CN107793718A - 医用3d打印塑料及其应用 - Google Patents

医用3d打印塑料及其应用 Download PDF

Info

Publication number
CN107793718A
CN107793718A CN201711099459.1A CN201711099459A CN107793718A CN 107793718 A CN107793718 A CN 107793718A CN 201711099459 A CN201711099459 A CN 201711099459A CN 107793718 A CN107793718 A CN 107793718A
Authority
CN
China
Prior art keywords
printing
medical
plastics
parts
polycaprolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711099459.1A
Other languages
English (en)
Inventor
何丹农
王岩岩
林琳
陈超
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201711099459.1A priority Critical patent/CN107793718A/zh
Publication of CN107793718A publication Critical patent/CN107793718A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种医用3D打印塑料,该塑料由以下重量份组分组成:稳定剂1~5份,润滑剂1~10份,填充剂1~10份,聚己内酯树脂50~100份,淀粉1~40份,增韧剂10‑50份,在高混机中进行共混,并采用双螺杆挤出机进行挤出造粒。本发明所述一种医用3D打印塑料,选用熔点低、生物相容性高的聚己内酯材料作为塑料基体,降低3D打印的能耗;添加填充剂、淀粉、对人体无害的增韧剂增加其材料的力学性能,满足3D打印材料的要求。本发明公开的医用3D打印塑料母粒具有生产工艺简单,通用性强,加工性好及可连续规模化生产等优点。

Description

医用3D打印塑料及其应用
技术领域
本发明涉及一种高分子复合材料技术领域。具体涉及一种医用3D打印塑料及其应用。
背景技术
3D打印又被称作“快速成型技术”,它通过一层一层铺叠打印材料方式来实现三维物体的制造。3D打印技术源自于100多年前的照相雕塑和地貌成型技术,上世纪80年代形成雏形,随着近30年的发展,3D打印技术突飞猛进。3D打印技术的快速发展使其成为近几年国内外快速成形技术研究的重点。目前,美国、欧洲和日本都站在21世纪制造业竞争的战略高度,对快速成形技术投入了大量的研究,使3D打印技术得到了快速发展。在国防领域,欧美发达国家非常重视3D打印技术的应用,并投入巨资研制增材制造金属零部件,特别是大力推动增材制造技术在钛合金等高价值材料零部件制造上的应用。
近年来,3D打印技术得到了快速的发展,其实际应用领域逐渐增多。3D打印材料是3D打印技术发展的重要物质基础,在某种程度上,材料的发展决定着3D打印能否有更广泛的应用。目前,3D打印材料主要包括工程塑料(如ABS、PLA、PA)、光敏树脂、橡胶类材料、金属材料和陶瓷材料等,除此之外,彩色石膏材料、人造骨粉、细胞生物原料以及砂糖等食品材料也在3D打印领域得到了应用。其中,在生物医学上应用的材料,最引人注目。因为,生物医用材料需要考虑强度、生物安全性、组织工程材料的可降解性等。目前可用于3D打印的生物医用材料主要有金属、陶瓷、聚合物、生物墨水等,其特点是分布范围广,但种类少。
发明内容
为克服现有技术的不足,本发明目的在于:提供一种医用3D打印塑料母粒。
本发明再一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种医用3D打印塑料,以聚己内酯为基体树脂,各组分重量份为:聚己内酯树脂50~100份,稳定剂1~5份,润滑剂1~10份,填充剂1~10份,淀粉1~40份,增韧剂10-50份,各组分在高混机中进行共混,并采用双螺杆挤出机进行挤出造粒。
所述稳定剂为环氧大豆油。
所述润滑剂为硬脂酸钠、石蜡和聚乙烯蜡中的一种或者两种以上。
所述填充剂为超细滑石粉、超细碳酸钙、超细硫酸钡中的一种或多种。
所述增韧剂为乙基纤维素。
一种塑料作为医用3D打印的应用,用于打印心脏支架、外科骨定板等医用领域。
本发明提供了一种医用3D打印塑料,丰富了3D打印用生物医用材料种类。该塑料采用熔点低(约60℃)的聚己内酯为材料基体,所需打印温度低,热能耗低;其次,本发明对聚己内酯进行力学性能增强处理,确保其性能满足3D打印要求;再者,该材料生物相容性高,和人体亲和度高,可降低人体对该材料的排斥反应,可用来打印心脏支架、外科骨定板等产品,在医用领域有较大的应用前景。
本发明医用3D打印塑料有益效果在于:
1.本发明医用3D打印塑料所需打印温度低,热能耗低、力学性能满足3D打印要求、与人体亲和度高,可降低人体对该材料的排斥反应,拓宽了塑料在医用领域中的应用范围。
2.本发明医用3D打印塑料母粒具有生产工艺简单、可生物降解、无环境污染、可连续性规模化工业生产等特点。
具体实施方式
本发明下面通过具体实例进行详细的描述,但是本发明的保护范围不受限于这些实施例子。
实施例1
一种医用3D打印塑料,该塑料由以下重量份组分组成:环氧大豆油2份,硬酯酸钠2份,超细碳酸钙5份,聚己内酯树脂85份,淀粉5份,乙基纤维素10份。先将聚己内酯置于50℃真空烘箱内干燥24h。将超细碳酸钙、乙基纤维素、硬酯酸钠混合成均匀粉末后与环氧大豆油、聚己内酯树脂再次混合均匀,从主喂料口加入双螺杆挤出机进行挤出加工,双螺杆挤出机主要加工温度为160℃,主机转速200 rpm,主喂料转速15 rpm,切粒,低温干燥后收集可得该医用3D打印塑料。将该塑料母粒注塑成塑料样条,测试其力学性能,结果如下表1所示。
实施例2
一种医用3D打印塑料,该塑料由以下重量份组分组成:环氧大豆油4份,硬酯酸钠3份,超细碳酸钙8份,聚己内酯树脂90份,淀粉35份,乙基纤维素30份。先将聚己内酯置于50℃真空烘箱内干燥24h。将超细碳酸钙、乙基纤维素、硬酯酸钠混合成均匀粉末后与环氧大豆油、聚己内酯树脂再次混合均匀,从主喂料口加入双螺杆挤出机进行挤出加工,双螺杆挤出机主要加工温度为165℃,主机转速200 rpm,主喂料转速15 rpm,切粒,低温干燥后收集可得该医用3D打印塑料。将该塑料母粒注塑成塑料样条,测试其力学性能,结果如下表1所示。
实施例3
一种医用3D打印塑料,该塑料由以下重量份组分组成:环氧大豆油3份,聚乙烯蜡2份,超细硫酸钡5份,聚己内酯树脂80份,淀粉20份,乙基纤维素20份。先将聚己内酯置于50℃真空烘箱内干燥24h。将超细硫酸钡、乙基纤维素、聚乙烯蜡混合成均匀后与环氧大豆油、聚己内酯树脂再次混合均匀,从主喂料口加入双螺杆挤出机进行挤出加工,双螺杆挤出机主要加工温度为160℃,主机转速200 rpm,主喂料转速15 rpm,切粒,低温干燥后收集可得该医用3D打印塑料。将该塑料母粒注塑成塑料样条,测试其力学性能,结果如下表1所示。
一、实施例1、例2和例3制备的3D打印塑料的主要力学性能
测试方法与标准:拉伸强度 GB/T1040-2006、断裂伸长率GB/T1040-2006、杨氏模量GB/T1040-2006、冲击强度GB/T1843-2008。
表1为实施例1、实施例2和实施例3制备的3D打印塑料的主要力学性能。

Claims (6)

1.一种医用3D打印塑料,以聚己内酯作为基体树脂,包括以下重量份组分:聚己内酯树脂50~100份,稳定剂1~5份,润滑剂1~10份,填充剂1~10份,淀粉1~40份,增韧剂10-50份,各组分在高混机中进行共混,并采用双螺杆挤出机进行挤出造粒。
2.根据权利要求1所述的医用3D打印塑料,其特征在于:所述稳定剂为环氧大豆油。
3.根据权利要求1所述的医用3D打印塑料,其特征在于:所述润滑剂为硬脂酸钠、石蜡和聚乙烯蜡中的一种或者两种以上。
4.根据权利要求1所述的医用3D打印塑料,其特征在于:所述填充剂为超细滑石粉、超细碳酸钙、超细硫酸钡中的一种或多种。
5.根据权利要求1所述的医用3D打印塑料,其特征在于:所述增韧剂为乙基纤维素。
6.根据权利要求1-5任一所述塑料作为医用3D打印的应用,用于打印心脏支架、外科骨定板。
CN201711099459.1A 2017-11-09 2017-11-09 医用3d打印塑料及其应用 Pending CN107793718A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711099459.1A CN107793718A (zh) 2017-11-09 2017-11-09 医用3d打印塑料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711099459.1A CN107793718A (zh) 2017-11-09 2017-11-09 医用3d打印塑料及其应用

Publications (1)

Publication Number Publication Date
CN107793718A true CN107793718A (zh) 2018-03-13

Family

ID=61549189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711099459.1A Pending CN107793718A (zh) 2017-11-09 2017-11-09 医用3d打印塑料及其应用

Country Status (1)

Country Link
CN (1) CN107793718A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206866A (zh) * 2018-07-09 2019-01-15 福建师范大学 一种可实现表面多孔的3d打印线材及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597752A (zh) * 2004-08-23 2005-03-23 成都新柯力化工科技有限公司 生物降解淀粉树脂母料
CN101172164A (zh) * 2006-11-03 2008-05-07 中国科学院化学研究所 可生物降解及吸收的生物高分子纳米纤维膜材料及其制法和用途
WO2008069761A1 (en) * 2006-12-05 2008-06-12 Nanyang Technological University Manufacturing three-dimensional scaffolds using cryogenic prototyping
CN105400164A (zh) * 2015-12-03 2016-03-16 深圳光华伟业股份有限公司 一种低温3d打印材料及其制备方法
CN106366352A (zh) * 2016-08-30 2017-02-01 安徽锦鸿环保科技有限公司 一种碳酸钙增强的己内酯‑淀粉可降解薄膜及其制备方法
CN106700460A (zh) * 2016-12-21 2017-05-24 济宁明升新材料有限公司 一种木质素改性pcl生物降解塑料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597752A (zh) * 2004-08-23 2005-03-23 成都新柯力化工科技有限公司 生物降解淀粉树脂母料
CN101172164A (zh) * 2006-11-03 2008-05-07 中国科学院化学研究所 可生物降解及吸收的生物高分子纳米纤维膜材料及其制法和用途
WO2008069761A1 (en) * 2006-12-05 2008-06-12 Nanyang Technological University Manufacturing three-dimensional scaffolds using cryogenic prototyping
CN105400164A (zh) * 2015-12-03 2016-03-16 深圳光华伟业股份有限公司 一种低温3d打印材料及其制备方法
CN106366352A (zh) * 2016-08-30 2017-02-01 安徽锦鸿环保科技有限公司 一种碳酸钙增强的己内酯‑淀粉可降解薄膜及其制备方法
CN106700460A (zh) * 2016-12-21 2017-05-24 济宁明升新材料有限公司 一种木质素改性pcl生物降解塑料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李守梅,等: "热塑性橡实淀粉/聚己内酯复合材料的制备和性能研究", 《材料导报:研究篇》 *
金立维,等: "聚己内酯在热塑性生物质复合材料中的应用研究进展", 《生物质化学工程》 *
陈品,等: "纳米纤维素/聚乳酸/聚乙二醇三元复合材料的研究", 《现代化工》 *
马德柱,等: "聚己内酯和乙基纤维素共混体系的环带球晶及液晶形态", 《应用化学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206866A (zh) * 2018-07-09 2019-01-15 福建师范大学 一种可实现表面多孔的3d打印线材及其应用

Similar Documents

Publication Publication Date Title
Thomas et al. Polymer composites, biocomposites
Thiruchelvi et al. Bioplastics as better alternative to petro plastic
CN104877293B (zh) 一种驱蚊型3d打印材料及其应用
CN105038165B (zh) 具有形状记忆功能的生物基热塑性弹性体及其制备方法
Chiarathanakrit et al. Transforming fish scale waste into an efficient filler for starch foam
Luo et al. 13-93 bioactive glass/alginate composite scaffolds 3D printed under mild conditions for bone regeneration
CN101245157A (zh) 成膜剂组合物和含有该组合物的淀粉质植物胶
CN106366595A (zh) 一种抑菌聚乳酸复合材料及其制备方法
Daramola et al. Mechanical and wear behaviour of polylactic acid matrix composites reinforced with crab-shell synthesized chitosan microparticles
Machado et al. Constrained mixture design to optimize formulation and performance of foams based on cassava starch and peanut skin
Rodrigues et al. Preparation and characterization of polymeric films based on PLA, PBAT and corn starch and babassu mesocarp starch by flat extrusion
Diabor et al. Characterization of cassava fiber of different genotypes as a potential reinforcement biomaterial for possible tissue engineering composite scaffold application
CN108752683A (zh) 一种抗菌透气塑料母粒及其制备方法与应用
CN107793718A (zh) 医用3d打印塑料及其应用
CN102895215A (zh) 纤维素红藻多糖植物空心胶囊及其原料组合物和制备方法
CN106928671A (zh) 一种高强度形状记忆性3d打印生物塑料以及制备方法
CN102757625B (zh) 一种壳聚糖-聚乳酸多孔复合材料及其制备方法
Okonkwoa et al. Starch-based composites and their applications
CN106084312A (zh) 一种一次性餐具可降解塑料
Wu et al. Improvement of cytocompatibility of polylactide by filling with marine algae powder
CN106729728A (zh) 一种空心胶囊用植物淀粉组合物
Thankachen et al. Methodologies for selecting biopolymers and their characteristic features for industrial applications
CN104286080A (zh) 一种花生巴及制作方法
CN107652474A (zh) 一种可降解环保抗菌餐具及其制备方法
Bhattacharya Techniques of Preparing Edible Protein Films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180313