CN107719369B - 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆 - Google Patents

自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆 Download PDF

Info

Publication number
CN107719369B
CN107719369B CN201710828439.7A CN201710828439A CN107719369B CN 107719369 B CN107719369 B CN 107719369B CN 201710828439 A CN201710828439 A CN 201710828439A CN 107719369 B CN107719369 B CN 107719369B
Authority
CN
China
Prior art keywords
vehicle
virtual target
speed
target
dis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710828439.7A
Other languages
English (en)
Other versions
CN107719369A (zh
Inventor
王肖
颜波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Idriverplus Technologies Co Ltd
Original Assignee
Beijing Idriverplus Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Idriverplus Technologies Co Ltd filed Critical Beijing Idriverplus Technologies Co Ltd
Priority to CN201710828439.7A priority Critical patent/CN107719369B/zh
Publication of CN107719369A publication Critical patent/CN107719369A/zh
Application granted granted Critical
Publication of CN107719369B publication Critical patent/CN107719369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆,所述方法包括:S1,根据本车的期望路径曲率信息,生成虚拟目标;S2,根据本车感知***识别出真实目标;S3,根据交通场景、车辆业务功能和用户交互功能,转化为虚拟目标;S4,从各虚拟目标和真实目标中,筛选出跟随目标;S5,根据跟随目标,规划本车的期望加速度。本发明将期望路径上的各路径点以及交通场景、车辆业务功能和用户交互功能等因素均被抽象为虚拟目标,再在虚拟目标和真实目标中筛选出对本车的安全性影响最大的作为唯一的跟随目标,采用统一的控制策略对本车的加速度进行规划,避免了传统控制算法中因交通场景变化造成的控制模式切换过程中产生的车辆减速度跳变问题。

Description

自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆
技术领域
本发明涉及智能驾驶技术领域,特别是涉及一种自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆。
背景技术
智能驾驶技术在智能交通领域方面是极为重要的组成部分,随着计算能力的迅速提升以及智能交通自动化需求的日益提升,越来越多的国家研究机构与公司企业更多地关注智能驾驶这一领域。智能驾驶技术研究涉及到机械电子、模式识别、人工智能、控制科学及软件工程等跨学科、多交叉的学科知识。而控制部分作为最基本与最传统的部分,又分为横向控制与纵向控制。其中:横向控制指的是在已知路径规划轨迹的条件下,主要控制车辆转角,以达到轨迹追踪的目的。纵向控制为在路径规划轨迹已知且路径追踪较好条件下,主要控制车辆速度,以达到速度规划的安全性、合理性和舒适性为目的。在复杂的交通环境下自动控制车辆平稳起步、定速、跟车、遇真实目标减速停车、自动紧急制动及定点停车等功能;同时根据决策规划层指令进行速度控制,配合横向控制实现车辆的换道避障等行为。
纵向控制作为车辆控制中相对基础的部分,运用相对较为成熟,研究方法较少。目前公开的相关文献、报告主要是使用多个模式的判定以及匹配进行车辆的纵向控制,实现较为简单,容易在多个模式之间频繁切换,但是未能考虑各类真实目标(比如红绿灯等)对于纵向控制的影响。传统的车辆纵向控制采用定速巡航CC、自适应巡航ACC和自动紧急制动AEB功能的融合算法,这种算法对于简单路况可行,但对于稍复杂的交通环境来说,由于影响自动驾驶纵向行为的因素很多,包括设定巡航速度、前方质点距离及相对速度和使用者主动行为(如要求停车或启动)等。可见,纵向行为影响因素较多,且这些因素之间相互交叉影响,难以采用统一程序框架进行描述,传统的车辆纵向控制方法因状态及目标的频繁切换会造成车辆速度跳变问题,舒适性较差。在传统ADAS(Advanced Driver AssistantSystems)纵向研究中,又通常将其归类为ACC(Adaptive Cruise Control)+CC(CruisingControl)+AEB(Autonomous Emergency Braking)三个组成部分,但由于三部分边界条件重叠,需要大量IF-THEN逻辑来进行场景切换,在现实复杂场景下将可能导致逻辑混乱。严重时出现状态控制不合理,影响车辆行驶的安全性。
发明内容
本发明的目的在于提供一种自动驾驶纵向控制方法、装置来克服或至少减轻现有技术的上述缺陷中的至少一个。
为实现上述目的,本发明提供一种自动驾驶纵向控制方法,所述自动驾驶纵向控制方法包括:
S1,根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标;
S2,根据本车感知***识别出具有速度和位置属性的真实目标;
S3,根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标;
S4,从S1和S3中的各虚拟目标和真实目标中,筛选出对本车安全性影响最大的跟随目标;以及
S5,根据S4中筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
进一步地,S1中,虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为本车的车速。
进一步地,S3中,虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为限速值;
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为用户心理期望车速或默认为道路限速;
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;该虚拟目标的速度为0km/h;
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离;该虚拟目标的速度为0km/h。
进一步地,S4中,筛选出对本车安全性影响最大的跟随目标的方法具体包括:
S41,按照如下目标选择模型,计算S1和S3中的各虚拟目标和真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子;
为虚拟目标或真实目标相对于本车的横向预测距离;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子;
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子;
Vrel为虚拟目标或真实目标相对于本车的速度;
S42,经由上述公式计算得到的影响权重Score最大的虚拟目标或真实目标为跟随目标。
进一步地,S5中,“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vre l为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数;
Tis为速度项积分时间常数;
Tds为速度项微分时间常数;
Kpd为距离项比例控制系数;
Tid为距离项积分时间常数;
Tdd为距离项微分时间常数。
本发明还提供一种自动驾驶纵向控制装置,所述自动驾驶纵向控制装置包括:
第一虚拟目标生成模块,其用于根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标;
真实目标生成模块,其用于根据本车感知***识别出具有速度和位置属性的真实目标;
第二虚拟目标生成模块,其用于根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标;
目标筛选模块,其用于从所述第一虚拟目标生成模块和第二虚拟目标生成模块生成的各虚拟目标和所述真实目标生成模块生成的真实目标中,筛选出对本车安全性影响最大的跟随目标;
期望加速度规划模块,其用于根据所述目标筛选模块筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
进一步地,所述第一虚拟目标生成模块生成的虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;所述第一虚拟目标生成模块生成的虚拟目标的速度为本车的车速;
所述第二虚拟目标生成模块生成的虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为限速值;
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为用户心理期望车速或默认为道路限速;
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;该虚拟目标的速度为0km/h;
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离;该虚拟目标的速度为0km/h。
进一步地,所述目标筛选模块具体包括:
影响权重计算模块,其用于按照如下目标选择模型,计算所述第一虚拟目标生成模块和第二虚拟目标生成模块生成的各虚拟目标和所述真实目标生成模块生成的真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子;
为虚拟目标或真实目标相对于本车的横向预测距离;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子;
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子;
Vrel为虚拟目标或真实目标相对于本车的速度;
跟随目标确定模块,其用于将所述影响权重计算模块计算得到的影响权重Score最大的虚拟目标或真实目标作为跟随目标。
进一步地,所述期望加速度规划模块的“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vre l为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数;
Tis为速度项积分时间常数;
Tds为速度项微分时间常数;
Kpd为距离项比例控制系数;
Tid为距离项积分时间常数;
Tdd为距离项微分时间常数。
本发明还提供一种无人驾驶车辆,所述无人驾驶车辆包括如上所述的自动驾驶纵向控制装置。
本发明将期望路径上的各路径点以及交通场景、车辆业务功能和用户交互功能等因素均被抽象为虚拟目标,再在虚拟目标和真实目标中筛选处对本车的安全性影响最大的作为唯一的跟随目标,采用统一的控制策略对本车的加速度进行规划,极大地简化了传统纵向控制中定速巡航、自适应巡航控制和自动紧急制动控制的逻辑切换,有效避免了传统控制算法中因交通场景变化造成的控制模式切换过程中产生的车辆减速度跳变问题,从而提高了车辆纵向控制的平稳性和舒适性。
附图说明
图1是本发明所提供的自动驾驶纵向控制方法一实施例的流程示意图。
图2是图1的方法中的虚拟目标的生成方法示意图。
图3是图1的方法中的多种虚拟目标并存的示意图。
图4是本发明所提供的自动驾驶纵向控制装置一实施例的原理结构示意图。
图5是图4中的目标筛选模块一实施例的结构示意图。
具体实施方式
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
如图1所示,本实施例所提供的自动驾驶纵向控制方法包括:
S1,根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标。期望路径信息由多个路径点组成,每一个路径点具有对应的坐标值和航向角,期望路径信息是通过摄像头识别车道线或差分GPS设备给出的期望路径信息。利用现有的曲线拟合方法(最小二乘法或者贝塞尔曲线拟合或者使用简单的几何数学近似计算)将路径点依次串联连接,并计算出选定的每一个路径点的曲率信息。相邻的两个选定的路径点之间的间隔相同,该间隔可以根据自动驾驶***控制模块的控制精度要求(比如:0.1m)确定。
优选地,S1中,虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为本车的车速。
S2,根据本车感知***识别出具有速度和位置属性的真实目标。本车感知***可以采用雷达、GPS、摄像机等等,辨识提取如车辆、自行车和行人等。真实目标信息具体包括:位置坐标点、速度属性。本发明中提及的各点的坐标值都可以视为在车辆坐标系的坐标值,车辆坐标系可以采用公知的方法确定,在此不再赘述。纵向指的是车辆的前后方向,横向指的是车辆的左右方向。
S3,如图2和图3所示,根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标。
优选地,S3中,根据交通场景、车辆业务功能和用户交互功能,其中的交通场景比如道路限速、慢速行驶牌和红绿灯等。虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离,THW通常设置为1.5-2.3,根据驾驶员驾驶风格(激进1.5,一般1.8,保守2.3)调节。道路限速对应的虚拟目标的速度为限速值。道路限速对应的虚拟目标为恒定存在,道路限速是指所行驶道路法规所允许的最高限速。
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离,THW通常设置为1.5-2.3,根据驾驶员驾驶风格(激进1.5,一般1.8,保守2.3)调节。用户心理期望车速对应的虚拟目标的速度为用户心理期望车速或默认为道路限速。用户心理期望车速对应的虚拟目标为恒定存在。在实际应用中,可由用户手动选择期望车速,或者默认为道路限速。
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;用户主动控制车辆停止对应的虚拟目标的速度为0km/h。用户主动控制车辆停止对应的虚拟目标为条件存在。当用户主动要求车辆停止时,此时立即生成虚拟目标,该质点的距离同车辆速度成正比,即速度越快距离越大,这同车辆实际行驶过程中速度越高所需停车距离越大相吻合。在主动停车后,该虚拟目标将持续存在,直至用户主动要求车辆启动,则该质点自动消失。
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离。定点停车对应的虚拟目标的速度为0km/h。定点停车对应的虚拟目标为条件存在。当车辆满足某种定点停车条件时,例如十字路口红灯,需要在斑马线前停车、车辆返库需要在停车位停车等,这时需要产生虚拟目标。
S4,从S1和S3中的各虚拟目标和真实目标中,筛选出对本车安全性影响最大的跟随目标。
优选地,S4中,筛选出对本车安全性影响最大的跟随目标的方法具体包括:
S41,按照如下目标选择模型,计算S1和S3中的各虚拟目标和真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子,该影响因子范围0~1,随横向预测距离的增大而减小;
为虚拟目标或真实目标相对于本车的横向预测距离,通常预测真实目标在未来2s时间内的位置信息;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子(该影响因子通常为1.0);
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子,该速度影响因子通常设置为2.5;
Vrel为虚拟目标或真实目标相对于本车的速度;
S42,经由上述公式计算得到的影响权重Score最大的虚拟目标或真实目标为跟随目标。
基于目标选择模型的目标选择是对车辆周围所有目标进行筛选,提取出对车辆运动状态影响最大的目标。车辆周围的目标主要包括车辆同车道真实目标、邻近车道预切入/切出的真实目标和定速、限速标识牌、十字路口等虚拟目标,本实施例基于能量场思想,采用统一的筛选原则对众多目标进行筛选提取。
S5,根据S4中筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
优选地,S5中,“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vre l为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数,比如0.5;
Tis为速度项积分时间常数,比如50;
Tds为速度项微分时间常数,比如0.02;
Kpd为距离项比例控制系数,比如0.1;
Tid为距离项积分时间常数,比如200;
Tdd为距离项微分时间常数,比如0.05。
本实施例中的“期望加速度”的计算公式将传统基于速度控制的定速巡航控制和基于距离控制的自适应巡航控制和自动紧急制动控制算法相融合,形成统一的纵向PID控制算法,因算法模型统一,极大的简化了传统纵向控制中定速巡航、自适应巡航控制和自动紧急制动控制的逻辑切换,有效避免了传统控制算法中因交通场景变化造成的控制模式切换过程中产生的车辆减速度跳变问题,从而提高了车辆纵向控制的平稳性和舒适性。
如图4所示,本实施例还提供一种自动驾驶纵向控制装置,该自动驾驶纵向控制装置包括第一虚拟目标生成模块1、真实目标生成模块2、第二虚拟目标生成模块3、目标筛选模块4和期望加速度规划模块5,其中:
第一虚拟目标生成模块1用于根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标。期望路径信息由多个路径点组成,每一个路径点具有对应的坐标值和航向角,期望路径信息是通过摄像头识别车道线或差分GPS设备给出的期望路径信息。利用现有的曲线拟合方法(最小二乘法或者贝塞尔曲线拟合或者使用简单的几何数学近似计算)将路径点依次串联连接,并计算出选定的每一个路径点的曲率信息。相邻的两个选定的路径点之间的间隔相同,该间隔可以根据自动驾驶***控制模块的控制精度要求(比如0.1m)确定。
优选地,所述第一虚拟目标生成模块1生成的虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;所述第一虚拟目标生成模块生成的虚拟目标的速度为本车的车速。
真实目标生成模块2用于根据本车感知***识别出具有速度和位置属性的真实目标。本车感知***可以采用雷达、GPS、摄像机等等,采集到期望路径周围的诸多真实目标的相关信息。真实目标信息具体包括:位置坐标点、速度属性。
如图2和图3所示,第二虚拟目标生成模块3用于根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标。其中的交通场景比如道路限速、慢速行驶牌和红绿灯等。虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离,THW通常设置为1.5-2.3,根据驾驶员驾驶风格(激进1.5,一般1.8,保守2.3)调节。道路限速对应的虚拟目标的速度为限速值。道路限速对应的虚拟目标为恒定存在,道路限速是指所行驶道路法规所允许的最高限速。
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离,THW通常设置为1.5-2.3,根据驾驶员驾驶风格(激进1.5,一般1.8,保守2.3)调节。用户心理期望车速对应的虚拟目标的速度为用户心理期望车速或默认为道路限速。用户心理期望车速对应的虚拟目标为恒定存在。在实际应用中,可由用户手动选择期望车速,或者默认为道路限速。
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;用户主动控制车辆停止对应的虚拟目标的速度为0km/h。用户主动控制车辆停止对应的虚拟目标为条件存在。当用户主动要求车辆停止时,此时立即生成虚拟目标,该质点的距离同车辆速度成正比,即速度越快距离越大,这同车辆实际行驶过程中速度越高所需停车距离越大相吻合。在主动停车后,该虚拟目标将持续存在,直至用户主动要求车辆启动,则该质点自动消失。
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离。定点停车对应的虚拟目标的速度为0km/h。定点停车对应的虚拟目标为条件存在。当车辆满足某种定点停车条件时,例如十字路口红灯,需要在斑马线前停车、车辆返库需要在停车位停车等,这时需要产生虚拟目标。
目标筛选模块4用于从所述第一虚拟目标生成模块1和第二虚拟目标生成模块3生成的各虚拟目标和所述真实目标生成模块2生成的真实目标中,筛选出对本车安全性影响最大的跟随目标。
期望加速度规划模块5用于根据所述目标筛选模块4筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
所述第二虚拟目标生成模块3生成的虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为限速值;
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为用户心理期望车速或默认为道路限速;
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;该虚拟目标的速度为0km/h;
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离;该虚拟目标的速度为0km/h。
如图5所示,在一个实施例,所述目标筛选模块4具体包括影响权重计算模块41和跟随目标确定模块42,其中:
影响权重计算模块41用于按照如下目标选择模型,计算所述第一虚拟目标生成模块和第二虚拟目标生成模块生成的各虚拟目标和所述真实目标生成模块生成的真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子,该影响因子范围0~1,随横向预测距离的增大而减小;
为虚拟目标或真实目标相对于本车的横向预测距离,通常预测真实目标在未来2s时间内的位置信息;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子(该影响因子通常为1.0);
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子,该速度影响因子通常设置为2.5;
Vrel为虚拟目标或真实目标相对于本车的速度。
跟随目标确定模块42用于将所述影响权重计算模块41计算得到的影响权重Score最大的虚拟目标或真实目标作为跟随目标。
基于目标选择模型的目标选择是对车辆周围所有目标进行筛选,提取出对车辆运动状态影响最大的目标。车辆周围的目标主要包括车辆同车道真实目标、邻近车道预切入/切出的真实目标和定速、限速标识牌、十字路口等虚拟目标,本实施例基于能量场思想,采用统一的筛选原则对众多目标进行筛选提取。
在一个实施例中,所述期望加速度规划模块5的“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vrel为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数,比如0.5;
Tis为速度项积分时间常数,比如50;
Tds为速度项微分时间常数,比如0.02;
Kpd为距离项比例控制系数,比如0.1;
Tid为距离项积分时间常数,比如200;
Tdd为距离项微分时间常数,比如0.05。
本实施例中的“期望加速度”的计算公式将传统基于速度控制的定速巡航控制、基于距离控制的自适应巡航控制和自动紧急制动控制算法相融合,形成统一的纵向PID控制算法,因算法模型统一,极大的简化了传统纵向控制中定速巡航、自适应巡航控制和自动紧急制动控制的逻辑切换,有效避免了传统控制算法中因交通场景变化造成的控制模式切换过程中产生的车辆减速度跳变问题,从而提高了车辆纵向控制的平稳性和舒适性。
本发明还提供一种无人驾驶车辆,所述无人驾驶车辆包括上述各实施例中所述的自动驾驶纵向控制装置。所述无人驾驶车辆的其它部分为现有技术,在此不再展开描述。
本发明将期望路径上的各路径点以及交通场景、车辆业务功能和用户交互功能等因素均被抽象为虚拟目标,再在虚拟目标和真实目标中筛选处对本车的安全性影响最大的作为唯一的跟随目标,采用统一的控制策略对本车的加速度进行规划,极大地简化了传统纵向控制中定速巡航、自适应巡航和自动紧急制动控制的逻辑切换,有效避免了传统控制算法中因交通场景变化造成的控制模式切换过程中产生的车辆减速度跳变问题,从而提高了车辆纵向控制的平稳性和舒适性。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种自动驾驶纵向控制方法,其特征在于,包括:
S1,根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标;
S2,根据本车感知***识别出具有速度和位置属性的真实目标;
S3,根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标;
S4,从S1和S3中的各虚拟目标和真实目标中,筛选出对本车安全性影响最大的跟随目标;以及
S5,根据S4中筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
2.如权利要求1所述的自动驾驶纵向控制方法,其特征在于,S1中,虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为本车的车速。
3.如权利要求1所述的自动驾驶纵向控制方法,其特征在于,S3中,虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为限速值;
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为用户心理期望车速或默认为道路限速;
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;该虚拟目标的速度为0km/h;
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离;该虚拟目标的速度为0km/h。
4.如权利要求1所述的自动驾驶纵向控制方法,其特征在于,S4中,筛选出对本车安全性影响最大的跟随目标的方法具体包括:
S41,按照如下目标选择模型,计算S1和S3中的各虚拟目标和真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子;
为虚拟目标或真实目标相对于本车的横向预测距离;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子;
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子;
Vrel为虚拟目标或真实目标相对于本车的速度;
S42,经由上述公式计算得到的影响权重Score最大的虚拟目标或真实目标为跟随目标。
5.如权利要求1至4中任一项所述的自动驾驶纵向控制方法,其特征在于,S5中,“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vrel为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数;
Tis为速度项积分时间常数;
Tds为速度项微分时间常数;
Kpd为距离项比例控制系数;
Tid为距离项积分时间常数;
Tdd为距离项微分时间常数。
6.一种自动驾驶纵向控制装置,其特征在于,包括:
第一虚拟目标生成模块,其用于根据本车的期望路径曲率信息,生成表征路径速度和位置属性的虚拟目标;
真实目标生成模块,其用于根据本车感知***识别出具有速度和位置属性的真实目标;
第二虚拟目标生成模块,其用于根据交通场景、车辆业务功能和用户交互功能,将其特征转化为若干个具有速度和位置属性的虚拟目标;
目标筛选模块,其用于从所述第一虚拟目标生成模块和第二虚拟目标生成模块生成的各虚拟目标和所述真实目标生成模块生成的真实目标中,筛选出对本车安全性影响最大的跟随目标;
期望加速度规划模块,其用于根据所述目标筛选模块筛选出的跟随目标相对于本车的速度和距离信息,规划本车的期望加速度。
7.如权利要求6所述的自动驾驶纵向控制装置,其特征在于,所述第一虚拟目标生成模块生成的虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;所述第一虚拟目标生成模块生成的虚拟目标的速度为本车的车速;
所述第二虚拟目标生成模块生成的虚拟目标包括以下的一种或多种:
道路限速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为限速值;
用户心理期望车速对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon表达式为:dislon=THW×v+dissafe,v表示本车的车速,dissafe表示纵向安全距离;该虚拟目标的速度为用户心理期望车速或默认为道路限速;
用户主动控制车辆停止对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon与本车的车速成正比;该虚拟目标的速度为0km/h;
定点停车对应的虚拟目标,该虚拟目标相对于本车的纵向距离dislon为其相对于本车的纵向距离;该虚拟目标的速度为0km/h。
8.如权利要求6所述的自动驾驶纵向控制装置,其特征在于,所述目标筛选模块具体包括:
影响权重计算模块,其用于按照如下目标选择模型,计算所述第一虚拟目标生成模块和第二虚拟目标生成模块生成的各虚拟目标和所述真实目标生成模块生成的真实目标的影响权重,目标选择模型的表达式为:
式中:Score为虚拟目标的影响权重;
为虚拟目标或真实目标相对于本车的横向距离的影响因子;
为虚拟目标或真实目标相对于本车的横向预测距离;
为虚拟目标或真实目标相对于本车的纵向距离的影响因子;
Dislon为虚拟目标或真实目标相对于本车的纵向距离;
Factorspeed为虚拟目标或真实目标相对于本车的速度影响因子;
Vrel为虚拟目标或真实目标相对于本车的速度;
跟随目标确定模块,其用于将所述影响权重计算模块计算得到的影响权重Score最大的虚拟目标或真实目标作为跟随目标。
9.如权利要求6所述的自动驾驶纵向控制装置,其特征在于,所述期望加速度规划模块的“期望加速度”的计算公式如下:
公式中:atarget为期望减速度;
Vrel为跟随目标相对于本车的速度;
eDis为跟随目标与本车间的实际距离与期望距离的偏差;
Kps为速度项比例控制系数;
Tis为速度项积分时间常数;
Tds为速度项微分时间常数;
Kpd为距离项比例控制系数;
Tid为距离项积分时间常数;
Tdd为距离项微分时间常数。
10.一种无人驾驶车辆,其特征在于,包括如权利要求6至9中任一项所述的自动驾驶纵向控制装置。
CN201710828439.7A 2017-09-14 2017-09-14 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆 Active CN107719369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710828439.7A CN107719369B (zh) 2017-09-14 2017-09-14 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710828439.7A CN107719369B (zh) 2017-09-14 2017-09-14 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆

Publications (2)

Publication Number Publication Date
CN107719369A CN107719369A (zh) 2018-02-23
CN107719369B true CN107719369B (zh) 2019-05-10

Family

ID=61204667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710828439.7A Active CN107719369B (zh) 2017-09-14 2017-09-14 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆

Country Status (1)

Country Link
CN (1) CN107719369B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108556845B (zh) * 2018-04-10 2020-07-10 清华大学 一种车辆跟驰***和方法
CN108944921B (zh) * 2018-07-03 2020-11-20 驭势(上海)汽车科技有限公司 一种用于车辆的纵向控制的方法与设备
CN108958264B (zh) * 2018-08-03 2021-07-23 北京智行者科技有限公司 基于自动驾驶技术的道路交通稽查方法和车辆
CN108983787B (zh) * 2018-08-09 2021-09-10 北京智行者科技有限公司 道路行驶方法
CN109532832B (zh) * 2018-12-08 2020-12-15 华东交通大学 一种智能驾驶中纵向规划方法
CN109582023B (zh) * 2018-12-21 2019-10-11 费子偕 一种新型载人工具以及适用其的控制方法
CN111880521B (zh) * 2019-04-15 2022-06-14 比亚迪股份有限公司 车辆的控制方法、装置、车辆及电子设备
CN110320910B (zh) * 2019-07-01 2023-10-10 阿波罗智能技术(北京)有限公司 车辆的避让控制方法、装置、电子设备与存储介质
CN110514224B (zh) * 2019-08-26 2021-04-02 中国人民解放军军事科学院国防科技创新研究院 一种无人驾驶汽车局部路径规划性能评价方法
CN110531771B (zh) * 2019-09-02 2022-08-16 广州小鹏汽车科技有限公司 一种速度规划方法及装置、车辆
US11274936B2 (en) * 2019-11-14 2022-03-15 Nissan North America, Inc. Safety-assured remote driving for autonomous vehicles
CN111367273A (zh) * 2019-12-31 2020-07-03 天嘉智能装备制造江苏股份有限公司 基于路径跟踪的无人驾驶小型扫路车控制***及其控制方法
CN111873998B (zh) * 2020-07-31 2021-07-06 重庆长安汽车股份有限公司 一种自动驾驶车辆纵向加速度规划方法
CN112193253B (zh) * 2020-10-23 2021-11-23 江苏大学 一种无人驾驶车辆在变曲率弯道行驶的纵向控制方法
CN113104034B (zh) * 2021-04-30 2022-05-20 东风汽车集团股份有限公司 一种acc自适应巡航安全控制方法及装置
CN113635918B (zh) * 2021-08-13 2022-11-25 中国汽车技术研究中心有限公司 一种自动驾驶机器人控制***和方法
CN113942505B (zh) * 2021-10-28 2023-11-03 长春一汽富晟集团有限公司 一种车辆自适应巡航算法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6039077B2 (ja) * 2012-08-16 2016-12-07 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車速制御における改良
CN104742906B (zh) * 2013-12-26 2017-11-21 ***通信集团公司 实现自动驾驶的方法及***
JP6350074B2 (ja) * 2014-07-30 2018-07-04 アイシン・エィ・ダブリュ株式会社 車両運転支援装置、車両運転支援方法及びプログラム
EP3156298B1 (en) * 2015-10-13 2022-08-10 Volvo Car Corporation Driving aid arrangement, a vehicle and a method of controlling a longitudinal velocity of a vehicle
CN107284442B (zh) * 2017-05-15 2019-07-09 北京理工大学 一种用于自动驾驶车辆的弯道行驶纵向控制方法

Also Published As

Publication number Publication date
CN107719369A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107719369B (zh) 自动驾驶纵向控制方法、装置及具有其的无人驾驶车辆
EP3710327B1 (en) Software validation for autonomous vehicles
CN106338988B (zh) 自动驾驶车辆的控制装置
US10606270B2 (en) Controlling an autonomous vehicle using cost maps
CN110386152B (zh) 基于l2级智能领航驾驶的人机交互显示控制方法及***
CN109969172A (zh) 车辆控制方法、设备及计算机存储介质
US7487074B2 (en) Road traffic simulation apparatus
CN109345020A (zh) 一种完全信息下的无信号交叉口车辆驾驶行为预测模型
CN108583578A (zh) 用于自动驾驶车辆的基于多目标决策矩阵的车道决策方法
CN107731002A (zh) 自动驾驶***及自动驾驶车辆
CN107544518A (zh) 基于拟人驾驶的acc/aeb***及车辆
CN103921719A (zh) 驾驶员交互式商用车辆侧翻预警方法和***
CN113212454B (zh) 车辆行驶状态的调整方法、装置、计算机设备和存储介质
CN109084798A (zh) 网络下发带有道路属性的控制点的路径规划方法
CN107985310A (zh) 一种自适应巡航方法及***
CN112987711B (zh) 自动驾驶规控算法优化方法及仿真测试装置
Xiong et al. Decision-making of lane change behavior based on RCS for automated vehicles in the real environment
CN110562269A (zh) 一种智能驾驶车辆故障处理的方法、车载设备和存储介质
CN109799821A (zh) 一种基于状态机的自动驾驶控制方法
CN108045373A (zh) 一种自动驾驶纵向统一规划方法及***
CN109754626A (zh) 无人驾驶自主换道策略
CN110288847A (zh) 一种自动驾驶决策方法、装置、***、存储介质及终端
CN114620065A (zh) 用于操控车辆的方法
CN109318895A (zh) 预防恶意加塞的自动驾驶方法及***
CN108711285A (zh) 一种基于道路路口的混合交通模拟方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Building C-3, Northern Territory, Zhongguancun Dongsheng Science Park, 66 Xixiaokou Road, Haidian District, Beijing, 100176

Patentee after: Beijing Idriverplus Technology Co.,Ltd.

Address before: B4-006, maker Plaza, 338 East Street, Huilongguan town, Changping District, Beijing 102208

Patentee before: Beijing Idriverplus Technology Co.,Ltd.