CN107766405A - 自动车辆道路模型定义*** - Google Patents

自动车辆道路模型定义*** Download PDF

Info

Publication number
CN107766405A
CN107766405A CN201710731312.3A CN201710731312A CN107766405A CN 107766405 A CN107766405 A CN 107766405A CN 201710731312 A CN201710731312 A CN 201710731312A CN 107766405 A CN107766405 A CN 107766405A
Authority
CN
China
Prior art keywords
plane
cell
point
cloud
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710731312.3A
Other languages
English (en)
Other versions
CN107766405B (zh
Inventor
I·H·伊扎特
D·泽马斯
U·S·皮塔贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aptiv Technologies Ltd
Original Assignee
Delphi Automotive Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Automotive Systems LLC filed Critical Delphi Automotive Systems LLC
Publication of CN107766405A publication Critical patent/CN107766405A/zh
Application granted granted Critical
Publication of CN107766405B publication Critical patent/CN107766405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3837Data obtained from a single source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/647Three-dimensional objects by matching two-dimensional images to three-dimensional objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/653Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种适于自动车辆的道路模型定义***(10),包括激光雷达单元(14)和控制器(20)。激光雷达单元(14)适于安装在本车辆(12)上。激光雷达单元(14)用于提供描述本车辆(12)附近的区域(18)的点云(16)。控制器(20)与激光雷达单元(14)进行通信。控制器(20)被配置成:从所述点云(16)中选择指示行驶表面(28)的地面点(26),细分(36)所述区域(18)的对应于所述行驶表面(28)的一部分以定义多个单元格(38),基于每一单元格(38)内的所述地面点(26)来确定每一单元格(38)的朝向(42),基于所述单元格(38)的所述朝向(42)来定义所述行驶表面(28)的道路模型(40),以及根据所述道路模型(40)来操作所述本车辆(12)。

Description

自动车辆道路模型定义***
技术领域
本公开一般涉及道路模型定义***,更具体而言,涉及***使对应于行驶表面的区域细分(tessellate)(即,对区域施加网格)以定义多个单元格,并基于那些单元格的朝向来定义行驶表面的道路模型。
背景技术
即将来临的道路段的精确的道路模型是自动车辆和机动车积极安全***所需要的。已经有人提出了使用单一平面来表示行驶表面(例如,道路)的道路模型。然而,使用单一平面并不总适当,因为行驶表面并不总是平面的,如此,道路角度(路拱、变化的斜率)对在行驶表面上行驶的车辆的影响是不可预测的。
发明内容
此处描述了一种道路模型定义***,该***从激光雷达单元接收指示本车辆附近的区域的点云数据,并通过细分对应于行驶表面(例如,道路)的区域的一部分来处理该数据。该***将二维(2D)平面拟合到单元格中的每一个,以便基于由2D平面的布局形成的行驶表面的分段的线性模型来构成三维(3D)道路模型,其中,平面的范围由用于定义单元格的细分进行定义。与例如使用复杂非线性的技术来表征行驶车道的形状的道路建模技术相比,行驶表面的此细分和分段的平面近似缩小了最佳地操作本车辆所需的数据处理量。
根据一个实施例,提供了一种适于自动车辆的道路模型定义***。该***包括激光雷达单元和控制器。激光雷达单元适于安装在本车辆上。激光雷达单元用于提供描述本车辆附近的区域的点云。控制器与激光雷达单元进行通信。控制器被配置成:从点云中选择指示行驶表面的地面点,使所述区域的对应于所述行驶表面的一部分细分以定义多个单元格,基于每一单元格内的所述地面点来确定每一单元格的朝向,基于所述单元格的所述朝向来定义所述行驶表面的道路模型,以及,根据所述道路模型来操作所述本车辆。
在阅读优选实施例的下列详细描述并参考各个附图,进一步的特征和优点将更加显而易见,优选实施例只是作为非限制性示例给出的。
附图说明
现在将参考各个附图,作为示例,来描述本本发明,其中:
图1是根据一实施例的道路模型定义***的图示;
图2是根据一个实施例的由配备有图1的***的本车辆上的激光雷达单元检测到的本车辆周围的区域的点云的俯视图;
图3是根据一个实施例的图2的点云的一部分的特写;
图4A和4B示出了根据一个实施例的由图1的***将初始单元格(图4A)合并为最终的单元格(图4B);
图5A和5B示出了根据一个实施例的由图1的***将初始单元格(图4A)分割为最终的单元格(图4B);
图6是根据一个实施例的来自图2和3的数据的一部分的侧视图;
图7是根据一个实施例的配备有图1的***的车辆附近的点云数据的图形表示;以及
图8是根据一个实施例的配备有图1的***的车辆附近的点云数据的图形表示。
具体实施方式
图1示出了道路模型定义***10(下文简称为***10)的非限制性示例,该***10适用于操作自动车辆,例如,本车辆12。尽管此处所呈现的示例可以被表征为一般涉及当本车辆12正在以自动模式(即,完全自主模式)操作时的情况,其中,本车辆12的操作员(未示出)仅仅指定目的地以操作本车辆12,但是,可以构想,此处所呈现的原理也适用于在手动模式下操作本车辆12的情况。尽管在手动模式下自动的程度或级别可以只是向操作员提供转向协助,操作员一般性地控制本车辆12的转向、加速器,以及制动器。即,***10可以根据需要只协助操作员,保持对本车辆12的控制,和/或避免干扰和/或与例如,另一车辆的碰撞。
***10包括,但不仅限于,适合于安装在本车辆12上的激光雷达单元14。“适合”意味着,激光雷达单元14一般被设计并为建造为经受得住由于温度变化、振动,以及暴露于潮湿和对于机动车应用预期的各种化学品导致的机动车应用的严格要求。激光雷达单元14被***10用来提供描述本车辆12附近的区域18的点云16(也参见图2和3)。激光雷达单元14可以安装在本车辆12顶上,以便可以由激光雷达单元14的单一实例观察到完整的360°视场,如图2所示出的。可另选地,激光雷达单元14可以以这样的方式被配置和/或安装到本车辆,以便激光雷达单元14具有仅限于本车辆12前方的区域的视场,或激光雷达单元14可以对应于安装在本车辆12周围的多个位置的多个激光雷达单元。
***10包括与激光雷达单元14进行通信的控制器20。控制器20可包括处理器(未具体地示出),诸如微处理器和/或其他控制电路,诸如模拟和/或数字控制电路,包括用于处理数据的专用集成电路(ASIC),如精通本技术的人员所认识到的。控制器20可包括存储器(未具体地示出),包括非易失性存储器,诸如用于存储一个或多个例程、阈值,以及捕捉到的数据的电可擦可编程只读存储器(EEPROM)。一个或多个例程可以由处理器执行,以基于由控制器20从激光雷达单元14接收到的信号,执行用于确定本车辆12周围的区域18的道路模型40的步骤,如此处所描述的。
图2和3示出了由激光雷达单元14检测到的或指示的点云16的非限制性示例。图3是图2所示出的点云16的一部分的特写或放大视图。图3所示出的点云16的一部分位于本车辆12附近和前方。图3未本车辆12和激光雷达单元14未在图3中示出,但是,可以理解其位于示出图3的页面底部之外。点云16由云点22的许多实例构成,云点22被组织或排列到扫描线24,或沿着扫描线24,如熟悉激光雷达单元的操作那些人所认识到的。
继续参考图1-3,控制器20被配置成从点云16中选择指示或对应于行驶表面28的地面点26,即,适于本车辆12行驶的道路或车道。即,控制器20选择或根据点云16确定哪些点是行驶表面28的一部分或对应于行驶表面28,例如,是道路的一部分。控制器20也可以选择或确定哪些点不是行驶表面的一部分,例如,对应于路缘或最好由本车辆12避让的其他物体。云点22中的每一个都可包括高度值30,该高度值30是参考平面上方的测量到的相对于激光雷达单元14的期望的或计划的高度或从该高度的偏移,该参考平面通过例如对激光雷达单元14和/或控制器20的校准确定。然而,应认识到,行驶表面28可能由于路拱和/或变化的上坡或下坡斜率变化,而弯曲,如此,更加成熟的技术可能有益,诸如下面更加详细地描述的诸如直线拟合、可变阈值,或种子的平面拟合之类的技术。
图3还示出了对应于在激光雷达单元14处产生的光线并扩展到无穷远处或至少到点云16的云点22的最远的实例的径向直线34的单一实例。在随后的描述中,对径向直线34“上”的云点的引用可以被解释为对云点22的那些与扫描线24的特定实例相关联的并且与径向直线34最近的云点22的引用。即,认识到,点云16被组织成以激光雷达单元14为中心的具有可变(例如,增大)的半径的扫描线24的多个环形实例,云点22的与径向直线34的特定实例相关联的实例是从扫描线24中的每一条到径向直线34最近的云点22。作为示例而不是限制,激光雷达单元14的可用的示例可以提供360°的覆盖,带有半度(0.5°)的分辨率,从而,提供径向直线34的720个实例,例如,每隔0.5°一条径向直线。如果希望快一些的处理,观察到可以接受的性能是激光雷达单元14被配置成与径向直线34的360个实例一起操作,即,一度(1°)分辨率。另一方面,如果需要更大的分辨率,则激光雷达单元14可以被配置成与径向直线34的4000个实例一起操作,即,0.09°分辨率。
如上文示出的,选择云点22中的哪一个是地面点26的一种方式可以通过比较云点22的高度值30与高度阈值32来完成。例如,如果高度值30小于高度阈值32,即,议论中的云点具有相对较小的高度值30,那么,议论中的云点可以被分类为地面点26。然而,当道路向上或向下弯曲时,此简单方法可能不正确地将某些云点分类为地面点。这假设,如前所述的参考平面上方的激光雷达单元14的期望的偏移距离适用于由激光雷达单元14测量到的实际或原始高度值。
一种替代方案是直线拟合方法,该方法将多条直线与位于激光雷达单元14上的原点拟合,并包括与径向直线34的每一实例相关联的云点22的那些实例。基于云点22的每一实例的高度值30,确定直线拟合技术。可以通过多种方法来估计从直线拟合技术产生的直线模型参数,例如,直线斜率和线截,诸如在2005年8月出版的“Intelligent Robots andSystems”中由V.Nguyen所著的“A Comparison of Line Extraction Algorithms Using2D Laser Range Finder for Indoor Mobile Robotics”中所描述的那些。一旦估计了直线模型参数,就可以基于直线斜率、线截,以及拟合误差,将云点22中的每一个分类为地面点26的实例或非地面实例。此外,还可以给地面点26的每一实例指定置信度值,供稍后所描述的平面拟合算法使用。置信度值(在0和1之间)是基于云点22的特定实例如何紧密地拟合径向直线34的特定实例定义的。例如,如果云点22的实例刚好在径向直线34上,则将给该云点指定高置信度值1。与径向直线34分离的云点22的实例基于它们与径向直线34有多远而被指定较低的置信度值。
可以使用3D直线拟合技术来拟合径向直线34,因为云点22是3D点。然而,拟合3D直线复杂并且费时。为了加速处理,可以使用(sqrt(x*x+y*y),z)将3D坐标转换为2D坐标。这会导致比3D处理快得多的直线拟合处理。
在另一替换实施例中,可以使用极坐标网格或笛卡儿坐标网格,定义径向直线34。在这些方法中,点云16首先被分成网格。对于每一列,定义径向直线34。在2010 IEEEIntelligent Vehicles(智能车辆)研讨会中发布的由M.Himmelsbach所著的“Fastsegmentation of 3D Point Clouds for ground Vehicles”中描述了作为使用极坐标网格的示例。创建网格会是费时的。因此,在优选实施例中,直接从扫描线24定义径向直线34。
如之前指出的,点云16被组织成以激光雷达单元14为中心的半径增大的沿圆周方向排列的多条扫描线24,参见图2。现在将描述确定点云16中的云点22的哪些实例是与行驶表面28相关联的地面点26的一种替代的方式。控制器20可以被配置成确定被表征为与选择的扫描线相关联并与从激光雷达单元14径向地延伸的径向线34最近的选择的云点的斜率值72。基于相对于被表征为与径向直线34最近的并与选定的扫描线附近的随后的扫描线相关联的随后的云点的高度变化80(即,高度中的变化),确定斜率值72。即,当斜率值72的每一实例都与特定云点22相关联时,基于地面点26的至少两个实例的相对位置,确定斜率值72。然后,控制器20定义指示表征为与每一扫描线24的径向直线34最近的并通过在斜率容差76内彼此相等的斜率值72来表征的。云点22的连续的组的直线线段74
图6示出了诸如图3中所示出的与径向直线34的单一实例相关联的云点22的侧视图(相对于图2-3所示出的俯视图)的一个非限制性示例。应该理解,由虚线表示的云点22的数量对应于用于生成点云16的扫描线24的数量。在此示例中,云点22被分组到直线线段(例如,74A、74B、74C以及74D)四个实例。如此分组云点22,因为每一组中的云点22中的每一个的斜率值72(图1)在斜率容差76内相等。示出了多个光线78,只为示出由激光雷达单元14发出的几个激光光束,以检测云点22。
直线线段74的每一实例(例如,74A、74B、74C、74D)可以通过线段斜率82来表征,而当直线线段74的特定实例的线段斜率82小于斜率阈值84时,由直线线段74的特定实例表示的云点22的实例被分类为地面点26。类似地,当线段斜率不小于斜率阈值84时,云点22的实例可以被分类为对象点(即,非地面点)。其他直线拟合参数(诸如截取和拟合误差)也可以用于分类点云16中的云点22的实例。
一旦如上文所描述的,云点22的每一实例被分类为地面点26或非地面,平面50可以被拟合到数据,以完成道路模型40的估计。然而,在大多数情况下,由于行驶表面28的形状变化,有噪声的距离测量值,或彼此靠得很近的多表面的存在,行驶表面28不能精确地与单一平面拟合。已发现,行驶表面28的细分改善了车辆控制性能,而不会对控制器20造成过大的处理负担。细分可以基于定期形成矩形或其他几何形状,或基于区域拟合误差,或基于高度变化,或连接的组件,来完成。这些方法的组合也是可以设想的。值得注意的是,在此非限制性示例中,只考虑了由被确定为地面点26的云点22确定的行驶表面28,并从平面拟合中排除了任何非地面点。然而,认识到,如果需要那些其他部分的3D模型,细分可以适用于不是行驶表面28的一部分的区域18那些部分。
相应地,控制器20被配置成细分36对应于行驶表面28的区域18的一部分,以定义多个单元格38。即,地面点26被组织或被分成通过例如利用方形的网格在概念上覆盖行驶表面指定的单元格38。让初始细分使用方形或矩形使得合并或分割原始单元格更加容易,下面将说明原因。
然后,控制器20基于单元格38的每一实例内的地面点26来确定单元格38的每一实例的朝向42(例如,垂直于单元格的矢量的斜率或方向)。即,控制器20利用相对于垂直于单元格38的平面50的级别或矢量的角度来表征每一单元格38。然后,控制器基于单元格38的每一实例的朝向42来定义行驶表面28的道路模型40,并根据道路模型40来操作本车辆12。作为示例,根据道路模型40操作意味着,控制器20考虑即将来临的弯曲的倾斜角,以确定转向轮(未示出,通常是前轮)必须倾斜多少角度以沿着拐弯行驶。如那些精通本领域的人员所认识到的,与当行驶表面28是水平时沿着弯道行驶所需的转向角度相比,当行驶表面28朝着同一半径的弯道的内侧倾斜时(即,弯道的内侧低于弯道的外侧),沿着弯道行驶需要的转向角度更小。
图4A示出了初始细分44的一部分的非限制性示例,其可以被用来将地面点26(在图4A-5B中未具体地示出)合并为由初始细分44所定义的单元格38。作为示例而不是限制,如果行驶表面28是双车道道路,则初始细分44可以具有四米乘四米(4m x 4m)的单元格大小,如此,双车道道路具有八米(8m)总宽度的行驶表面28。应该理解,可以预期的是应用于典型的直的双车道道路的初始细分44将具有四个以上的单元格,并将具有在示出了图4A的页面上面和下面延伸以覆盖本车辆12附近以及远离本车辆12的行驶表面28的更多单元格。可以基于,例如,行驶表面28的道路模型40的紧接在前面的实例的最终细分46(图4B)中的单元格38平均大小来选择初始细分44的单元格38的大小。下面将更详细地描述由控制器20根据初始细分44确定最终细分46执行的步骤。
图4B示出了如何分割图4A所示出的初始细分44以提供道路模型40的比较精确的体现的非限制性示例。在此方法中,地面点26被分割成作为矩形或者方形的更小的单元格38实例。分割过程可以是迭代的,并在几次迭代之后停止。为执行此分割过程,控制器20进一步被配置成当单元格38内的地面点26与单元格38的平面50的偏差大于偏差阈值52时,分割48单元格38。作为示例而不是限制,当与地面点26的任何实例到平面50的高度差异58大于偏差阈值52时,偏差可以被表征为大于偏差阈值52。可另选地,不是只使用沿着z轴测量到的高度来确定偏差,偏差可以是将包括沿着x轴和y轴的任何误差或差异的实际距离。在再一个替代方案中,控制器20可以通过从单元格内的高度(诸如高度值30的最大绝对差值)或基于激光返回的强度(如果可用的话)计算测量值,来分割48单元格38。
图5A示出了初始细分54的另一示例,其中,单元格38显得比图4A中所示出的小一些。如果如上文参考图4A示出的,应用于双车道道路,则单元格38中的每一个都可以是半米x半米(0.5m x 0.5m)。如上文所指出的,应该理解,应用于行驶表面28的实际细分可以延伸到图5A中所示出的上面和下面。初始细分54中的每一单元格38的大小可以小于以足够的精确度确定道路模型40所需的,如此,可能有益的是合并初始细分54中的单元格38中的某些以降低道路模型40的复杂性。
图5B示出了通过合并来自图5A的具有,例如,基本上相同的朝向42的单元格38的实例产生的最终细分56的非限制性示例。为执行此合并过程,控制器20可以被配置成当相邻单元格的地面点26的平均高度66相差小于平均阈值62时,合并60单元格的相邻(即,彼此紧挨着)的实例。例如,如果在单元格38的一个实例中的地面点26的平均高度66在单元格38的相邻实例中的地面点26的平均高度66的一百毫米(100mm)内,则可以将那些单元格合并,以形成较大的单元格。
可另选地,控制器20可以被配置成当相邻单元格的平面50在平行阈值64内平行时,合并60单元格38的相邻实例。例如,如果与单元格38的相邻实例相关联的平面50在一度的角度(1°角)内,则单元格38的相邻实例可以被合并成单元格的较大的实例,而不会实质地降低道路模型40的精确度。作为另一替代方案,可以计算或估计垂直于每一单元格38的平面的法向矢量,如果相邻平面的法向矢量在平行阈值内平行,则可以合并相邻单元格。如前所述,过程可以是迭代的,即,如有必要,控制器20可以被配置成重复合并步骤。
可以反复迭代分割48和/或合并60的步骤,直到最终细分(46,56)中的所有单元格38都满足各种阈值准则。相应地,控制器20可以被配置成当单元格38内的地面点26与单元格38的平面50的高度偏差68不大于偏差阈值52,并且单元格38不平行于平行阈值64内的任何相邻单元格时,指定一个单元格38作为最终的单元格70。然后,当所有单元格都被表征为最终的单元格70时,控制器20基于最终的单元格70的朝向42,定义行驶表面的道路模型40。
确定单元格38的特定实例的平面50的朝向42的一种方式是使用,例如,最小平方误差方法,将平面50拟合到所有地面点26,如精通本领域技术的那些人所认识到的。可另选地,如果使用从最终的单元格70内的由小于高度阈值32的高度值表征的地面点中选择的拟合种子,对于每一个最终的单元格70,迭代地确定朝向,控制器20上计算负担可能会减轻。换言之,可以基于平面50来确定单元格38的朝向42,所述平面50通过由来小于高度阈值的高度值表征的单元格38的地面点26的那些实例来定义。可另选地,可以使用单元格38的被表征为在估计的平面的偏差阈值内的地面点26的那些实例来确定单元格38的朝向42。可以使用从直线拟合定义的置信度值来帮助选择拟合种子,因为它们表示高质量地面点。
图7示出了由激光雷达单元14所生成的点云16的另一非限制性示例的图形86,其中,提出了优化对属于行驶表面28的点的选择的替代的方法。该方法使用平面拟合方法,使用确定性的平面拟合,来从点云16中选择指示行驶表面28的地面点26。在点云16的本车辆12的正面附近的点最有可能属于行驶表面28的假设下操作,有可能减轻初始化步骤的随机性,如诸如随机样本一致性(RANSAC)之类的典型的平面拟合技术所示。此先验知识用于规定用于启动算法的确定性点集,导致快得多的收敛。首先,选择本车辆12的邻近的周围的区域处的并低于高度阈值32的一组点,并用于估计它们定义的平面。接下来,评估点云16中的所有点的拟合误差102(图1),平面拟合阈值104内的平面88附近的那些被包括在平面88内。通过使用平面拟合阈值104内的所有点,再次估计平面50的新实例,在相对于点云16中的云点22的其余部分,评估它。重复此步骤直到用户定义的迭代次数,对平面88的最终迭代被视为行驶表面28。实验表明,三到四个迭代足够稳健地选择最佳地描述地面的平面88,即,行驶表面28。
到平面的拟合误差102是已知的,并被定义为点云16中的一个点与它的平面88的候选实例上的正交投影的距离。此距离用于判断该点是否被视为属于平面88,并提供平面拟合好得如何好的度量。拟合误差102内的小于平面拟合阈值104(例如,0.15cm)的所有点都被视为平面的一部分,因此,被分类为行驶表面28的一部分。
图8示出了点云16的另一非限制性示例的图形90。有两个条件使得单一平面,决定性种子的平面拟合模型不足以用于现实世界部署:(i)激光雷达单元14引入用于远距离测量的噪声,以及(ii)地面点26未形成完美的平面。已经注意到,行驶表面28的大多数实例表现出需要检测的斜率值72的变化。将其适用性扩展到行驶表面28的非平面实例的如前所述的决定性地种子的平面拟合技术的实例化涉及沿着x轴(本车辆12的行驶方向)将点云16分割为段,以及在那些段中的每一个段中应用决定性地种子的平面拟合。如在图8中所描绘的,如前面对于本车辆12附近的点所描述,执行对第一平面92的种子点的选择。基于它们的高度值,选择第二平面94和第三平面96的种子点。具体而言,基于它们的高度值,排序对应于平面(例如,92,94,96)的每一段中的点,选择用户定义的数量的具有最低高度值的那些点。然后,计算这些低高度值点的平均值。最后,从阈值内的整个段到该平均值的点被视为该段的种子点。每一段都具有这样的一组用于估计它们定义的平面的种子点。类似于单一平面方法,对于每一个估计的平面,评估相应的段中的所有点的拟合误差102,在平面拟合阈值内的平面附近的那些被包括在平面内。实验表明,使用预定义尺寸的三个段的过程通常足以捕捉行驶表面28的曲率和斜率值72的变化,那些过程设法在相对短的执行时间内从点云16的其余部分提取行驶表面28。
在多个平面拟合技术的另一个实施例中,以与平面段的其余部分相同的方式(该方式基于其相应的点云16段中的最低点的高度值)选择第一平面92的种子点。可以使用相同平面拟合方法来对于上文所描述的自下而上(合并60)或自上而下(分割48)的细分方法,拟合细分的区域。在此情况下,可以从每一单元格中选择种子,以均匀地分布用于估计平面的点。可以使用从直线拟合定义的置信度值来选择好的种子点,例如,通过拒绝被表征为低置信度地面点的种子点。
相应地,提供了道路模型定义***(***10)、用于***10的控制器20,以及操作***10的方法。通过使地面点26细分,道路模型40可以是行驶表面28的平面块近似,从而,降低道路模型40的计算复杂性。
尽管以及根据本发明的优选实施例描述了本发明,但是并不限制于此,而是仅在所附的权利要求书所阐述的范围内。

Claims (13)

1.一种适用于自动车辆的道路模型定义***(10),所述***(10)包括:
激光雷达单元(14),适合于安装在本车辆(12)上,所述激光雷达单元(14)用于提供描述本车辆(12)附近的区域(18)的点云(16);以及
控制器(20),与所述激光雷达单元(14)进行通信,所述控制器(20)被配置成
从所述点云(16)中选择指示行驶表面(28)的地面点(26),
细分(36)对应于所述行驶表面(28)的所述区域(18)的一部分以定义多个单元格(38),
基于每一单元格(38)内的所述地面点(26)来确定每一单元格(38)的朝向(42),
基于所述单元格(38)的所述朝向(42)来定义所述行驶表面(28)的道路模型(40),以及
根据所述道路模型(40)来操作所述本车辆(12)。
2.根据权利要求1所述的***(10),其中,所述控制器(20)进一步被配置成,当一个单元格(38)内的地面点(26)与所述单元格(38)的平面(50)的偏差大于偏差阈值(52)时,分割(48)所述单元格(38)。
3.根据权利要求2所述的***(10),其中,当从任何地面点(26)到所述平面(50)的高度差异(58)大于所述偏差阈值(52)时,所述偏差大于所述偏差阈值(52)。
4.根据权利要求1所述的***(10),其中,所述控制器(20)进一步被配置成,当相邻单元格(38)的地面点(26)的平均高度(66)相差小于平均阈值(62)时,合并所述相邻单元格(38)。
5.根据权利要求1所述的***(10),其中,所述控制器(20)进一步被配置成,当相邻单元格(38)的平面(50)在平行阈值(64)内平行时,合并所述相邻单元格(38)。
6.根据权利要求1所述的***(10),其中,所述控制器(20)进一步被配置成
当一个单元格(38)内的所述地面点(26)与所述单元格(38)的平面(50)的高度偏差(68)大于偏差阈值(52)时,分割(48)所述单元格(38),
当相邻单元格(38)的平面(50)在平行阈值(64)内平行时,合并所述相邻单元格(38),
当一个单元格(38)内的所述地面点(26)与所述单元格(38)的所述平面(50)的偏差不大于所述偏差阈值(52)并且所述单元格(38)不平行于所述平行阈值(64)内的任何相邻单元格(38)时,指定所述单元格(38)作为最终单元格(70);以及
当所有单元格(38)都被表征为最终单元格(70)时,基于最终单元格(70)的所述朝向(42)来定义所述行驶表面(28)的所述道路模型(40)。
7.根据权利6要求所述的***(10),其中,使用从所述最终单元格(70)内的云点(22)中选择的拟合种子来迭代地确定由小于高度阈值(32)的高度值(30)来表征的所述最终的单元格(70)中的每一个的所述朝向(42)。
8.根据权利要求1所述的***(10),其中,所述点云(16)被组织成以所述激光雷达单元(14)为中心的半径增大的多个环形的扫描线(24),所述控制器(20)进一步被配置成确定被表征为与从所述激光雷达单元(14)径向地延伸的径向直线(34)最近的并与选择的扫描线(24)相关联的选择的云点(22)的斜率值(72),所述斜率值(72)是基于相对于被表征为与所述径向直线(34)最近的并与所述选定的扫描线(24)附近的随后的扫描线(24)相关联的随后的云点(22)的高度变化(80)来确定,并定义指示被表征为到所述径向直线(34)最近的并通过在斜率容差(76)内相等的斜率值(72)来表征的云点(22)的连续的组的线段(74)。
9.根据权利要求8所述的***(10),其中,所述线段(74)以线段斜率(82)来表征,当所述线段斜率(82)小于斜率阈值(84)时,通过所述线段(74)表示的所述云点(22)被分类为地面点(26)。
10.根据权利1要求所述的***(10),其中,基于平面(50)来确定单元格(38)的所述朝向(42),所述平面(50)通过由小于高度阈值(32)的高度值(30)表征的所述单元格(38)的地面点(26)来定义。
11.根据权利1要求所述的***(10),其中,使用被表征为在估计的平面(50)的偏差阈值(52)内的地面点(26)来确定单元格(38)的所述朝向(42)。
12.根据权利要求1所述的***(10),其中,使用迭代确定性平面(50)拟合来确定所述地面点(26),所述迭代确定性平面(50)拟合使用来自从位于所述本车辆(12)的前方的正面部分选择的点云(16)的平面(50)拟合种子,并且当拟合误差(102)小于平面拟合阈值(104)时云点(22)被分类为地面点(26)。
13.根据权利要求1所述的***(10),其中,通过将所述点云分割为多个区域来确定所述地面点(26),迭代地使用来自从所述本车辆(12)前方的区域(18)选择的点云(16)的平面(50)拟合种子上的确定性平面(50)拟合来确定第一平面(92),使用来自从所述第一平面(92)和所述第二平面(94)中的低高度云点(22)中选择的所述点云(16)的平面(50)拟合种子上的迭代确定性平面(50)拟合来确定第二平面(94),并且当拟合误差(102)小于平面拟合阈值(104)时云点(22)被分类为地面点(26)。
CN201710731312.3A 2016-08-23 2017-08-23 自动车辆道路模型定义*** Active CN107766405B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/244,474 2016-08-23
US15/244,474 US10101746B2 (en) 2016-08-23 2016-08-23 Automated vehicle road model definition system

Publications (2)

Publication Number Publication Date
CN107766405A true CN107766405A (zh) 2018-03-06
CN107766405B CN107766405B (zh) 2022-01-11

Family

ID=59738110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710731312.3A Active CN107766405B (zh) 2016-08-23 2017-08-23 自动车辆道路模型定义***

Country Status (3)

Country Link
US (1) US10101746B2 (zh)
EP (1) EP3287945B1 (zh)
CN (1) CN107766405B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188448A (zh) * 2018-09-07 2019-01-11 百度在线网络技术(北京)有限公司 点云非地面点过滤方法、装置及存储介质
CN111104849A (zh) * 2018-10-29 2020-05-05 安波福技术有限公司 运载工具的导航期间的、地图中的环境特征的自动注释
CN111208495A (zh) * 2020-02-28 2020-05-29 燕山大学 一种基于激光雷达点云特征线与平面校准的地面提取方法
CN113176585A (zh) * 2021-04-14 2021-07-27 浙江工业大学 一种基于三维激光雷达的路面异常检测方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851391B (zh) * 2015-08-04 2019-10-01 日产自动车株式会社 台阶检测装置及台阶检测方法
US20190005667A1 (en) * 2017-07-24 2019-01-03 Muhammad Zain Khawaja Ground Surface Estimation
US10962638B2 (en) * 2017-09-07 2021-03-30 Magna Electronics Inc. Vehicle radar sensing system with surface modeling
US10338223B1 (en) * 2017-12-13 2019-07-02 Luminar Technologies, Inc. Processing point clouds of vehicle sensors having variable scan line distributions using two-dimensional interpolation and distance thresholding
US11691630B2 (en) 2018-12-19 2023-07-04 Here Global B.V. Road surface detection
CN111353969B (zh) * 2018-12-20 2023-09-26 长沙智能驾驶研究院有限公司 道路可行驶区域的确定方法、装置及计算机设备
US11327178B2 (en) 2019-09-06 2022-05-10 Volvo Car Corporation Piece-wise network structure for long range environment perception
US20220222824A1 (en) * 2020-09-15 2022-07-14 Sri International Fully automated multimodal system architecture for semantic segmentation of large-scale 3d outdoor point cloud data
CN112666573B (zh) * 2020-11-17 2022-08-23 青岛慧拓智能机器有限公司 一种矿区卸载区车后方挡土墙及障碍物的检测方法
CN112644517B (zh) * 2020-12-29 2022-01-25 北京宸控科技有限公司 一种井下车辆自动驾驶算法
US20220413147A1 (en) * 2021-06-23 2022-12-29 Vueron Technology Co., Ltd Method for detecting ground using lidar sensor and ground detection device performing same
KR102378646B1 (ko) * 2021-07-21 2022-03-25 (주)뷰런테크놀로지 라이다 포인트 데이터의 포인트 속성 적용 방법 및 시스템
KR102378649B1 (ko) * 2021-07-21 2022-03-25 (주)뷰런테크놀로지 라이다 포인트 데이터의 지면 및 비지면 판단 방법 및 시스템

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100030473A1 (en) * 2008-07-30 2010-02-04 Honeywell International Inc. Laser ranging process for road and obstacle detection in navigating an autonomous vehicle
CN102779280A (zh) * 2012-06-19 2012-11-14 武汉大学 一种基于激光传感器的交通信息提取方法
CN103617647A (zh) * 2013-11-28 2014-03-05 中国人民解放军国防科学技术大学 一种用于夜视的车辆周围环境三维重构方法
CN103760569A (zh) * 2013-12-31 2014-04-30 西安交通大学 一种基于激光雷达的可行驶区域检测方法
CN104569998A (zh) * 2015-01-27 2015-04-29 长春理工大学 基于激光雷达的车辆安全行驶区域的检测方法及装置
US20150120244A1 (en) * 2013-10-31 2015-04-30 Here Global B.V. Method and apparatus for road width estimation
CN104950313A (zh) * 2015-06-11 2015-09-30 同济大学 一种路面提取及道路坡度识别方法
US20150279219A1 (en) * 2014-03-28 2015-10-01 Airbus Helicopters Procedure for the detection and display of artificial obstacles for a rotary-wing aircraft
WO2016008459A1 (en) * 2014-07-15 2016-01-21 R.O.G. S.R.O. Method of constructing digital terrain model
CN105404898A (zh) * 2015-11-26 2016-03-16 福州华鹰重工机械有限公司 一种松散型点云数据分割方法和设备
CN105551082A (zh) * 2015-12-02 2016-05-04 百度在线网络技术(北京)有限公司 一种基于激光点云的路面识别方法及装置
CN105825173A (zh) * 2016-03-11 2016-08-03 福州华鹰重工机械有限公司 通用道路和车道检测***与方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825260B1 (en) 2013-07-23 2014-09-02 Google Inc. Object and ground segmentation from a sparse one-dimensional range data

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100030473A1 (en) * 2008-07-30 2010-02-04 Honeywell International Inc. Laser ranging process for road and obstacle detection in navigating an autonomous vehicle
CN102779280A (zh) * 2012-06-19 2012-11-14 武汉大学 一种基于激光传感器的交通信息提取方法
US20150120244A1 (en) * 2013-10-31 2015-04-30 Here Global B.V. Method and apparatus for road width estimation
CN103617647A (zh) * 2013-11-28 2014-03-05 中国人民解放军国防科学技术大学 一种用于夜视的车辆周围环境三维重构方法
CN103760569A (zh) * 2013-12-31 2014-04-30 西安交通大学 一种基于激光雷达的可行驶区域检测方法
US20150279219A1 (en) * 2014-03-28 2015-10-01 Airbus Helicopters Procedure for the detection and display of artificial obstacles for a rotary-wing aircraft
WO2016008459A1 (en) * 2014-07-15 2016-01-21 R.O.G. S.R.O. Method of constructing digital terrain model
CN104569998A (zh) * 2015-01-27 2015-04-29 长春理工大学 基于激光雷达的车辆安全行驶区域的检测方法及装置
CN104950313A (zh) * 2015-06-11 2015-09-30 同济大学 一种路面提取及道路坡度识别方法
CN105404898A (zh) * 2015-11-26 2016-03-16 福州华鹰重工机械有限公司 一种松散型点云数据分割方法和设备
CN105551082A (zh) * 2015-12-02 2016-05-04 百度在线网络技术(北京)有限公司 一种基于激光点云的路面识别方法及装置
CN105825173A (zh) * 2016-03-11 2016-08-03 福州华鹰重工机械有限公司 通用道路和车道检测***与方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. HIMMELSBACH 等: "Fast Segmentation of 3D Point Clouds for Ground Vehicles", 《2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM》 *
V.NGUYEN 等: "A Comparison of Line Extraction Algorithms Using 2D Laser Range Finder for Indoor Mobile Robotics", 《2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEM》 *
侯学勇: "基于二维激光测距的移动机器人道路可行区域提取", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188448A (zh) * 2018-09-07 2019-01-11 百度在线网络技术(北京)有限公司 点云非地面点过滤方法、装置及存储介质
CN109188448B (zh) * 2018-09-07 2020-03-06 百度在线网络技术(北京)有限公司 点云非地面点过滤方法、装置及存储介质
CN111104849A (zh) * 2018-10-29 2020-05-05 安波福技术有限公司 运载工具的导航期间的、地图中的环境特征的自动注释
CN111104849B (zh) * 2018-10-29 2022-05-31 动态Ad有限责任公司 运载工具的导航期间的、地图中的环境特征的自动注释
US11774261B2 (en) 2018-10-29 2023-10-03 Motional Ad Llc Automatic annotation of environmental features in a map during navigation of a vehicle
CN111208495A (zh) * 2020-02-28 2020-05-29 燕山大学 一种基于激光雷达点云特征线与平面校准的地面提取方法
CN113176585A (zh) * 2021-04-14 2021-07-27 浙江工业大学 一种基于三维激光雷达的路面异常检测方法
CN113176585B (zh) * 2021-04-14 2024-03-22 浙江工业大学 一种基于三维激光雷达的路面异常检测方法

Also Published As

Publication number Publication date
EP3287945B1 (en) 2021-09-22
EP3287945A1 (en) 2018-02-28
US20180059666A1 (en) 2018-03-01
US10101746B2 (en) 2018-10-16
CN107766405B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN107766405A (zh) 自动车辆道路模型定义***
CN109541634B (zh) 一种路径规划方法、装置和移动设备
CN111797734B (zh) 车辆点云数据处理方法、装置、设备和存储介质
JP4971369B2 (ja) 旋回可能なセンサ装置を用いた物体検出方法
CN110674705B (zh) 基于多线激光雷达的小型障碍物检测方法及装置
CN112880694B (zh) 确定车辆的位置的方法
CN102248947A (zh) 使用3-d激光测距仪的目标和车辆检测及跟踪
CN103678754A (zh) 信息处理装置及信息处理方法
KR102547274B1 (ko) 이동 로봇 및 이의 위치 인식 방법
CN111066064A (zh) 使用误差范围分布的网格占用建图
CN117590362B (zh) 一种多激光雷达外参标定方法、装置和设备
JP5433289B2 (ja) 自動走行車両及び道路形状認識装置
CN113030997B (zh) 一种基于激光雷达的露天矿区可行驶区域检测方法
CN112731337B (zh) 地图构建方法、装置和设备
CN113551679A (zh) 一种示教过程中的地图信息构建方法、构建装置
CN113313629B (zh) 交叉路口自动识别方法、***及其模型保存方法、***
CN116299554A (zh) 激光点云的生成方法、装置、车辆及存储介质
Kolu et al. A mapping method tolerant to calibration and localization errors based on tilting 2D laser scanner
CN115496782A (zh) Lidar对lidar对准和lidar对车辆对准的在线验证
CN115273066A (zh) 货架识别方法、装置、电子设备及机器可读存储介质
EP3229173B1 (en) Method and apparatus for determining a traversable path
Wang et al. Detection and tracking dynamic vehicles for autonomous driving based on 2-D point scans
KR102275671B1 (ko) 객체 형태 검출 장치 및 방법
EP3582135A1 (en) Method and apparatus for detecting, in an environment of an object, the presence of a location where road branches of an area within the environment converge or diverge
CN112347664B (zh) 一种非规整装车空间的建模方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181205

Address after: Babado J San Michaele

Applicant after: Amberford Technology Co., Ltd.

Address before: michigan

Applicant before: Delphi Automotive Systems LLC (US)

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant