wedge-shaped adjusting block mounting groove are formed in the axial direction.
The wedge-shaped adjusting block mounting groove of the cylinder cover pipe and the matching position on the wedge-shaped adjusting block are provided with a plurality of guide pin mounting holes and adjusting screw mounting holes, and the wedge-shaped adjusting block is mounted on the cylinder cover pipe through the guide pin and the adjusting screw.
And a wave spring is arranged on the contact surface of the wedge-shaped adjusting block and the wedge-shaped adjusting block mounting groove of the cylinder cover pipe.
And the piston tube is axially provided with key grooves, and the circumferential distribution positions and the groove widths of the key grooves are matched with those of key grooves above the cylinder cover tube.
And a relieving spring is axially arranged on the outer side of the piston pipe, one end of the relieving spring is contacted with the inner side of the piston, and the other end of the relieving spring is contacted with the end part of the cylinder cover pipe.
And an adjusting spring is arranged on the outer circular surface of the adjusting nut, one end of the adjusting spring is contacted with the end surface of the adjusting spring retainer ring, and the other end of the adjusting spring is contacted with the adjusting spring bearing.
The front section of the adjusting nut is circumferentially provided with end teeth matched with end teeth of the bevel gear sliding sleeve.
The guide is blocked and is transferred to have on the ladder outer cylinder of body one end and is blocked and transfer the screw thread that the ware module was installed on the piston tube with guide, have on the other end inner cylinder and be directed and hinder the screw thread that transfer the ware end cover.
The guide nut is arranged in the guide resistor end cover, and an inner hole of the guide nut is provided with trapezoidal threads matched with the screw threads of the screw rod.
A guide nut bearing and a guide spring are respectively arranged between the guide nut and the guide adjuster end cover along the axial direction; the end face of the guide nut bearing is limited by the guide nut step face, one end of the guide spring is contacted with the guide nut bearing, and the other end of the guide spring is contacted with the end face of the inner side of the guide resistor adjuster end cover.
One end of the guide nut is provided with a circumferential end tooth matched with the upper end tooth of the taper sleeve, and guide keys which are nested in corresponding key grooves of an inner hole of the guide resistor end cover are distributed on the circumferential direction of the taper sleeve.
And a resistance adjusting gasket is arranged at the step surface of one side of the inner hole wall of the guide resistance adjuster body, and keys matched with corresponding key grooves on the adjusting nut are circumferentially arranged at the inner hole wall of the resistance adjusting gasket.
The resistance adjusting spring is arranged between the other stepped surface of the inner hole wall of the guide resistance adjuster body and the stepped surface of the taper sleeve.
The elasticity of the resistance adjusting spring is larger than that of the guiding spring.
According to another aspect of the present invention, there is provided a brake cylinder gap adjustment mechanism including: the cylinder block module comprises a limit groove and a position adjusting assembly which are axially arranged; the piston module is movably arranged in the cylinder module and forms an axial moving pair with the cylinder module; one end of the adjusting screw rod shaft is arranged in the piston module in a penetrating way, and the other end of the adjusting screw rod shaft is positioned at the outer side of the cylinder block module; the gap adjusting module is provided with a limiting part, the limiting part is arranged in the limiting groove, the gap adjusting module is used for adjusting the relative position between the adjusting screw shaft and the cylinder block module, the position adjusting assembly is adjustably arranged on the cylinder block module, and the position adjusting assembly is used for adjusting/limiting the axial displacement of the limiting part in the limiting groove.
Further, the position adjusting assembly comprises a wedge-shaped adjusting block which is arranged on the cylinder block module in a radial adjustable mode, and the adjacent ends of the limiting part and the wedge-shaped adjusting block are respectively provided with an outer wedge-shaped surface and an inner wedge-shaped surface.
Further, the cylinder block module comprises a square key groove which is axially formed and used for accommodating the limiting part and a wedge-shaped adjusting block mounting groove which is axially formed and used for accommodating the wedge-shaped adjusting block, and the square key groove is formed into the limiting groove.
Further, a plurality of guide pin mounting holes and adjusting screw mounting holes are respectively formed in the corresponding matching positions of the wedge-shaped adjusting block mounting groove and the wedge-shaped adjusting block, and the wedge-shaped adjusting block is mounted on the cylinder block module through the guide pins and the adjusting screws.
Further, a wave spring is arranged at the matching position of the wedge-shaped adjusting block corresponding to the wedge-shaped adjusting block mounting groove.
Further, the wedge adjustment block is provided with a groove accommodating the wave spring.
Further, the cylinder block module further comprises a cylinder block, a cylinder cover and a cylinder cover pipe which are mutually fixedly connected.
Further, the cylinder cover pipe is connected with the cylinder cover through threads, and a square key groove and a wedge-shaped adjusting block mounting groove are formed in the axial direction.
Further, the piston module comprises a piston and a piston tube, the piston tube is arranged in the inner cavity of the cylinder cover tube and forms an axial moving pair with the cylinder cover tube, and the inner end of the piston tube is axially fixedly connected with the piston in the cylinder body.
Further, a key groove is axially formed in the piston tube, the circumferentially distributed positions and the groove width of the key groove are matched with those of key grooves above the cylinder cover tube, and a relieving spring is arranged between the cylinder cover tube and the piston.
Further, the relieving spring is axially arranged on the outer side of the piston tube, one end of the relieving spring is contacted with the inner side of the piston, and the other end of the relieving spring is contacted with the end part of the cylinder cover tube.
Further, the limiting part radially extends through a key groove arranged on the piston tube and is positioned in the limiting groove.
Further, the gap adjustment module includes: the inner hole of the adjusting nut is matched with the thread of the adjusting screw rod shaft through a trapezoidal thread; the end teeth of the bevel gear sliding sleeve are matched with the end teeth of the adjusting nut to limit, and the outer circle of the bevel gear sliding sleeve is fixedly connected with square keys which radially extend into square keyways of the cylinder cover pipe to form limit parts.
Further, an adjusting spring is arranged on the outer circular surface of the adjusting nut, one end of the adjusting spring is in end face contact with an adjusting spring retainer ring, the other end of the adjusting spring is in contact with an adjusting spring bearing, and end teeth matched with end teeth of the bevel gear sliding sleeve are circumferentially arranged on the front section of the adjusting nut.
Further, the adjusting spring retainer ring is arranged on the outer circular surface of one end, close to the piston, of the adjusting nut in a limiting manner through a steel wire or a clamping spring, and the adjusting spring bearing is arranged between the adjusting nut and the bevel gear sliding sleeve and is axially limited by the end face of the stepped hole in the bevel gear sliding sleeve.
Further, trapezoidal threads are arranged on the adjusting nut and the adjusting screw shaft, and the adjusting nut and the adjusting screw shaft are connected together through the trapezoidal threads.
According to another aspect of the present invention, there is provided a brake cylinder including a brake cylinder gap adjustment mechanism, the brake cylinder gap adjustment mechanism being the brake cylinder gap adjustment mechanism provided above.
Drawings
The invention is further described below with reference to the accompanying drawings.
Fig. 1 is a schematic structural view of an embodiment of the present invention.
Fig. 2 is an enlarged partial cross-sectional schematic view of the adjustment mechanism of the embodiment of fig. 1.
Fig. 3 is a schematic view of the wedge-shaped adjustment block of the embodiment of fig. 1 before adjustment.
Fig. 4 is a schematic structural view of the wedge-shaped adjusting block of fig. 1 after adjustment.
Fig. 5 is a schematic view of the embodiment of fig. 1 in a relaxed state with the clamp engaged.
Fig. 6 is a schematic view of the embodiment of fig. 1 in a braked state in cooperation with a clamp.
Fig. 7 is a schematic diagram comparing the fully engaged and fully disengaged condition of the end teeth of the adjustment nut of the embodiment of fig. 1. The upper part is the complete engagement of the end face teeth of the adjusting nut, and the lower part is the complete disengagement of the end face teeth of the adjusting nut.
Fig. 8 is an exploded view of the main modules of the brake cylinder.
Fig. 9 is a schematic structural view of a guide resistance module.
Fig. 10 is a cross-sectional view of the guide register module of fig. 9.
Fig. 11 is a schematic structural view of the gap adjustment module.
Fig. 12 is a cross-sectional view of the gap adjustment module of fig. 11.
In the figure: 111-cylinder; 112-a cylinder cover; 113-a cylinder head pipe; 115-wedge-shaped adjusting block; 116-guide pins; 117-wave spring; 118-adjusting the screw; 121-a piston; 122-piston tube; 123-sealing rings; 131-adjusting the nut; 132-bevel sliding sleeve; 133-an adjusting spring; 134-adjusting spring bearings; 135-adjusting a spring retainer ring; 141-guiding the resistor body; 142-guide resistor end caps; 143 a guide nut; 144-a guide spring; 145-taper sleeve; 146-a resistance adjustment gasket; 147-resistance adjusting spring; 148-lead nut bearings; 151-yoke; 152-adjusting a spindle screw; 153-reset nut; 154-reset nut wave spring; 155-resetting the nut sealing ring; 197-dust cap; 198-square key; 199-a relief spring.
Detailed Description
Example 1
The basic structure of the brake cylinder gap adjusting mechanism of the embodiment is shown in fig. 1 and 2, and the brake cylinder gap adjusting mechanism comprises a cylinder body 111, a cylinder cover 112 and a cylinder cover pipe 113 which are mutually and fixedly connected, wherein a piston pipe 122 forming an axial moving pair with the cylinder cover pipe 113 is nested in the inner cavity of the cylinder cover pipe 113, the inner end of the piston pipe 122 is fixedly connected with a piston 121 positioned in the cylinder body in the axial direction, and a release spring 199 is arranged between the cylinder cover pipe 113 and the piston; the outer end of the piston tube 122 is fixedly connected with a tubular guiding and adjusting stopper body 141, and a square key groove and a wedge-shaped adjusting block 115 mounting groove are axially formed in the cylinder cover tube 113. A taper sleeve 145 and a guide nut 143 with meshed end surfaces are arranged in the guide resistor body 141, and one ends of the taper sleeve 145 and the guide nut 143 far away from the meshing end respectively abut against the resistor spring 147 and the guide spring 144. An adjusting screw shaft 152 with the inner end screwed with the adjusting nut 131 is arranged in the inner hole of the guide nut 143, and a bevel gear sliding sleeve 132 with the end face meshed with the adjusting nut 131 is arranged outside the adjusting nut 131. The outer circle of the bevel gear sliding sleeve 132 is fixedly connected with a square key 198 which radially extends out of a key groove above the cylinder cover pipe 113, a wedge-shaped adjusting block 115 with an adjustable radial position is arranged in a wedge-shaped adjusting block mounting groove of the cylinder cover pipe 113, and an outer wedge-shaped surface and an inner wedge-shaped surface are respectively arranged at adjacent ends of the square key 198 and the wedge-shaped adjusting block 115. The inner end of the piston tube 122 is an end of the piston tube 122 located inside the cylinder 111, and the outer end of the piston tube 122 is an end of the piston tube 122 located outside the cylinder 111.
In order to facilitate understanding, the tightness and functions of the brake cylinder gap adjusting mechanism according to the embodiment are mainly divided into five functional modules: the device comprises a cylinder block module, a piston module, a gap adjusting module, a guiding and adjusting blocking module and an adjusting shaft module. In addition, some non-modular parts are included: relief springs 199, square keys 198, dust caps 197, etc.
The cylinder block module consists of a cylinder block 111, a cylinder cover 112, a cylinder cover pipe 113, a wedge-shaped adjusting block 115, a guide pin 116, a wave spring 117 and an adjusting screw 118. The cylinder body 111 and the cylinder cover 112 form a main body structure, and the cylinder body 111 and the cylinder cover 112 can be limited and connected in a bolt-nut or clamping spring, steel wire and other modes to form a cavity with fixed positions so as to provide a movement working space for the piston module. The cylinder head pipe 113 is connected with the cylinder head 112 through threads to provide movement support and guide for the piston module, and is provided with a square key groove and a wedge-shaped adjusting block 115 mounting groove along the axial direction. A plurality of guide pin mounting holes and adjusting screw mounting holes are formed in matching positions of the wedge-shaped adjusting block mounting groove of the cylinder cover pipe 113 and the wedge-shaped adjusting block 115, and the wedge-shaped adjusting block 115 is mounted on the cylinder cover pipe 113 through a guide pin 116 and an adjusting screw 118. A plurality of wave springs 117 are also arranged on the contact surface of the wedge-shaped adjusting block 115 and the wedge-shaped adjusting block mounting groove of the cylinder cover pipe 113, and can provide elastic support for the wedge-shaped adjusting block 115 and a certain anti-loosening pre-tightening for the adjusting screw 118.
The piston module consists of a piston 121, a piston tube 122 and a piston seal 123. The piston 121 and the piston tube 122 may be fixedly connected in the axial direction by a screw pair or a snap spring limiting manner. The piston sealing ring 123 is directly installed on the outer edge of the piston 121 in an interference fit mode, and contacts with the inner cavity of the cylinder 111 when the piston module is installed in the cylinder module, so that the gas sealing effect is achieved. The piston tube 122 is provided with key grooves along the axial direction, the circumferential distribution positions and the groove widths of the key grooves are matched with those of the key grooves above the cylinder cover tube 113, and space is mainly provided for the axial movement of the square key 198; the piston tube 122 is threaded on the inner circular surface of the end which is not connected with the piston 121 for being connected with the guiding and adjusting blocking module. A relief spring 199 is axially mounted on the outside of the piston tube 122 at one end in contact with the inside of the piston 121 and at the other end in contact with the end of the cylinder head tube 113 to provide a return axial force to the piston module when brake cylinder exhaust is relieved.
The gap adjusting module mainly comprises an adjusting nut 131, a bevel gear sliding sleeve 132 and an adjusting spring 133. The adjusting nut 131 axially passes through the bevel gear sliding sleeve 132 and coincides with the axis thereof. The adjusting spring retainer ring 135 is mounted on the outer circular surface of one end of the adjusting nut 131 through a steel wire or a clamping spring. The adjusting spring bearing 134 is installed between the adjusting nut 131 and the bevel gear sliding sleeve 132, provides support for the relative rotation of the adjusting nut and the bevel gear sliding sleeve 132, and is axially limited by the end face of the stepped hole on the bevel gear sliding sleeve 132. The adjusting spring 133 is axially mounted on the outer circumferential surface of the adjusting nut 131, one end of the adjusting spring is in end-face contact with the adjusting spring retainer 135, and the other end of the adjusting spring is in contact with the adjusting spring bearing 134, so as to provide an axial restoring force between the adjusting nut 131 and the bevel gear sliding sleeve 132. The front section of the adjusting nut 131 is circumferentially provided with end teeth and is matched with the upper end teeth of the bevel gear sliding sleeve 132. Wherein, as shown in fig. 1, the front section of the adjusting nut 131 is a section of the adjusting nut 131 near the adjusting shaft module. Under the action of the adjusting spring 133, the adjusting nut 131 is engaged with the end teeth of the bevel gear sliding sleeve 132 when not bearing external load, and the relative movement of the two is limited in the axial direction and the circumferential direction. The outer circular surface of the other end of the adjusting nut 131, which is not provided with the adjusting spring 133, is provided with a groove along the axial direction, and a key on the adjusting washer 146 in the guiding adjusting module can be nested in the groove; the inner hole of the adjusting nut 131 is provided with trapezoidal threads which are matched with the threads of the screw rod 152 of the adjusting shaft module. Square key 198 mounting holes are circumferentially arranged on the outer circumference of the bevel gear sliding sleeve 132, and square keys 198 can be fixed on the bevel gear sliding sleeve 132 through screws and provide circumferential limit for the bevel gear sliding sleeve 132 through square key grooves on the cylinder cover 112. Specifically, a square key groove for accommodating the limiting part is axially formed in a cylinder cover pipe of the cylinder block module. Correspondingly, a wedge-shaped adjusting block mounting groove matched with the square key groove in position is axially formed in the outer wall of the cylinder cover pipe on one side, far away from the cylinder cover, of the square key groove, and a wedge-shaped adjusting block is mounted through the wedge-shaped adjusting block mounting groove.
The guide and adjustment blocking module mainly comprises a guide and adjustment blocking device body 141, a guide and adjustment blocking device end cover 142, a guide nut 143, a guide spring 144, a taper sleeve 145, an adjustment blocking gasket 146, an adjustment blocking spring 147 and a guide nut bearing 148. The outer cylindrical surface of the step at one end of the guide resistor body 141 is provided with threads for installing the guide resistor module on the piston tube 122; the other end also has threads on the inner cylindrical surface for mounting a pilot tone blocker end cap 142. The guide nut 143 is mounted in the guide resistor end cap 142 with trapezoidal threads on its inner bore that mate with the threads of the lead screw 152 of the adjustment shaft module. Between the guide nut 143 and the guide resistor end cap 142, a guide nut bearing 148 and a guide spring 144 are installed, respectively, in the axial direction. Wherein the end face of the lead nut bearing 148 is limited by the lead nut stepped surface, providing support for relative rotation between the lead nut 143 and the lead resistor end cap 142; the guide spring 144 has one end in contact with the guide nut bearing 148 and the other end in contact with the inside end face of the guide resistor end cap 142 for providing an axial return force therebetween. The guide nut 143 has a circumferential end tooth at one end that mates with an end tooth on the cone sleeve 145, and under the action of the guide spring 144, the guide nut 133 intermeshes with the end tooth of the cone sleeve 145 and limits relative axial and circumferential movement therebetween when not subjected to an external load. The taper sleeve 145 has circumferentially disposed guide keys that nest within corresponding keyways in the bore of the guide resistor end cap 142 for limiting circumferential relative rotation therebetween and unidirectional axial spacing. The adjustment blocking washer 146 is installed at a stepped surface of one side of the inner hole of the guide adjuster body 141, and has a key at the inner hole thereof in the circumferential direction for being engaged with a corresponding key groove of the adjustment nut 131. The choke spring 147 is mounted between the other stepped surface of the bore of the pilot choke body 141 and the stepped surface of the cone sleeve 145. Under normal installation and working conditions, the elastic force of the adjustment blocking spring 147 is far greater than that of the guide spring 144, under the action of the elastic force, the end face of the guide key of the taper sleeve 145 is attached to the end face of the key slot for guiding the adjustment blocking device end cover 142, and a certain gap is kept between the end face of the other end of the taper sleeve 145 and the end face of the adjustment blocking gasket 146 in the axial direction.
The adjusting shaft module mainly comprises a yoke 151, a screw rod 152, a reset nut 153, a reset nut wave spring 154 and a reset nut sealing ring 155. The upper and lower ends of the yoke 151 have interface holes for connection with the brake caliper levers, and bushings 113 are mounted in the holes to provide support for mounting and relative rotation of the adjustment shaft module and the brake caliper levers. The trapezoidal threads of the screw rod 152 are used to cooperate with the adjusting nut 131 and the guide nut 143, and one end of the polish rod of the screw rod 152 extends into and is mounted in the central hole of the yoke 151. The stepped surface of the polished rod of the screw rod 152 is provided with end teeth which are meshed with the upper end teeth of the yoke 151; the end of the polish rod is provided with a through hole along the radial direction and is fixedly connected with the reset nut 153 through an elastic pin. A reset nut wave spring 154 is axially mounted between the reset nut 153 and the yoke 151 for maintaining the yoke 151 in toothed engagement with the end of the lead screw 152. A reset nut sealing ring 155 is installed between the outside of the reset nut 153 and the yoke 151 for dust and water prevention.
Circumferential grooves are provided near the outer end surface of the cylinder head 112 and the inner end surface of the yoke 151, respectively, for mounting a dust cover 197 therebetween.
Referring to fig. 3 to 12, in comparison with the conventional brake cylinder with a gap adjusting function, the square key 198 of the present embodiment adopts a wedge-shaped cross-section design, and the actual movable space thereof is composed of the square key groove on the cylinder head pipe 113 and the wedge-shaped adjusting block 115. The installation height of the wedge-shaped adjusting block 115 on the cylinder cover pipe 113 can be adjusted through adjusting the adjusting screw 118, namely the height of the wedge-shaped surface of the wedge-shaped adjusting block 115 is adjusted, so that the axial movable distance of the square key 198 in the square key groove, namely the maximum non-adjusting stroke S1, is changed. According to the clearance adjustment principle of the brake cylinder, when the actual idle stroke S of the piston is larger than the sum of the maximum non-adjustment stroke S1 and the meshing height N of the end teeth of the adjusting nut 131, the end teeth of the adjusting nut 131 and the end teeth of the bevel gear sliding sleeve 132 are completely separated, and the clearance adjustment mechanism is triggered to perform clearance adjustment action, so that after a plurality of clearance adjustment actions, the clearance between the brake disc and the brake pad in a release state of the release clearance Sp of the brake clamp is kept near S1+N/i, wherein i is the lever ratio of the brake clamp. The release clearance of the brake caliper can be adjusted by adjusting the height of the wedge adjustment block 115 by adjusting the screw 118 to change the axial distance between the wedge surface and the wedge surface of the square key 198, i.e., changing S1.
When the cylinder 111 is filled with compressed air, the compressed air pushes the piston module compression release spring 199 to move to the outside. The guide and adjustment block is fixedly connected to the piston tube 122 by threads, which move outwardly with the piston block. Before the brake pads of the brake caliper hug the brake disc, the two ends of the brake cylinder may be considered free ends, i.e. substantially free from axial braking loads from the lever. At this time, in the guide adjustment blocking module, since the elastic force of the adjustment blocking spring 147 is far greater than that of the guide spring 144, under the combined action of the guide spring 144, the guide nut 143 is meshed with the end teeth of the taper sleeve 145, the guide nut 143 cannot rotate relative to the adjusting shaft, and the relative position of the adjusting shaft and the guide nut 143 in the axial direction is unchanged, that is, the guide nut 143 drives the adjusting shaft to synchronously move outwards together through the trapezoidal threads. Because the square key 198 is circumferentially limited, under the action of the adjusting spring 133, the adjusting nut 131 is meshed with the end teeth of the bevel gear sliding sleeve 132, the adjusting nut 131 cannot rotate relative to the adjusting shaft, the adjusting shaft drives the gap adjusting module to synchronously move outwards through the trapezoidal threads, and the square key 198 also moves in the square key groove.
When the gap Sp between the brake pad and the brake disc of the brake caliper is large, the actual free travel S of the brake cylinder is large before the brake pad and the brake disc are not clamped. If the actual free travel S is greater than the maximum unadjusted travel s1+ of the square key 198 by the tooth engagement height N of the end of the adjusting nut 131, the square key 198 and the whole gap adjusting module move outwards with the piston module during the inflation of the brake cylinder, and when the square key travel reaches S1, the wedge surface contacts with the wedge adjusting block, and the axial movement is limited. After that, the adjusting nut 131 continues to move outwards under the driving of the adjusting shaft screw 152, the end tooth surfaces of the adjusting nut 131 and the bevel gear sliding sleeve 132 start to separate, after one end tooth engagement height N continues to move, the end tooth is completely separated, the circumferential movement constraint of the adjusting nut 131 is released, intermittent rotation starts to occur under the action of the adjusting spring 133, and accordingly the adjusting shaft screw 152 extends outwards relative to the adjusting nut 131. After the brake cylinder is exhausted, the piston moves inward under the action of the relief spring 199, and the gap adjustment module, the guide adjustment blocking module and the adjustment shaft module move inward as a whole, so that the square key 198 also moves inward. Because the stroke of the piston is greater than the stroke of the square key 198 in the inflation process, in the resetting process, after the square key 198 is limited by the axial direction of the inner side end surface of the square key groove, the gap adjusting module stops moving axially, and the adjusting shaft cannot continue moving axially under the action of the screw thread matching of the adjusting nut 131 and the adjusting shaft screw 152. The piston will drive the guide adjuster module to move inwards continuously, under the action of the screw thread fit of the guide nut 143 and the adjusting shaft screw 152, the guide nut 143 will compress the guide spring 144, the end teeth of the guide nut 143 and the taper sleeve 145 will be separated, the rotation limit of the taper sleeve 145 to the guide nut 143 is released, under the action of the guide spring 144, the guide nut 143 will intermittently rotate, so that the guide nut 143 moves relative to the adjusting shaft screw 152 in the axial direction, and the guide adjuster module is reset completely inwards. Before and after the air charging and discharging action of the brake cylinder, the adjusting shaft axially relatively displaces relative to the gap adjusting module and the guide blocking adjusting module, namely, the adjusting shaft also extends outwards relative to the piston module, so that the length of the brake cylinder is prolonged before and after the action, the distance between the two sides of the brake pad end of the brake clamp is reduced, and the disc gap is reduced, namely, the gap adjusting action is generated.
If the installation height of the wedge-shaped adjusting block 115 is H1, the maximum adjustment-free travel of the square key 198 is S1; when the mounting height of the wedge adjustment block 115 increases by Δh, the maximum non-adjustment travel of the square key 198 will also increase by Δs, where Δs=Δh/tan (a), where a is the angle between the wedge surfaces of the square key 198 and the wedge adjustment block 115 and the horizontal plane. The adjusted brake caliper relief gap increases by Δsp=Δs/i=Δh/(tan (a) ×i). Therefore, the invention can realize the adjustment of the maximum non-adjustment travel of the brake cylinder without replacing any parts. The adjustable gap value between the brake pad and the brake disc of the brake clamp can be realized.
In addition, the wedge faces of the square key 118 and the wedge-shaped adjusting block 115 are matched in a wedge face matching mode shown in the drawing, namely, after the wedge face of the square key 198 contacts with the wedge face of the wedge-shaped adjusting block 115, the acting force of the square key 198 on the wedge-shaped adjusting block 115 is in an upward direction along the wedge face, and at the moment, under the action of the pulling force of the adjusting screw 118, the accurate limit of the wedge-shaped adjusting block 115 can be realized.
Fig. 8 shows an exploded schematic view of a brake cylinder formed by a cylinder block module, a piston module, a gap adjustment module, a guide resistance adjustment module and an adjustment shaft module. Fig. 9 shows a perspective view of the pilot tone block of fig. 1. Fig. 10 is a cross-sectional view of the guide register module according to fig. 9. Fig. 11 is a perspective view of the gap adjustment module of fig. 1. Fig. 12 is a cross-sectional view of the gap adjustment module according to fig. 11.
In addition to the embodiments described above, other embodiments of the invention are possible. All technical schemes formed by equivalent substitution or equivalent transformation fall within the protection scope of the invention.

Claims (14)

1. A brake cylinder gap adjustment mechanism, characterized in that the brake cylinder gap adjustment mechanism comprises:
The cylinder block module comprises a square key groove which is axially arranged and used for accommodating the limiting part and a wedge-shaped adjusting block mounting groove which is axially arranged and used for accommodating a wedge-shaped adjusting block (115), and the wedge-shaped adjusting block (115) is radially and adjustably arranged in the wedge-shaped adjusting block mounting groove;
The piston module is movably arranged in the cylinder module and forms an axial moving pair with the cylinder module;
An adjusting screw shaft (152), wherein one end of the adjusting screw shaft (152) is penetrated in the piston module, and the other end of the adjusting screw shaft (152) is positioned outside the cylinder module;
The clearance adjustment module, the clearance adjustment module has square key (198), square key (198) set up in Fang Jiancao, the clearance adjustment module is used for adjusting the adjusting screw axle (152) with relative position between the cylinder block module, spacing portion with the adjacent end of wedge adjusting block (115) has outer wedge face and interior wedge face respectively, wedge adjusting block (115) are used for adjusting/restriction square key (198) are in the axial displacement in the square keyway, square key (198) form spacing portion.
2. The brake cylinder clearance adjustment mechanism according to claim 1, characterized in that a plurality of guide pin mounting holes and adjusting screw mounting holes are respectively formed at corresponding matching positions of the wedge-shaped adjustment block mounting groove and the wedge-shaped adjustment block (115), and the wedge-shaped adjustment block (115) is mounted on the cylinder block module through a guide pin (116) and an adjusting screw (118).
3. The brake cylinder clearance adjustment mechanism according to claim 2, characterized in that the wedge adjustment block (115) is further provided with a wave spring (117) at a mating position corresponding to the wedge adjustment block mounting groove.
4. A brake cylinder clearance adjustment mechanism according to claim 3, characterized in that the wedge adjustment block (115) is provided with a recess accommodating the wave spring (117).
5. The brake cylinder gap adjustment mechanism according to any one of claims 2 to 4, characterized in that the cylinder block module further includes a cylinder block (111), a cylinder head (112), and a cylinder head pipe (113) that are fixedly connected to each other.
6. The brake cylinder gap adjusting mechanism according to claim 5, wherein the cylinder head pipe (113) is connected to the cylinder head (112) by screw threads, and is provided with a square key groove and a wedge-shaped adjusting block mounting groove in the axial direction.
7. The brake cylinder clearance adjustment mechanism according to claim 6, characterized in that the piston module includes a piston (121) and a piston tube (122), the piston tube (122) being disposed in the cylinder head tube (113) inner chamber and forming an axial shifting pair with the cylinder head tube (113), an inner end of the piston tube (122) being axially fixedly connected with the piston (121) located in the cylinder block (111).
8. The brake cylinder clearance adjustment mechanism of claim 7, characterized in that the piston tube (122) is axially provided with keyways, the circumferentially distributed positions and the widths of the keyways are matched with keyways above the cylinder cover tube (113), and a release spring (199) is arranged between the cylinder cover tube (113) and the piston (121).
9. The brake cylinder clearance adjustment mechanism according to claim 8, characterized in that the relief spring (199) is axially mounted outside the piston tube (122), one end of the relief spring (199) being in contact with the inside of the piston (121), the other end being in contact with the cylinder head tube (113) end.
10. The brake cylinder lash adjustment mechanism of claim 8, wherein the square key (198) extends radially through a keyway provided on the piston tube (122) and is located in the square key slot.
11. The brake cylinder lash adjustment mechanism of claim 6, wherein the lash adjustment module comprises:
the inner hole of the adjusting nut (131) is matched with the thread of the adjusting screw shaft (152) through trapezoidal threads;
The conical tooth sliding sleeve (132), conical tooth sliding sleeve (132) cover is established on the outer disc of adjusting nut (131), conical tooth sliding sleeve (132) the end tooth with the end tooth cooperation of adjusting nut (131) is spacing, conical tooth sliding sleeve (132) outer disc links firmly with square key (198) in radial extension to cylinder cap pipe (113) square keyway.
12. The brake cylinder clearance adjustment mechanism according to claim 11, characterized in that an adjusting spring (133) is mounted on an outer circumferential surface of the adjusting nut (131), one end of the adjusting spring (133) is in end-face contact with an adjusting spring retainer ring (135), the other end of the adjusting spring is in contact with an adjusting spring bearing (134), and an end tooth matched with an end tooth of the bevel gear sliding sleeve (132) is circumferentially arranged on a front section of the adjusting nut (131).
13. The brake cylinder clearance adjustment mechanism according to claim 12, characterized in that the adjustment spring retainer ring (135) is mounted on an outer circumferential surface of the adjustment nut (131) near one end of the piston by a wire or a clip spring, and the adjustment spring bearing (134) is mounted between the adjustment nut (131) and the bevel gear sliding sleeve (132) and is axially restrained by a stepped hole end surface on the bevel gear sliding sleeve (132).
14. A brake cylinder comprising a brake cylinder gap adjustment mechanism, characterized in that the brake cylinder gap adjustment mechanism is as claimed in any one of claims 1 to 13.
CN201710761855.XA 2016-08-29 2017-08-29 Brake cylinder clearance adjustment mechanism and brake cylinder Active CN107795618B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610762023.5A CN106195075A (en) 2016-08-29 2016-08-29 A kind of checking cylinder clearance adjustment mechanism
CN2016107620235 2016-08-29

Publications (2)

Publication Number Publication Date
CN107795618A CN107795618A (en) 2018-03-13
CN107795618B true CN107795618B (en) 2024-05-03

Family

ID=58089579

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201610762023.5A Pending CN106195075A (en) 2016-08-29 2016-08-29 A kind of checking cylinder clearance adjustment mechanism
CN201710761855.XA Active CN107795618B (en) 2016-08-29 2017-08-29 Brake cylinder clearance adjustment mechanism and brake cylinder
CN201721097158.0U Withdrawn - After Issue CN207634569U (en) 2016-08-29 2017-08-29 A kind of checking cylinder clearance adjustment mechanism and checking cylinder
CN201721097160.8U Withdrawn - After Issue CN207634570U (en) 2016-08-29 2017-08-29 A kind of checking cylinder clearance adjustment mechanism, guiding resistance mode transfer block and checking cylinder
CN201710761854.5A Active CN107795617B (en) 2016-08-29 2017-08-29 Brake cylinder clearance adjustment mechanism, guide and adjustment blocking module and brake cylinder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610762023.5A Pending CN106195075A (en) 2016-08-29 2016-08-29 A kind of checking cylinder clearance adjustment mechanism

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201721097158.0U Withdrawn - After Issue CN207634569U (en) 2016-08-29 2017-08-29 A kind of checking cylinder clearance adjustment mechanism and checking cylinder
CN201721097160.8U Withdrawn - After Issue CN207634570U (en) 2016-08-29 2017-08-29 A kind of checking cylinder clearance adjustment mechanism, guiding resistance mode transfer block and checking cylinder
CN201710761854.5A Active CN107795617B (en) 2016-08-29 2017-08-29 Brake cylinder clearance adjustment mechanism, guide and adjustment blocking module and brake cylinder

Country Status (2)

Country Link
CN (5) CN106195075A (en)
WO (2) WO2018041111A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106195075A (en) * 2016-08-29 2016-12-07 中车戚墅堰机车车辆工艺研究所有限公司 A kind of checking cylinder clearance adjustment mechanism
CN106763309B (en) * 2016-12-26 2019-04-30 常州中车铁马科技实业有限公司 Vehicle band parks brake rigging
CN106499752B (en) * 2016-12-26 2019-08-27 常州中车铁马科技实业有限公司 Vehicle brake rigging
CN107131173B (en) * 2017-06-12 2018-04-13 中车青岛四方车辆研究所有限公司 Pneumatic brake cylinder
CN108414205B (en) * 2018-04-23 2023-10-17 浙江理工大学 Adjustable experimental device for researching axial distance of inducer
CN108662048B (en) * 2018-08-13 2023-07-04 眉山中车制动科技股份有限公司 Locking mechanism
CN109163038A (en) * 2018-09-07 2019-01-08 南京中车浦镇海泰制动设备有限公司 Slack adjuster
CN109443810B (en) * 2018-11-05 2021-03-02 廊坊金润电气股份有限公司 Intelligent foundation brake detection method based on displacement and force values
CN110155115B (en) * 2019-05-30 2020-05-22 眉山中车制动科技股份有限公司 Manual brake parking cylinder release mechanism and railway vehicle brake parking cylinder device
CN110285163B (en) * 2019-07-09 2020-07-10 中车青岛四方车辆研究所有限公司 Basic brake device of railway vehicle and brake cylinder thereof
CN110805671B (en) * 2019-07-18 2023-08-11 庆安集团有限公司 Rotary stroke limiting mechanism
CN110500338A (en) * 2019-09-18 2019-11-26 浙江金鹰塑料机械有限公司 A kind of positioning mechanism of oil cylinder
CN111322327B (en) * 2020-03-05 2021-02-05 中车齐齐哈尔车辆有限公司 Integrated brake cylinder and railway wagon
CN112833119B (en) * 2021-01-04 2022-06-21 中车青岛四方车辆研究所有限公司 Manual parking relieving device and parking brake cylinder
CN113446336B (en) * 2021-06-30 2022-12-27 采埃孚商用车***(青岛)有限公司 Double-piston spring brake air chamber
CN114161102B (en) * 2021-12-31 2022-11-25 重庆市星极齿轮有限责任公司 Gear slotting and perforating process
CN114542230B (en) * 2022-02-23 2022-11-29 湖南道依茨动力有限公司 In-cylinder braking and valve clearance adjusting method, adjusting structure and engine
CN114992262B (en) * 2022-06-30 2024-04-19 中车青岛四方车辆研究所有限公司 Integrated spring power unit
CN116104836B (en) * 2023-04-14 2023-06-30 仪征天华活塞环有限公司 Piston assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE617835A (en) * 1961-05-19 1962-09-17 Bromsregulator Svenska Ab Improvements made to a compressed air brake cylinder, fitted with a built-in automatic brake clearance adjustment device.
CH450482A (en) * 1966-06-23 1968-01-31 Knorr Bremse Gmbh Compressed air brake cylinder with built-in, automatic and single-acting brake adjustment device, in particular for rail vehicles
FR1524576A (en) * 1966-06-23 1968-05-10 Knorr Bremse Gmbh Compressed air brake cylinder with automatic single-acting brake play adjuster, particularly for rail vehicles
JPH0550181U (en) * 1991-12-10 1993-07-02 埼玉機器株式会社 Brake cylinder with automatic clearance adjuster
DE19903620C1 (en) * 1999-01-29 2000-05-31 Knorr Bremse Systeme Pneumatic disc brake for road vehicles has adjusting unit for guided movement of brake caliper when brake wear re-setting unit executes re-setting movements
JP2003113878A (en) * 2001-10-04 2003-04-18 Nisshinbo Ind Inc Brake cylinder device
CN2916251Y (en) * 2005-12-22 2007-06-27 江苏恒力制动器制造有限公司 Brake clearance auto-adjusting mechanism
CN102186707A (en) * 2008-10-15 2011-09-14 克诺尔-布里姆斯轨道车辆***有限公司 Pneumatic brake cylinder
DE202013009442U1 (en) * 2013-10-24 2014-04-10 Knott Gmbh Wear adjusting device for disc brakes
CN204140707U (en) * 2014-08-11 2015-02-04 浙江诸暨万宝机械有限公司 A kind of disk type braker
CN106195075A (en) * 2016-08-29 2016-12-07 中车戚墅堰机车车辆工艺研究所有限公司 A kind of checking cylinder clearance adjustment mechanism
WO2017084617A1 (en) * 2015-11-20 2017-05-26 中车戚墅堰机车车辆工艺研究所有限公司 Cylinder and brake clamp device including same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1941080A1 (en) * 1969-08-12 1971-02-25 Knorr Bremse Gmbh Brake cylinder that can be acted upon by pressure medium, in particular for hydraulically operated pad or disc brakes on rail vehicles
DE3507246A1 (en) * 1985-03-01 1986-09-04 Alfred Teves Gmbh, 6000 Frankfurt Automatic readjusting device
US5246091A (en) * 1992-06-01 1993-09-21 General Motors Corporation Drum brake wheel cylinder with internal adjuster
JPH06200967A (en) * 1992-12-29 1994-07-19 Nabco Ltd Brake cylinder with clearance adjusting mechanism
CN100561004C (en) * 2004-10-13 2009-11-18 克诺尔商用车制动***有限公司 Press the disk type braker of the structural type of reinforcement voluntarily
CN100507303C (en) * 2004-11-26 2009-07-01 大陆-特韦斯贸易合伙股份公司及两合公司 Caliper for a disk brake
DE102008051679B4 (en) * 2008-10-15 2016-07-07 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Pneumatic brake cylinder
CN201461805U (en) * 2009-06-03 2010-05-12 北京纵横机电技术开发公司 Diaphragm-plate-type unit brake cylinder
CN103511517B (en) * 2012-06-30 2015-12-16 南车戚墅堰机车车辆工艺研究所有限公司 Energy-storage type park unit brake cylinder
CN202732801U (en) * 2012-06-30 2013-02-13 南车戚墅堰机车车辆工艺研究所有限公司 Unit brake cylinder
CN103671652B (en) * 2012-09-24 2015-12-23 常州南车铁马科技实业有限公司 What have gap adjustment function parks oil cylinder
CN103335040B (en) * 2013-07-17 2015-09-09 四川制动科技股份有限公司 A kind of unit brake cylinder for railway vehicle
CN103912615A (en) * 2014-03-28 2014-07-09 南车戚墅堰机车车辆工艺研究所有限公司 Brake cylinder with clearance adjustment function
CN105065518B (en) * 2015-09-01 2017-08-08 中车长江车辆有限公司 Unit brake cylinder with hand brake device
CN206409551U (en) * 2016-12-26 2017-08-15 常州中车铁马科技实业有限公司 A kind of vehicle unit checking cylinder
CN106523556B (en) * 2016-12-26 2018-07-27 常州中车铁马科技实业有限公司 Vehicle unit checking cylinder

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE617835A (en) * 1961-05-19 1962-09-17 Bromsregulator Svenska Ab Improvements made to a compressed air brake cylinder, fitted with a built-in automatic brake clearance adjustment device.
CH450482A (en) * 1966-06-23 1968-01-31 Knorr Bremse Gmbh Compressed air brake cylinder with built-in, automatic and single-acting brake adjustment device, in particular for rail vehicles
FR1524576A (en) * 1966-06-23 1968-05-10 Knorr Bremse Gmbh Compressed air brake cylinder with automatic single-acting brake play adjuster, particularly for rail vehicles
JPH0550181U (en) * 1991-12-10 1993-07-02 埼玉機器株式会社 Brake cylinder with automatic clearance adjuster
DE19903620C1 (en) * 1999-01-29 2000-05-31 Knorr Bremse Systeme Pneumatic disc brake for road vehicles has adjusting unit for guided movement of brake caliper when brake wear re-setting unit executes re-setting movements
JP2003113878A (en) * 2001-10-04 2003-04-18 Nisshinbo Ind Inc Brake cylinder device
CN2916251Y (en) * 2005-12-22 2007-06-27 江苏恒力制动器制造有限公司 Brake clearance auto-adjusting mechanism
CN102186707A (en) * 2008-10-15 2011-09-14 克诺尔-布里姆斯轨道车辆***有限公司 Pneumatic brake cylinder
DE202013009442U1 (en) * 2013-10-24 2014-04-10 Knott Gmbh Wear adjusting device for disc brakes
CN204140707U (en) * 2014-08-11 2015-02-04 浙江诸暨万宝机械有限公司 A kind of disk type braker
WO2017084617A1 (en) * 2015-11-20 2017-05-26 中车戚墅堰机车车辆工艺研究所有限公司 Cylinder and brake clamp device including same
CN106195075A (en) * 2016-08-29 2016-12-07 中车戚墅堰机车车辆工艺研究所有限公司 A kind of checking cylinder clearance adjustment mechanism
CN207634569U (en) * 2016-08-29 2018-07-20 中车戚墅堰机车车辆工艺研究所有限公司 A kind of checking cylinder clearance adjustment mechanism and checking cylinder
CN207634570U (en) * 2016-08-29 2018-07-20 中车戚墅堰机车车辆工艺研究所有限公司 A kind of checking cylinder clearance adjustment mechanism, guiding resistance mode transfer block and checking cylinder

Also Published As

Publication number Publication date
WO2018041110A1 (en) 2018-03-08
CN106195075A (en) 2016-12-07
CN107795617A (en) 2018-03-13
CN207634570U (en) 2018-07-20
CN107795618A (en) 2018-03-13
CN207634569U (en) 2018-07-20
CN107795617B (en) 2024-05-14
WO2018041111A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
CN107795618B (en) Brake cylinder clearance adjustment mechanism and brake cylinder
EP0076729B1 (en) Disc brake
WO2017084617A1 (en) Cylinder and brake clamp device including same
KR100386437B1 (en) Friction Torque Device and Friction Device
JP6412925B2 (en) Series configuration of hydraulic chain tensioner and ratchet
US20090145252A1 (en) Anti-Backlash Nut, Lead Screw Assembly And Method
US20110203885A1 (en) Disc Brake Adjustment Device Having a Blocking Device
CN110410431A (en) Adjuster mechanism
CN109372917B (en) Automatic clearance adjusting arm of automobile brake and rotation angle control device thereof
GB1562779A (en) Universal joints
US5542504A (en) External concentric aircraft brake piston adjuster
CN104061261A (en) Automatic interval-adjusting force-restoring mechanism
CN104019117A (en) Stepless self-adjusting clutch stay cable structure
US3999638A (en) Brake slack adjusters
US3783984A (en) Self-adjusting device for disc brakes
CN213451560U (en) Pre-tightening force adjusting mechanism of double-nut ball screw and double-nut ball screw
RU221151U1 (en) Mechanism for automatically adjusting the gap between the brake pad and the brake disc of a disc brake
CA1120872A (en) Automatic adjuster for hydraulically actuated double disc brake
CN113339429A (en) Wedge block assembly of brake
EP1206651B1 (en) Automatic adjuster for brake piston
CN113124041A (en) Adjustable damping mechanism and mechanical joint with damping adjusting function
CN215805910U (en) Self-adjusting device of air pressure disc brake
CN221221243U (en) Annular buffer
CN215521741U (en) Shell for brake calipers
CN114228776B (en) Manual gap adjusting device for tread braking unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: 213011 No. 51 Wuyi Road, Qishuyan, Changzhou, Jiangsu, 258

Applicant after: CRRC Qishuyan Locomotive and Rolling Stock Technology Research Institute Co.,Ltd.

Applicant after: CRRC CHANGZHOU TECH-MARK INDUSTRIAL Co.,Ltd.

Address before: 213011 No. 51 Wuyi Road, Qishuyan, Changzhou, Jiangsu, 258

Applicant before: CRRC QISHUYAN INSTITUTE Co.,Ltd.

Country or region before: China

Applicant before: CRRC CHANGZHOU TECH-MARK INDUSTRIAL Co.,Ltd.

GR01 Patent grant
GR01 Patent grant