CN107674976A - It is a kind of to separate and recover the method for cobalt and manganese in the high manganese waste material of low cobalt with ammonia ammonium hydrogen carbonate - Google Patents

It is a kind of to separate and recover the method for cobalt and manganese in the high manganese waste material of low cobalt with ammonia ammonium hydrogen carbonate Download PDF

Info

Publication number
CN107674976A
CN107674976A CN201710903756.0A CN201710903756A CN107674976A CN 107674976 A CN107674976 A CN 107674976A CN 201710903756 A CN201710903756 A CN 201710903756A CN 107674976 A CN107674976 A CN 107674976A
Authority
CN
China
Prior art keywords
cobalt
manganese
waste material
ammonia
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710903756.0A
Other languages
Chinese (zh)
Other versions
CN107674976B (en
Inventor
刘维桥
何沁华
高峰
尚通明
周全法
魏成文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201710903756.0A priority Critical patent/CN107674976B/en
Publication of CN107674976A publication Critical patent/CN107674976A/en
Application granted granted Critical
Publication of CN107674976B publication Critical patent/CN107674976B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0009Obtaining manganese from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The invention discloses a kind of the method for cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate, first the pending high manganese waste material of low cobalt is pre-processed, then ammonia ammonium hydrogen carbonate mixed solution is added to be reacted, after reaction terminates, filtering, cobalt ammonia complex solution and manganese carbonate precipitation are respectively obtained, manganese is reclaimed in the form of manganese carbonate in the high manganese waste material of low cobalt;Finally recovery obtains cobalt from cobalt ammonia complex solution.Present invention process is simple, and the rate of recovery of cobalt and manganese is all very high, and the rate of recovery of cobalt can be up to more than 95%, and the rate of recovery of manganese can reach more than 99%, high-valued to have recycled nonferrous metal resource.

Description

A kind of method of cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt
The application is Application No. 201510839622.8, and the applying date is on November 27th, 2015, and invention and created name is The divisional application of the application for a patent for invention of " with the method for cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt ".
Technical field
The present invention relates to a kind of separation and recovery method of cobalt manganese waste material, and in particular to a kind of ammonia-ammonium hydrogen carbonate separates back Receive the method for cobalt and manganese in the high manganese waste material of low cobalt.
Background technology
Containing substantial amounts of cobalt, manganese element in caused useless cobalt-manganese catalyst in PTA productions, wherein cobalt content is about 10 %, Manganese content is about 20 %.Cobalt is a kind of important strategy metal, and its physics, chemical property are excellent, is production heat-resisting alloy, hard Alloy, anti-corrosion alloy, the important source material of magnetic alloy and various cobalt salts;And China's cobalt ore resource famine, but the year of cobalt Consumption figure increases year by year, and domestic cobalt resource can not meet productive consumption demand, and most of cobalt raw material relies on import.Manganese is a kind of Transition metal, property is hard and crisp, and moist place can aoxidize, and the most important purposes of manganese is manufacture manganese alloy.
At present, both at home and abroad the method for conventional separation and recovery cobalt-manganese catalyst mainly have chemical precipitation method, solvent extraction, Electrolysis and ion-exchange etc..Chemical precipitation method is easy to operate, technological process is simple, but easily equipment is caused to corrode, Need to optimize.Solvent extraction can efficiently separate out cobalt, cheap, but organic solvent easily causes to endanger to environment Evil, and the condition control reacted requires also higher.Electrolysis can reclaim to obtain the high electrolytic cobalt of purity, but with electricity Solve the defects of liquid is unstable.Ion-exchange can reach rich product and the purpose of purification, storng-acid cation exchange resin tool simultaneously There is the characteristics of absorption appearance is maximum, and adsorption rate is fast, but ion exchange resin needs regular regeneration, produces a large amount of alkaline waste waters, Environment is polluted.
On chemical precipitation method, Chinese patent literature CN 1236735A(Application number 98111313.3)Disclose a kind of cobalt The separation and refining method of Mn mixture, vulcanized sodium will be first added after compound acidolysis and is co-precipitated cobalt manganese, then passes through cobalt, manganese sulphur The solubility product difference of compound first dissolves manganese, then the cobalt sulfide with mixed-acid dissolution indissoluble.This method can efficiently separate cobalt, Manganese is simultaneously reclaimed, but acid dissolution consumes a large amount of acid solutions three times, and the discharge of acid solution can cause greatly to pollute to environment.
Chinese patent literature CN 1059241C(Application number 98111506.3)It is high from leftover bits and pieces containing cobalt to disclose one kind The new technology of effect extraction cobalt/cobalt oxide, including acid is molten, ammonification separation plus alkali are heat sink, absorbs, separating, washing step;It is described to contain cobalt Leftover bits and pieces includes cobalt, iron, manganese element;The molten processing of acid is leftover bits and pieces is preprocessed or be directly dissolved in sulfuric acid or hydrochloric acid, acid Solution ph is maintained at 2~3;Ammonification separation be by acid it is molten come clear mixed acid solution add excessive ammonia, keep pH value 8~ 9, iron and manganese are separated in the form of hydroxide precipitates from reaction solution in this step;It is in cobalt ammonia complexing to add alkali heat sink Caustic soda is added in solution based on thing to be heated to seething with excitement, and obtains cobalt oxide.Actual treatment cobalt manganese gives up inventor according to the method described above During material, the rate of recovery for finding cobalt is only 70%.
In addition, Chinese patent literature CN 104831065A(Application number 201510164284.2)Disclose a kind of high manganese cobalt The method separated than nickel cobalt in nickel cobalt manganese raw material with manganese, high manganese cobalt is directly mixed than nickel cobalt manganese raw material with ammonia leaching agent, added Enter reducing agent, solid-liquid is separated after insulation ageing, so as to which nickel cobalt and manganese be separated.Although the leaching rate of this method cobalt can reach 90%, and technique is simple, and still, manganese content is more than 20% in caused cobalt manganese slag in being produced due to PTA, according to this straight Connect ammonia leaching method liquid-solid ratio it is too small, cobalt is easily wrapped up by manganese, and the leaching rate of cobalt can then substantially reduce.
The content of the invention
The technical problems to be solved by the invention are to provide that a kind of separation of cobalt from manganese is thorough, the rate of recovery is high, recovery product purity High separates and recovers the method for cobalt and manganese in the high manganese waste material of low cobalt with ammonia-ammonium hydrogen carbonate.
The technical scheme for realizing the object of the invention be in one kind ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt cobalt and The method of manganese, comprises the following steps:
1. pre-processing, pending low cobalt high manganese waste material acid is dissolved, the pH value of material is less than or equal to 3.5 after control acid is molten, After molten rear material of the pH value less than or equal to 3. 5 of acid is heated in 60 DEG C~90 DEG C of water-bath, filter;Hydrogen is added into filtrate Sodium hydroxide solution makes its pH value rise to 4~5, is filtered after standing, and obtained filtrate is pending as digestion solution.
2. preparing ammonia-ammonium hydrogen carbonate mixed solution, the concentration range of ammonium hydrogen carbonate is 20~90 g/L in mixed solution, Ammonia concn scope is 50~100 g/L, and the pH value of mixed solution is 9~11.
3. cobalt, manganese separate, 2. ammonia-ammonium hydrogen carbonate that step is prepared is added in the digestion solution obtained after 1. being filtered to step and is mixed Close solution and obtain reaction solution, the pH value of reaction solution is 7.5~10.0, and the ratio between amount of material of ammonium hydrogen carbonate and manganese is after addition 0.9 :1~2:1, the ratio between amount of material of ammoniacal liquor and cobalt is 10:1~50: 1;Reaction solution is anti-after addition Answer 5~20 hours.
After reaction terminates, filtering respectively obtains filtrate cobalt ammonia complex solution and filter residue manganese carbonate precipitation, and the high manganese of low cobalt gives up Manganese is reclaimed in the form of manganese carbonate in material.
4. Call Provision, 3. cobalt ammonia complex solution that step is filtrated to get is heated to 70 DEG C~185 DEG C, thrown thereto Add reducing agent, the ratio between reducing agent and amount of material of cobalt in cobalt ammonia complex solution are 0.8:1~5:1, reaction 15min~ 60min;Then lower dropwise addition sodium hydroxide solution or oxalate solution are stirred in the material after terminating to reduction reaction, is added dropwise 20min~60min is reacted afterwards;Reaction filters after terminating, and the washing of precipitate for filtering to obtain obtains cobalt hydroxide or oxalic acid after drying Cobalt, complete the recovery of cobalt.
Above-mentioned steps 1. in used acid be nitric acid, hydrochloric acid or sulfuric acid, cobalt, the material of manganese in sour dosage and cobalt manganese waste material The ratio between amount be n (H+) : [ n ( Mn ) + n ( Co ) ] = 2 :1~4: 1.
Further, step 1. it is middle with sour dissolved cobalt manganese waste material when, sour pH value used be less than 1.
Above-mentioned steps are 1. before middle heating water bath, if the pH value of material refers to the molten rear liquid of acid less than or equal to 3.5 after control acid is molten The pH value of body is more than 3.5, and acid used makes its pH value be less than 3.5 when adding sour molten waste material thereto;The pH of liquid after if acid is molten Value is less than 3.5, then directly carries out heating water bath.
As preferable, step is 3. anti-under middle reaction solution is 150~500 r/min in 20~40 DEG C, mixing speed Answer 6~15 hours.
4. middle reducing agent is one kind in hydrazine hydrate, sodium borohydride, ethylene glycol or paraformaldehyde to above-mentioned steps.
Further, step 4. in 3. cobalt ammonia complex solution that step is filtrated to get be placed in water-bath be heated to 70 DEG C~85 DEG C, reducing agent is then added, the reducing agent added is hydrazine hydrate, sodium borohydride or paraformaldehyde;Or step is 4. 3. cobalt ammonia complex solution that step is filtrated to get is placed in oil bath pan and is heated to 170 DEG C~185 DEG C, then adds reduction Agent, the reducing agent added are ethylene glycol.
Further, when step be 4. added dropwise be sodium hydroxide solution when, n(NaOH):n(Co)=8.5:1~15:1; When dropwise addition be oxalates when, n(C2O4 2-):n(Co)=8:1~20:1.
Above-mentioned steps 1. in the pending high manganese waste material of low cobalt cobalt, the mass ratio of manganese be 1:1~1:4.
The present invention has positive effect:(1)The separation and recovery method of the present invention is adapted to all cobalt manganese waste materials, particularly cobalt Low cobalt high manganese waste material of the manganese ratio 1: 1~4, such as the cobalt-manganese catalyst that given up caused by petroleum industry production PTA, present invention process letter Single, cost recovery is low, and the rate of recovery of cobalt and manganese is all very high, and the rate of recovery of cobalt can be up to more than 95%, and the rate of recovery of manganese can reach To more than 99%.
(2)First less than 1 strong acid that the high manganese waste material acid of low cobalt is molten with pH value during present invention pretreatment, acid, which is dissolved, finishes control liquid The pH value of body is less than or equal to 3.5, heats and filters off the organic matter in the molten rear material that deacidifies, then to the thing after organics removal Sodium oxide molybdena is hydrogenated with material makes the pH value of liquid rise to 4~5, and the purpose of this regulation pH value is to remove impurity iron, if cobalt manganese waste material In contain impurity iron, the iron ion after acid is molten can precipitate with hydroxyl from generation, is removed after filtering.The present invention is by impurity iron Removal is placed on before ammonification step, ensure that the cobalt of separation and recovery and the purity of manganese;And the step of adding organics removal, It is further ensured that the cobalt of separation and recovery and the purity of manganese.
(3)When present invention processing cobalt ammonia complex is with Call Provision, first cobalt ammonia complex is reduced, trivalent cobalt is reduced to two Valency cobalt, sodium hydroxide or sodium oxalate or ammonium oxalate are then added into the cobalt ammonia complex of divalence, obtains cobalt sediment.Reducing agent Addition can destroy the stability of trivalent cobalt ammonia complex, the cobalt ammonia complex after reduction is easier and sodium hydroxide or oxalic acid Root reacts, and so as to improve the rate of recovery of cobalt, obtained cobalt product purity is high.
(4)2. ammonia-ammonium hydrogen carbonate mixed solution that the step of the present invention is prepared is cushioning liquid so that when step is reacted 3. The pH value of reaction system ensures that reaction is smoothed out in stable scope, and the rate of recovery of final products is high;It is used in addition to buffer Solution cost is low, reduces the cost recovery of cobalt manganese waste material.
Embodiment
Cobalt content, which is less than, in the high manganese waste material of heretofore described low cobalt is equal to manganese content, cobalt, manganese in the high manganese waste material of low cobalt Mass ratio be 1:1~1:4.
(Embodiment 1)
The high manganese waste material of low cobalt handled by the present embodiment is caused useless cobalt-manganese catalyst in PTA productions, and the content of wherein cobalt is 9.872wt %, the content of manganese is 17.12 wt %.
The present embodiment includes following step with the method for cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt Suddenly:
1. pre-process.The high manganese waste material of 13 grams of low cobalts is taken, 10 % nitric acid is added into the reaction vessel for filling the high manganese waste material of low cobalt The mL of solution 110, after the resolution completely of cobalt manganese waste material, the pH value of liquid is 1.1 after measurement acid is molten.The addition of acid and useless catalysis The ratio between amount of material of cobalt manganese is n (H in agent+) : [ n ( Mn ) + n ( Co ) ] = 2 :1~4: 1.
By molten rear material of the pH value less than 3.5 min of heating water bath 30 in 80 DEG C of water-bath of acid, filter, go to deacidify Organic matter after molten in material.The pH value of liquid after needing control acid molten before heating water bath, if the pH value of liquid is more than after acid is molten 3.5, acid used is that nitric acid makes its pH value less than 3.5 when adding sour molten waste material thereto, due to the molten rear liquid of acid in the present embodiment The pH value of body is 0.1, therefore can be directly heated.
5mol/L sodium hydroxide solution is added into the material for eliminate organic matter makes its pH value rise to 4~5(This reality Apply in example is 4.8);Filtered after standing 20min, obtained filtrate i.e. digestion solution is pending.Measuring cobalt content in digestion solution is 50.25 g/L, manganese content are 95.75 g/L.If having iron ion in material after acid is molten, iron ion generates hydroxide in this step Iron precipitates, and is removed after suction filtration from digestion solution.
2. prepare ammonia-ammonium hydrogen carbonate mixed solution.
By ammonium bicarbonate solubility in ammoniacal liquor, it is stand-by to obtain ammonia-ammonium hydrogen carbonate mixed solution, ammonium hydrogen carbonate in mixed solution Concentration range be 20~90 g/L, ammonia concn scope is 50~100 g/L, and the pH value of mixed solution is 9~11.This The concentration of ammonium hydrogen carbonate is 25 g/L in the mixed solution that embodiment is prepared, and ammonia concn is 60 g/L.
3. cobalt, manganese separate.2. ammonia-bicarbonate that step is prepared is slowly added in the digestion solution obtained after 1. being filtered to step Ammonium mixed solution obtains reaction solution, and the pH value of reaction solution is 7.5~10.0, the ratio between amount of material of ammonium hydrogen carbonate and manganese after addition For 0.9:1~2:1, the ratio between amount of material of ammoniacal liquor and cobalt is 10:1~50: 1.Reaction solution after addition Reacted 12 hours under conditions of being 150 r/min in 20 DEG C, mixing speed.
2. ammonia-ammonium hydrogen carbonate that step is prepared is slowly added in the digestion solution obtained after 1. being filtered to step in the present embodiment Mixed solution(Wherein the concentration of ammonium hydrogen carbonate is 25 g/L, and ammonia concn is 60 g/L)60 mL, ammonium hydrogen carbonate and manganese after addition The ratio between the amount of material be 1.3:1, the ratio between amount of material of ammoniacal liquor and cobalt is 12: 1.
After reaction terminates, filtering respectively obtains cobalt ammonia complex solution and manganese carbonate precipitation, and manganese carbonate washing of precipitate is dried Weigh afterwards and obtain 4.6442g, the rate of recovery of manganese is 99.8% in the high manganese waste material of low cobalt, and the purity for the manganese carbonate for reclaiming to obtain is 99.2%。
4. Call Provision.3. cobalt ammonia complex solution that step is filtrated to get is placed in water-bath and is heated to 80 DEG C.To 80 DEG C cobalt ammonia complex solution in add reducing agent 20%~80%(It is 80% in the present embodiment)The mL of hydrazine hydrate 1.00, maintain water 80 DEG C of reaction 15min~60min of bath(It is 20min in the present embodiment), the cobalt ammonia complex of trivalent is reduced to the cobalt ammonia of divalence Complex compound.
The reducing agent can also be sodium borohydride, ethylene glycol or paraformaldehyde in addition to above-mentioned hydrazine hydrate used, also The ratio between amount of material of former agent and cobalt is 0.8:1~5:1.The reducing agent wherein added is hydrazine hydrate, sodium borohydride or more During polyformaldehyde, 3. cobalt ammonia complex solution that step is filtrated to get is placed in water-bath and is heated to 70 DEG C~85 DEG C, Ran Houjia Enter reducing agent;When the reducing agent added is ethylene glycol, 3. cobalt ammonia complex solution that step is filtrated to get is placed in oil bath pan In be heated to 170 DEG C~185 DEG C, then add reducing agent.
Stirring is lower to be added dropwise sodium hydroxide solution, n after addition(NaOH):n(Co)=8.5:1~15:1.
The mL of sodium hydroxide solution 15, rate of addition 1mL/ that lower dropwise addition concentration is 500 g/L are stirred in the present embodiment Min, mixing speed are 200 r/min;After 80 DEG C of 30 min of reaction of water-bath are maintained after being added dropwise, filter, filter to obtain sinks Ethanol wash is first used in shallow lake, then with after distillation water washing, is placed in baking oven and is dried at 70 DEG C~90 DEG C.Ground after drying with mortar Mill, 100 mesh sieve are crossed, obtain cobalt hydroxide product 2.0128g.The purity of cobalt hydroxide is 99.8%.
The rate of recovery for being computed cobalt is 99.5%.
(Embodiment 2)
The present embodiment with the method for cobalt and manganese in the ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt remaining with the phase of embodiment 1 Together, difference is:
After the cobalt ammonia complex of step 4. middle trivalent is reduced to the cobalt ammonia complex of divalence, stir it is lower sodium oxalate solution is added dropwise, Add rear n(C2O4 2-):n(Co)=8:1~20:1.
Sodium oxalate solution 150 mL, the rate of addition 20mL/min that concentration is 50g/L, stirring speed are added dropwise in the present embodiment Spend for 500 r/min.
Except the sodium oxalate solution described in the present embodiment, ammonium oxalate can also be used to substitute sodium oxalate.
Cobalt oxalate 3.1826g is obtained after drying, the rate of recovery of cobalt is 99.6 %, and the purity of cobalt oxalate is 98.9%.Cobalt manganese gives up Cobalt in material is recycled in the form of cobalt oxalate.
(Embodiment 3)
The present embodiment with the method for cobalt and manganese in the ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt remaining with the phase of embodiment 1 Together, difference is:
When step pre-processes 1., 10 % hydrochloric acid solution 44mL is added into the reaction vessel for filling cobalt manganese waste material, treats that cobalt manganese gives up After material resolution completely, the pH value of liquid is 4.2 after measurement acid is molten.To acid it is molten after liquid in add 10% hydrochloric acid to pH decline To less than 3.5, be then transferred to the min of heating water bath 30 in 80 DEG C of water-bath, filter, go to deacidify it is molten after it is organic in material Thing.
(Embodiment 4)
The present embodiment with the method for cobalt and manganese in the ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt remaining with the phase of embodiment 1 Together, difference is:When step pre-processes 1., 30 % sulfuric acid solution is added into the reaction vessel for filling cobalt manganese waste material 25mL, after the resolution completely of cobalt manganese waste material, the pH value of liquid is 1.7 after measurement acid is molten.Liquid of the acid after molten is transferred to 80 DEG C Water-bath in the min of heating water bath 30, filter, go to deacidify it is molten after organic matter in material.
(Embodiment 5)
The present embodiment with the method for cobalt and manganese in the ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt remaining with the phase of embodiment 1 Together, difference is:
When step pre-processes 1., the high manganese waste material of 50 grams of low cobalts is taken, 40 % are added into the reaction vessel for filling the high manganese waste material of low cobalt The mL of salpeter solution 150, after cobalt manganese waste material resolution completely after, measurement acid it is molten after liquid pH value be -0.6.By the molten rear pH value of acid Material less than 3.5 min of heating water bath 30 in 60 DEG C of water-bath, is filtered, go to deacidify it is molten after organic matter in material.
The concentration of ammonium hydrogen carbonate is 50 g/L in 2. ammonia that step is prepared-ammonium hydrogen carbonate mixed solution, ammonia concn 90 g/L。
Step 3. in 1. filtered to step after be slowly added to 2. ammonia-ammonium hydrogen carbonate that step is prepared in obtained digestion solution and mix Close solution 70mL and obtain reaction solution, reaction solution reacts 6 under conditions of being 400 r/min in 40 DEG C, mixing speed after addition Hour.
After reaction terminates, filtering respectively obtains cobalt ammonia complex solution and manganese carbonate precipitation, and manganese carbonate washing of precipitate is dried Weigh afterwards and obtain 16.6180g, the rate of recovery of manganese is 99.6% in the high manganese waste material of low cobalt, and the purity for the manganese carbonate for reclaiming to obtain is 99.9%。
4. step obtains cobalt hydroxide product 7.7649g.The purity of cobalt hydroxide is 99.3%.
The rate of recovery for being computed cobalt is 99.8%.
(Embodiment 6)
The present embodiment with the method for cobalt and manganese in the ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt remaining with the phase of embodiment 1 Together, difference is:
The content of cobalt is 11.25wt % in the high manganese waste material of low cobalt handled by the present embodiment, and the content of manganese is 30.62wt %.
When step pre-processes 1., the high manganese waste material of 500 grams of low cobalts is taken, is added into the reaction vessel for filling the high manganese waste material of low cobalt Enter the 20 % mL of hydrochloric acid solution 1500, after the resolution completely of cobalt manganese waste material, the pH value of liquid is 0.5 after measurement acid is molten.Acid is molten Material of the pH value less than 3.5 min of heating water bath 30 in 90 DEG C of water-bath afterwards, is filtered, go to deacidify it is molten after having in material Machine thing.
The concentration of ammonium hydrogen carbonate is 90 g/L in 2. ammonia that step is prepared-ammonium hydrogen carbonate mixed solution, ammonia concn 80 g/L。
Step 3. in 1. filtered to step after be slowly added to 2. ammonia-ammonium hydrogen carbonate that step is prepared in obtained digestion solution and mix Close solution 2L and obtain reaction solution, reaction 8 is small under conditions of reaction solution is 200 r/min in 25 DEG C, mixing speed after addition When.
After reaction terminates, filtering respectively obtains cobalt ammonia complex solution and manganese carbonate precipitation, and manganese carbonate washing of precipitate is dried Weigh afterwards and obtain 317.88g, the rate of recovery of manganese is 99.3% in the high manganese waste material of low cobalt, and the purity for the manganese carbonate for reclaiming to obtain is 99.7%。
4. step obtains cobalt hydroxide product 88.40g.The purity of cobalt hydroxide is 99.9%.
The rate of recovery for being computed cobalt is 99.7%.

Claims (5)

  1. A kind of 1. method of cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt, it is characterised in that including following Step:
    1. pre-processing, pending low cobalt high manganese waste material acid is dissolved, the pH value of material is less than or equal to 3.5 after control acid is molten, After molten rear material of the pH value less than or equal to 3. 5 of acid is heated in 60 DEG C~90 DEG C of water-bath, filter;Hydrogen is added into filtrate Sodium hydroxide solution makes its pH value rise to 4~5, is filtered after standing, and obtained filtrate is pending as digestion solution;
    2. preparing ammonia-ammonium hydrogen carbonate mixed solution, the concentration range of ammonium hydrogen carbonate is 20~90 g/L in mixed solution, ammoniacal liquor Concentration range is 50~100 g/L, and the pH value of mixed solution is 9~11;
    3. cobalt, manganese separate, it is molten that 2. ammonia-ammonium hydrogen carbonate mixing that step is prepared is added in the digestion solution obtained after 1. being filtered to step Liquid obtains reaction solution, and the pH value of reaction solution is 7.5~10.0, and the ratio between amount of material of ammonium hydrogen carbonate and manganese is 0.9 after addition: 1~2:1, the ratio between amount of material of ammoniacal liquor and cobalt is 10:1~50: 1;After addition reaction solution 20~ 40 DEG C, mixing speed be 150~500 r/min under react 5~20 hours;
    After reaction terminates, filtering, respectively obtains filtrate cobalt ammonia complex solution and filter residue manganese carbonate precipitates, in the high manganese waste material of low cobalt Manganese is reclaimed in the form of manganese carbonate;
    4. Call Provision, 3. cobalt ammonia complex solution that step is filtrated to get is placed in water-bath and is heated to 70 DEG C~85 DEG C, to Reducing agent is wherein added, the reducing agent added is one kind in hydrazine hydrate, sodium borohydride or paraformaldehyde, or by step 3. mistake The cobalt ammonia complex solution that filter obtains, which is placed in oil bath pan, is heated to 170 DEG C~185 DEG C, then adds reducing agent, is added Reducing agent is ethylene glycol;The ratio between amount of material of cobalt is 0.8 in reducing agent and cobalt ammonia complex solution:1~5:1, reaction 15min~60min;
    Then lower dropwise addition sodium hydroxide solution or oxalate solution are stirred in the material after terminating to reduction reaction, what it is when dropwise addition is During sodium hydroxide solution, n(NaOH):n(Co)=8.5:1~15:1;When dropwise addition be oxalates when, n(C2O4 2-):n(Co)= 8:1~20:1;20min~60min is reacted after being added dropwise;Reaction is filtered after terminating, and the washing of precipitate for filtering to obtain is dried After obtain cobalt hydroxide or cobalt oxalate, complete the recovery of cobalt.
  2. 2. the method for cobalt and manganese according to claim 1 in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt, it is special Sign is:Step 1. in used acid be nitric acid, hydrochloric acid or sulfuric acid, cobalt in sour dosage and cobalt manganese waste material, manganese material amount The ratio between be n (H+) : [ n ( Mn ) + n ( Co ) ] = 2 :1~4: 1.
  3. 3. the method for cobalt and manganese according to claim 1 in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt, it is special Sign is:Step 1. it is middle with sour dissolved cobalt manganese waste material when, sour pH value used be less than 1.
  4. 4. the method for cobalt and manganese according to claim 3 in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt, it is special Sign is:Step is 1. before middle heating water bath, if after control acid is molten the pH value of material be less than or equal to 3.5 refer to acid it is molten after liquid pH Value is more than 3.5, and acid used makes its pH value be less than 3.5 when adding sour molten waste material thereto;The pH value of liquid is less than after if acid is molten 3.5, then directly carry out heating water bath.
  5. 5. separate and recover the side of cobalt and manganese in the high manganese waste material of low cobalt with ammonia-ammonium hydrogen carbonate according to one of Claims 1-4 Method, it is characterised in that:Step 1. in the pending high manganese waste material of low cobalt cobalt, the mass ratio of manganese be 1:1~1:4.
CN201710903756.0A 2015-11-27 2015-11-27 A method of with cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt Active CN107674976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710903756.0A CN107674976B (en) 2015-11-27 2015-11-27 A method of with cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510839622.8A CN105349790B (en) 2015-11-27 2015-11-27 The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate
CN201710903756.0A CN107674976B (en) 2015-11-27 2015-11-27 A method of with cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510839622.8A Division CN105349790B (en) 2015-11-27 2015-11-27 The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate

Publications (2)

Publication Number Publication Date
CN107674976A true CN107674976A (en) 2018-02-09
CN107674976B CN107674976B (en) 2019-04-23

Family

ID=55325849

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510839622.8A Active CN105349790B (en) 2015-11-27 2015-11-27 The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate
CN201710903756.0A Active CN107674976B (en) 2015-11-27 2015-11-27 A method of with cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510839622.8A Active CN105349790B (en) 2015-11-27 2015-11-27 The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate

Country Status (1)

Country Link
CN (2) CN105349790B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582252A (en) * 2021-07-29 2021-11-02 广东佳纳能源科技有限公司 Preparation method of nickel-cobalt-manganese ternary precursor material and lithium ion battery
CN114892018A (en) * 2022-05-19 2022-08-12 广东先导稀材股份有限公司 Method for separating and recovering platinum and manganese in platinum-manganese alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907995A (en) * 2016-07-06 2016-08-31 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt and high-manganese waste by virtue of sulphide salt and oxidizing agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010209384A (en) * 2009-03-09 2010-09-24 Dowa Metals & Mining Co Ltd Method for recovering manganese
JP5229416B1 (en) * 2011-06-29 2013-07-03 Jfeスチール株式会社 Manganese recovery method
CN104831065A (en) * 2015-04-09 2015-08-12 长沙矿冶研究院有限责任公司 Method for separating nickel and cobalt from manganese in high manganese-cobalt ratio nickel-cobalt-manganese raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010209384A (en) * 2009-03-09 2010-09-24 Dowa Metals & Mining Co Ltd Method for recovering manganese
JP5229416B1 (en) * 2011-06-29 2013-07-03 Jfeスチール株式会社 Manganese recovery method
CN104831065A (en) * 2015-04-09 2015-08-12 长沙矿冶研究院有限责任公司 Method for separating nickel and cobalt from manganese in high manganese-cobalt ratio nickel-cobalt-manganese raw material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴江华等: "高锰镍钴原料的还原氨浸工艺研究", 《矿业工程》 *
徐艳娥等: "湿法冶金中钴锰分离方法综评", 《矿冶》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582252A (en) * 2021-07-29 2021-11-02 广东佳纳能源科技有限公司 Preparation method of nickel-cobalt-manganese ternary precursor material and lithium ion battery
CN113582252B (en) * 2021-07-29 2022-05-17 广东佳纳能源科技有限公司 Preparation method of nickel-cobalt-manganese ternary precursor material and lithium ion battery
CN114892018A (en) * 2022-05-19 2022-08-12 广东先导稀材股份有限公司 Method for separating and recovering platinum and manganese in platinum-manganese alloy
CN114892018B (en) * 2022-05-19 2023-10-24 广东先导稀材股份有限公司 Method for separating and recovering platinum and manganese in platinum-manganese alloy

Also Published As

Publication number Publication date
CN107674976B (en) 2019-04-23
CN105349790B (en) 2017-11-21
CN105349790A (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CN105238932B (en) The separation and recovery method of cobalt and manganese in cobalt manganese waste material
CN105274344A (en) Method for recycling vanadium and molybdenum from waste petroleum catalyst
CN105274345B (en) The method of cobalt and manganese in separating and recovering cobalt manganese waste material
CN103966446A (en) Method for separating and recovering copper, nickel and iron from electroplating sludge
CN103290224A (en) Recovery process for valuable metals in tungsten residues
CN103937973B (en) A kind of method of Organic-inorganic composite reducing pyrolusite
CN103991898A (en) Utilizing method of catalytic coal gasification ash residues
CN105087935A (en) Method for recycling copper, indium and gallium from waste copper-indium-gallium target
CN105349790B (en) The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium hydrogen carbonate
TW201437384A (en) Method for recycling metal in waste catalyst comprised of aluminum
CN104988319A (en) Method and system for treating load type palladium-contained dead catalyst
CN105296763B (en) The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia ammonium carbonate
CN107022681A (en) A kind of comprehensive recovering process of aluminium scrap silicon middle rare earth, aluminium and silicon
CN105907995A (en) Method for separating and recovering cobalt and manganese in low-cobalt and high-manganese waste by virtue of sulphide salt and oxidizing agent
CN106757156B (en) A method of from recycling Re in high-temperature alloy waste material containing Re
CN105349789B (en) The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia sodium carbonate
CN105039727B (en) The process of recovering rare earth in a kind of NdFeB waste residues from super low loading
CN106086404B (en) A kind of method of high pressure complexation leaching bastnaesite
CN112760485B (en) Method for leaching valuable resources from optimal slag
CN104263942A (en) Comprehensive utilization method of waste mercury accelerant
CN104032362A (en) Method for processing copper electrolysis waste liquid
CN112063844B (en) Method for treating electroplating sludge and electroplating waste liquid
CN113800566B (en) Method for preparing ammonium molybdate from crude molybdic acid
CN115109931B (en) Method for recycling multiple metals from tungsten-molybdenum waste residues
CN104388681A (en) Treatment method for recycling high-concentration molybdenum calcine washing wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant