CN107696499A - 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法 - Google Patents

三维模型与机器视觉相结合的3d打印产品质量检测与修复方法 Download PDF

Info

Publication number
CN107696499A
CN107696499A CN201710886339.XA CN201710886339A CN107696499A CN 107696499 A CN107696499 A CN 107696499A CN 201710886339 A CN201710886339 A CN 201710886339A CN 107696499 A CN107696499 A CN 107696499A
Authority
CN
China
Prior art keywords
product
error
point
group
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710886339.XA
Other languages
English (en)
Other versions
CN107696499B (zh
Inventor
毋立芳
郭小华
毛羽忻
简萌
于淼
赵立东
张子明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710886339.XA priority Critical patent/CN107696499B/zh
Publication of CN107696499A publication Critical patent/CN107696499A/zh
Application granted granted Critical
Publication of CN107696499B publication Critical patent/CN107696499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

三维模型与机器视觉相结合的3D打印产品质量检测与修复方法涉及智能化控制等领域。该方法主要是针对3D打印产品进行后期处理,提高表面精度。步骤如下:点云数据的获取:该部分通过对物体的扫描获取物体对应的点云数据;产品的质量评价:该部分首先要进行点云数据与3D打印物体对应的模型进行对齐,给出产品表面误差状况;产品位置初始化:该部分是为了得到实际打印产品在机械***中的世界坐标的位置;将世界坐标点与模型坐标点对齐:该部分是将已经得到的误差对应到世界坐标上;路径规划实现修复:该部分依据需要修复产品表面的具体状况,选用具体的修复算法,实现修复工作。本发明适用于平面与曲面的3D打印产品的修复工作。

Description

三维模型与机器视觉相结合的3D打印产品质量检测与修复 方法
技术领域
本发明涉及智能化控制、机器视觉、路径规划的方法。具体涉及对3D打印产品扫描后得到的点云数据与模型对比;产品质量评价;规划修复路径,实现3D打印产品的质量检测与修复。
背景技术
3D打印技术的快速发展,3D打印产品也应用到各个领域,这就对打印产品的质量提出了更高的要求。由于成型机理和材料等的影响,3D打印产品表面难免会有凸起或凹陷,打印产品的精度相比于传统的切削加工精度仍有差距。目前存在的对3D打印产品的后期处理多是直接进行表面平滑,例如常见的砂纸打磨、珠光处理、蒸汽平滑。但由于3D打印产品表面的误差随机偶然而并非是统一的差异,直接利用手工式操作对表面进行统一光滑化,并没有进行量化修复,对表面的修复状况也仅是停留在定性的基础上。基于这些,对于3D打印产品进行质量的检测,然后进行定量的修复工作是很有必要的。
3D打印时,选用的材料一般是光敏树脂、金属粉末、热塑塑料等。特别地,对于采用打印材料为热塑塑料的熔融沉积成型3D打印技术而言,由于打印产品的精度受打印材料、熔融温度、冷却速度的综合影响,对其进行研究质量检测与修复***更具有现实意义和应用价值。
发明内容:
本发明实施例将提供出一整套质量检测与修复的流程与方法,依照修复算法对3D打印产品进行修复,得到高质量的3D打印产品。具体流程包括以下步骤:
100、对3D打印物体进行质量评价。此过程中首先对3D打印产品进行扫描,得到产品对应的点云数据,然后将打印产品对应的STL模型与扫描的点云在Geomagic quality软件下进行对齐,得到模型与点云数据之间的误差。
200、3D打印产品位置初始化。产品位置初始化即确定打印产品放入到机械***后产品位置的世界坐标点。
300、世界坐标点与模型坐标点对齐。在步骤100中已将STL模型与点云数据进行对比得到误差,将世界坐标点与模型坐标点对齐,即将误差点对应到世界坐标点上。
400、根据世界坐标点与误差值,可视化显示产品的误差状况,对平面性3D打印产品与曲面性3D打印产品选择对应的路径规划方案,实现修复。修复包括两个方面,对欠打印部分的增添,对过打印区域的削减,两类修复路径算法一样,仅以对过打印部分的削减进行说明。
其中在步骤400中,仅对平面化的3D打印产品与曲面化的3D打印产品针对性修复。雕刻刀直刀修复工具的精度为0.1mm,对误差小于修复工具精度的点集不予修复。将3D打印产品分为两类进行处理。
对于平面化的3D打印产品,进行修复时,为避免碰撞,首先进行分层处理,将在相同高度层次上的点集分为一组。
对于打印产品本身,凹凸交界处的位置,为避免修复工具碰撞,由于修复工具向上宽度为0.3mm-0.5mm,对产品凹凸交界处0.5mm范围内的点集进行剔除,不予修复处理。
为保证修复工作的连续性,我们对同一高度的点集进行了连续化处理。
首先将所有点集的X坐标按照从小到大进行排序,由于修复刀具精度为0.1mm,所以以0.1mm的间隔按照X轴方向进行分组,得到在X轴方向上以从小到大的多个分组,每个分组内包含需要修复的点集。在分好的组内,再次按照Y轴方向从小到大排序。
为保证修复时的连续性,且修复刀具的精度为0.1mm,将组内点与点之间距离与0.1mm进行比较,将点与点之间间隔小于等于0.1mm划分为一组。
对3D打印产品进行修复时,首先将机械***在高度方向(Z轴方向)抬高初始位置与打印起点高度差的距离,通常情况下为10mm-20mm,避免在修复过程中发生碰撞。找出组内点集中误差最大的值,并做记录。将机械***在X、Y轴方向上移动到组内打印的起点,再将机械***在Z轴方向下降已经抬高的距离与该误差最大值差值的距离,保证了从误差最高开始削减修复。在打磨修复削减过程中,修复工具从分好的组内的起点运动到组内的终点,由于修复工具精度为0.1mm,为保证修复工作精细度,通常以0.02mm的步进距离下降,循环进行此过程,直至将误差部分修复完毕移至下一组。
在进行循环判断时,机械***每次下降0.02mm的距离,其下降累积值有可能略大于误差最大值时才能判断是否进行移到下一组进行修复,为避免随着组数增多而导致的累积误差过大,在每组点集修复完毕后,进行判断机械***累积下降的高度与误差最大值之间的差值,根据差值对机械***进行抬高两者差值的距离以补偿。
对于曲面化的3D打印产品,曲面修复不会涉及碰撞问题。在点集预处理时,仅需要对误差值小于修复精度0.1mm的点集进行剔除。
为提高修复效率,曲面修复路径算法是将平面修复与曲面修复相结合进行完成的,对于打印产品高于曲面最高点的凸起,按照上述平面的修复规则进行修复,直至到修复到曲面最高点为止;其余低于曲面最高点的点集存在的误差则按照下述方式进行修复。
同样地,为了保证修复的连续性,需要对曲面的点集进行分组。分组的方法与平面类似,先将所有的点集按照X从小到大进行排序,再按照X轴方向每隔0.1mm进行分组,然后再将组内的点集Y值从小到大进行排序,根据点与点之间的距离与0.1mm进行比较后进行细分组。
曲面修复与平面修复不同在于机械***进行修复行走的曲面路径。将高于曲面最高点误差采用平面修复,然后将机械***抬高10mm-20mm的距离,避免在修复移动时的碰撞。找到组内点集的误差值与该点的Z值坐标之和最大值,记录误差值与该点的Z坐标。以此点为分界点,进行再次分组。以组内误差值与该点的Z坐标之和最大处为起点,进行曲面打磨修复。
为保证修复时为曲面路径,在修复过程中,依据组内点与点之间的Y轴方向距离与Z轴方向距离,机械***同时移动两轴,每次以0.02mm的步进距离下降,进行循环修复,直至将需要该组误差修复完毕,进入下一组修复。
同样地,曲面修复也会遇到机械***的累积下降高度略大于修复误差,利用类似平面修复中的补偿方式进行抬高机械***补偿。
本专利还提供了一整套扫描质量检测与修复的流程***,具体包括以下几个模块:产品点云数据获取、质量评价、可视化显示误差、路径规划修复。
产品点云数据获取即是对3D打印产品进行扫描获取对应的点云数据;质量评价部分是利用得到的点云数据与打印产品对应的STL模型进行对比,在Geomagic quality中获取打印产品的质量;可视化显示误差即通过可视化界面显示点云数据与打印产品对应的STL模型进行对比后误差分布图;路径规划部分则是依据打印产品表面平面曲面状况选用不用的路径规划算法。
本发明实施例的三维模型与机器视觉相结合的3D打印产品质量检测与修复方法具有如下优点:
1)定量地分析了产品的打印质量并进行定量地修复,与传统的后期处理不同,对3D打印产品,定量针对性地修复产品误差,提高精度。
2)便捷性,提出了一整套的修复流程***;将产品点云数据的获取、质量评价、可视化显示误差,路径规划修复工作集合到一个流程中,操作更为便捷。
3)多样性,对平面与曲面提出了不同的修复方案,能够对各种不同的3D打印产品进行可行性修复。
附图说明:
图1产品质量检测与修复***的流程图
图2平面修复路径流程图
图3曲面修复分割图
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明,需要说明的是,在不冲突的情况下,本申请的获取产品的点云数据、质量评价与路径规划修复适合于大多数平面与曲面模型。
本申请提出了一种三维模型与机器视觉相结合的3D打印产品质量检测与修复方法,实现对3D打印产品的质量检测评价,对产品表面存在的误差进行针对性的修复,使3D打印产品的后期处理修复工作达到了定量化的标准。
图1显示了根据本申请一种可行实施方式的3D打印产品的质量检测与修复方法的具体流程。对于整个需要修复的区域可以大致分为两类:对过打印部分的削减、对欠打印部分的增添,对两者而言,打印产品的检测、评价方法、修复路径的算法一样,在此我们仅以对过打印部分的打磨修复为例来简述基于机器视觉的3D打印产品质量检测与修复过程。具体包括以下步骤:
步骤100:对3D打印产品进行扫描获取点云数据
步骤200:将扫描的点云数据与产品对应的STL模型进行对齐
步骤300:形成对产品的质量评价结果
步骤400:在界面上可视化显示产品与点云数据对比结果图
步骤500:判断3D打印产品表面状况,选用平面或者曲面修复路径算法,实现修复。
需要指出,在步骤100中,为了获取打印产品完整的点云数据,粘贴标志点后,进行多次扫描,为保证扫描两次之间的拼接,旋转台每次旋转的角度一般选择在10度-15度,获取打印产品完整的点云数据。
物体点云数据扫描完毕,在步骤200中,需要指出的是,对于扫描点集超出软件处理范围的进行统一采样处理。
可选地,所述步骤100包括下述子步骤:
子步骤110、在旋转台或物体本身粘贴标志点。
子步骤120、打开扫描仪对产品进行扫描,每扫描一次物体,控制旋转台旋转10度-15度,在3D scan软件中自动拼接两次扫描的点云数据。
进一步的,步骤200中包括以下子步骤:
子步骤210、对点云数据进行处理,即对扫描得到的点云数据中偏离物体的点集进行剔除。
子步骤220、点云数据与3D打印模型对齐,点云数据进行预处理好之后。在Geomagic quality软件中,将3D打印模型(STL模型)选为参考模型,点云数据设为测试模型,为保证两者对齐的整体误差最小,选用最佳拟合对齐。
进一步的,步骤300中包括以下子步骤:
子步骤310、在Geomagic quality中得到产品质量评价结果。
子步骤320、保存STL模型与点云数据对齐后的坐标点与误差数据值。
所述步骤400包括:
在建立的可视化界面上直观显示出3D打印模型与点云数据之间对比后的误差图,方便观察误差分布范围。
所述步骤500包括:
子步骤510、对要进行修复的产品表面状况进行判断,依据是平面还是曲面,选用相应的修复路径算法。
子步骤520、
如图2所示。将产品表面进行分层处理,也即是将相同高度层次上的点集划分到一个大组中,再将点集按照X值从小到大排序,以每隔0.1mm分组,再将组内点按照Y值从小到大排序,然后以0.1mm进行连续性细分组。找出组内最大的误差点,由组内的初点运动到组内的末点,循环往复的依次进行修复。在修复过程中,时时显示修复的当前点集与修复的误差。组内修复完毕,依据下降累积距离与误差的差值,调整机械***。
子步骤530、
对于曲面类打印产品的修复,如图3所示,曲线a为实际打印出的物体的边界线,曲线b为模型对应中的边界,曲线b之上和曲线a之下的部分是需要进行打磨修复的区域。直线c是曲面的最高点对应的水平线位置。将整个曲面的修复划分为两个部分,即在直线c之上且曲线a之下的部分,记为M;在直线c之下且在曲线b之上的部分,记为N;此两部分采用不同的产品修复方案。M部分采用直线修复路径的方法进行打磨修复。对于N部分,首先对在Geomagic quality中得到的产品坐标点与误差点进行处理,即先将点集按照X值从小到大排序,以每隔0.1mm分组,对组内所有点集的Z值与该点对应的误差和与组内的Z值最大点进行比较。若小于Z值最大值的点,保留原始点与误差不变;大于或等于Z值最大点,则该点的坐标保持不变,但相应的误差值变为组内的Z值最大点与该点Z值的差值。在对所有点集进行整理完毕后,按照上述的曲面修复算法,实现曲面修复。
本发明实施例的三维模型与机器视觉相结合的3D打印产品质量检测与修复方法具有如下优点:
1)定量地分析了产品的打印质量并进行定量地修复,与传统的后期处理不同,对3D打印产品,定量针对性地修复产品误差,提高了精度。
2)便捷性,提出了一整套的修复流程***;将产品点云数据的获取、质量评价、可视化显示误差,路径规划修复工作集合到一个流程中,操作更为便捷。
3)多样性,对平面与曲面提出了不同的修复方案,能够对各种不同的3D打印产品进行可行性修复。

Claims (5)

1.三维模型与机器视觉相结合的3D打印产品质量检测与修复方法,其特征在于,包括以下步骤:
100、对3D打印物体进行质量评价,首先对3D打印产品进行扫描,得到产品对应的点云数据,将打印产品对应的STL模型与扫描的点云进行对齐得到质量评价与模型与点云数据之间的误差;
200、产品位置初始化,产品位置初始化即确定打印产品放入到机械***后对应的世界坐标点;
300、将世界坐标点与模型坐标点对齐,将误差点对应到世界坐标点上;
400、根据得到的世界坐标与相应的误差,可视化显示产品的误差分布,并对不同的3D打印产品选用相应的路径规划,实现修复,具体如下:
对于3D打印产品的修复分为两类:平面类修复路径算法,曲面类修复路径算法;
对于平面类的3D打印产品,首先进行分层处理,将在相同高度层次上的点集分为一组;
对于打印产品本身,对产品凹凸交界处0.5mm范围内的点集进行剔除,不予修复处理;
为保证修复工作的连续性,对同一高度的点集进行了连续化处理:首先将所有点集的X坐标按照从小到大进行排序,由于修复刀具精度为0.1mm,所以以0.1mm的间隔按照X轴方向进行分组,得到在X轴方向上以从小到大的多个分组,每个分组内包含需要修复的点集;在分好的组内,再次按照Y轴方向从小到大排序;
为保证修复时的连续性,且修复刀具的精度为0.1mm,将组内点与点之间距离与0.1mm进行比较,将点与点之间间隔小于等于0.1mm划分为一组;
对3D打印产品进行修复时,首先将机械***在高度方向即Z轴方向抬高一定距离,该距离为初始位置与打印起点高度差;找出组内点集中误差最大的值,并做记录;将机械***在X、Y轴方向上移动到组内打印的起点,再将机械***在Z轴方向下降已经抬高的距离与该误差最大值差值的距离,保证了从误差最高开始削减修复;在打磨修复削减过程中,修复工具从分好的组内的起点运动到组内的终点,由于修复工具精度为0.1mm,以0.02mm的步进距离下降,循环进行此过程,直至将误差部分修复完毕移至下一组;
在进行循环判断时,在每组点集修复完毕后,进行判断机械***累积下降的高度与误差最大值之间的差值,抬高差值的距离用以补偿;
对于曲面类的3D打印产品,在点集预处理时,仅需要对误差值小于修复精度0.1mm的点集进行剔除;
曲面修复路径算法是将平面修复与曲面修复相结合进行完成的,对于打印产品高于曲面最高点的凸起,按照上述平面的修复规则进行修复,直至修复的误差直至到最高点为止;其余低于曲面最高点的点集存在的误差则按照下述方式进行修复;
先将所有的点集按照X从小到大进行排序,再按照X轴方向每隔0.1mm进行分组,然后再将组内的点集Y值从小到大进行排序,根据点与点之间的距离与0.1mm进行比较后进行细分组;
将高于曲面最高点误差采用平面修复,然后将机械***抬高10mm-20mm的距离,避免在修复移动时的碰撞;找到组内点集的误差值与该点的Z值坐标之和最大值,记录误差值与该点的Z坐标,以此点为分界点,进行再次分组;以组内误差值与该点的Z坐标之和最大处为起点,进行曲面打磨修复;
在修复过程中,依据组内点与点之间的Y轴方向距离与Z轴方向距离,机械***同时移动Y轴与Z轴,每次以0.02mm的步进距离下降,进行循环修复,直至将需要该组误差修复完毕,进入下一组修复;
在每组点集修复完毕后,进行判断机械***累积下降的高度与误差最大值之间的差值,抬高差值的距离用以补偿。
2.根据权利要求1所述的方法,其特征在于,步骤100包括:
在产品进行质量评价之前,需要进行3D打印产品扫描获取点云数据,该部分是利用机械***的自动化扫描;在对3D打印物体进行点云数据采集时,控制机械***每次旋转10度-15度,实现点云数据获取。
3.根据权利要求1所述的方法,其特征在于,步骤200包括:
在物体进行修复之前,需要确定物体在机械***中的具***置,也即是产品位置初始化;产品位置初始化是:首先标定双目相机,然后利用双目相机下像素坐标与世界坐标之间的关系得到世界坐标。
4.根据权利要求1所述的方法,其特征在于,步骤300包括:
根据四元组法,将模型坐标系与打印产品在的坐标系对齐,即可得到产品的世界坐标点与对应的误差。
5.根据权利要求1所述的方法,其特征在于,步骤400包括:
可视化地显示3D打印产品与模型之间的误差对比图,误差分布图依据不同的颜色表示误差大小不同;整个界面可视化显示误差对比图,对产品的误差状况进行直观把握;依据3D打印产品表面为平面还是曲面进行选择相应修复方式修复。
CN201710886339.XA 2017-09-27 2017-09-27 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法 Active CN107696499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710886339.XA CN107696499B (zh) 2017-09-27 2017-09-27 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710886339.XA CN107696499B (zh) 2017-09-27 2017-09-27 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法

Publications (2)

Publication Number Publication Date
CN107696499A true CN107696499A (zh) 2018-02-16
CN107696499B CN107696499B (zh) 2019-07-16

Family

ID=61175964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710886339.XA Active CN107696499B (zh) 2017-09-27 2017-09-27 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法

Country Status (1)

Country Link
CN (1) CN107696499B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422670A (zh) * 2018-03-09 2018-08-21 西安交通大学 一种非连续栅格划分三维点云面的路径规划方法
CN109532021A (zh) * 2018-10-10 2019-03-29 浙江大学 基于结构光线性异常点的3d打印熔积缺陷逐层检测方法
CN109910294A (zh) * 2019-03-28 2019-06-21 哈尔滨理工大学 一种基于机器视觉的3d打印成型精度检测方法
CN110293685A (zh) * 2019-07-31 2019-10-01 江苏安全技术职业学院 一种日用品3d快速打印数据处理方法
CN110470213A (zh) * 2018-12-19 2019-11-19 中联认证中心(北京)有限公司 一种3d打印成形件精度在线测评装置
CN110961633A (zh) * 2018-09-28 2020-04-07 安世亚太科技股份有限公司 一种三维打印方法及装置
CN111391327A (zh) * 2020-03-11 2020-07-10 先临三维科技股份有限公司 打印误差确定和打印方法、装置、电子设备及存储介质
CN111435400A (zh) * 2018-12-26 2020-07-21 沈阳新松机器人自动化股份有限公司 一种零件的修复方法、修复装置及3d打印机
CN111674048A (zh) * 2020-05-13 2020-09-18 广东工业大学 一种基于机器视觉的3d打印机断丝报警装置及报警方法
WO2020238133A1 (zh) * 2019-05-24 2020-12-03 杭州捷诺飞生物科技股份有限公司 3d打印机及3d打印方法
CN112917921A (zh) * 2021-01-26 2021-06-08 贵州航天天马机电科技有限公司 一种3d打印光敏树脂零件缺陷修复***
CN113962188A (zh) * 2021-11-01 2022-01-21 西安交通大学 一种在自由曲面表面共形打印多尺度电路的路径规划方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130110470A1 (en) * 2011-10-27 2013-05-02 Biomet Manufacturing Corporation Patient-Specific Glenoid Guide And Implants
CN103341929A (zh) * 2013-06-27 2013-10-09 信义汽车玻璃(深圳)有限公司 一体注塑产品模型制作方法
WO2014025953A2 (en) * 2012-08-08 2014-02-13 Makerbot Industries, Llc Printed circuit board with integrated temperature sensing
CN104908327A (zh) * 2015-07-07 2015-09-16 杭州先临三维科技股份有限公司 一种3d打印产品
CN105172152A (zh) * 2015-10-28 2015-12-23 深圳晗竣雅科技有限公司 基于轮廓注塑成型的3d成型方法
US20160129638A1 (en) * 2014-11-12 2016-05-12 International Business Machines Corporation Method for Repairing with 3D Printing
CN106182643A (zh) * 2016-08-11 2016-12-07 富泰克精密注塑(苏州)有限公司 一种直齿轮注塑模具齿轮补偿修正方法
CN106915088A (zh) * 2017-02-10 2017-07-04 河南理工大学 一种基于3d打印产品表面上色的工艺处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130110470A1 (en) * 2011-10-27 2013-05-02 Biomet Manufacturing Corporation Patient-Specific Glenoid Guide And Implants
WO2014025953A2 (en) * 2012-08-08 2014-02-13 Makerbot Industries, Llc Printed circuit board with integrated temperature sensing
CN103341929A (zh) * 2013-06-27 2013-10-09 信义汽车玻璃(深圳)有限公司 一体注塑产品模型制作方法
US20160129638A1 (en) * 2014-11-12 2016-05-12 International Business Machines Corporation Method for Repairing with 3D Printing
CN104908327A (zh) * 2015-07-07 2015-09-16 杭州先临三维科技股份有限公司 一种3d打印产品
CN105172152A (zh) * 2015-10-28 2015-12-23 深圳晗竣雅科技有限公司 基于轮廓注塑成型的3d成型方法
CN106182643A (zh) * 2016-08-11 2016-12-07 富泰克精密注塑(苏州)有限公司 一种直齿轮注塑模具齿轮补偿修正方法
CN106915088A (zh) * 2017-02-10 2017-07-04 河南理工大学 一种基于3d打印产品表面上色的工艺处理方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422670A (zh) * 2018-03-09 2018-08-21 西安交通大学 一种非连续栅格划分三维点云面的路径规划方法
CN108422670B (zh) * 2018-03-09 2019-12-24 西安交通大学 一种非连续栅格划分三维点云面的路径规划方法
CN110961633A (zh) * 2018-09-28 2020-04-07 安世亚太科技股份有限公司 一种三维打印方法及装置
CN109532021A (zh) * 2018-10-10 2019-03-29 浙江大学 基于结构光线性异常点的3d打印熔积缺陷逐层检测方法
CN110470213A (zh) * 2018-12-19 2019-11-19 中联认证中心(北京)有限公司 一种3d打印成形件精度在线测评装置
CN111435400A (zh) * 2018-12-26 2020-07-21 沈阳新松机器人自动化股份有限公司 一种零件的修复方法、修复装置及3d打印机
CN109910294A (zh) * 2019-03-28 2019-06-21 哈尔滨理工大学 一种基于机器视觉的3d打印成型精度检测方法
WO2020238133A1 (zh) * 2019-05-24 2020-12-03 杭州捷诺飞生物科技股份有限公司 3d打印机及3d打印方法
CN110293685A (zh) * 2019-07-31 2019-10-01 江苏安全技术职业学院 一种日用品3d快速打印数据处理方法
CN111391327A (zh) * 2020-03-11 2020-07-10 先临三维科技股份有限公司 打印误差确定和打印方法、装置、电子设备及存储介质
CN111674048A (zh) * 2020-05-13 2020-09-18 广东工业大学 一种基于机器视觉的3d打印机断丝报警装置及报警方法
CN112917921A (zh) * 2021-01-26 2021-06-08 贵州航天天马机电科技有限公司 一种3d打印光敏树脂零件缺陷修复***
CN113962188A (zh) * 2021-11-01 2022-01-21 西安交通大学 一种在自由曲面表面共形打印多尺度电路的路径规划方法
CN113962188B (zh) * 2021-11-01 2024-04-02 西安交通大学 一种在自由曲面表面共形打印多尺度电路的路径规划方法

Also Published As

Publication number Publication date
CN107696499B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN107696499B (zh) 三维模型与机器视觉相结合的3d打印产品质量检测与修复方法
CN108760766B (zh) 一种大口径光学晶体表面微缺陷检测用的图像拼接方法
JP3596753B2 (ja) 画像測定装置用パートプログラム生成装置及び方法
CN101526484B (zh) 基于嵌入式机器视觉的轴承缺陷检测方法
CN111192307B (zh) 基于激光切割三维零部件的自适应纠偏方法
JP4933771B2 (ja) 画像システムにおいてビデオツールを自動的にリカバリーするシステムおよび方法
CN108496124A (zh) 表面缺陷的自动检测和机器人辅助加工
CN102455171B (zh) 一种激光拼焊焊缝背面几何形貌检测方法
CN102495026B (zh) 一种用于线激光扫描视觉测量***的光带中心线提取方法
CN114571326B (zh) 基于计算机视觉的变形曲面磨削方法、装置及***
CN112326673A (zh) 基于机器视觉的注塑件表面缺陷检测方法和装置
CN102135417A (zh) 一种全自动三维特征提取方法
CN107672180A (zh) 一种基于逆向工程技术的3d打印精度检测方法
CN102803927B (zh) 用于评价轮胎翻新的表面修整的***和方法
CN103038601A (zh) 轮胎形状检查方法以及轮胎形状检查装置
WO2020205998A1 (en) Non-destructive evaluation and weld-to-weld adaptive control of metal resistance spot welds via topographical data collection and analysis
TWI610749B (zh) 雷射切割功率調整系統及其功率調整方法
CN117047286B (zh) 一种激光加工工件表面的方法、加工***、处理器和存储介质
CN106903425B (zh) 用于处理工件的方法
CN101685000B (zh) 影像边界扫描的计算机***及方法
CN110153582A (zh) 焊接方案生成方法、装置以及焊接***
JP2001353651A (ja) プロペラ製造装置及びプロペラ製造方法
CN110555385B (zh) 一种基于变步长曲率滤波的焊缝特征点求取方法
CN117020371A (zh) 一种用于柱钉辊堆焊的方法及其焊接装置
CN116958178A (zh) 一种基于激光视觉的焊缝打磨自主规划方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant