CN107665775A - Ultracapacitor based on porous carbon nanosheet and preparation method thereof - Google Patents

Ultracapacitor based on porous carbon nanosheet and preparation method thereof Download PDF

Info

Publication number
CN107665775A
CN107665775A CN201710773213.1A CN201710773213A CN107665775A CN 107665775 A CN107665775 A CN 107665775A CN 201710773213 A CN201710773213 A CN 201710773213A CN 107665775 A CN107665775 A CN 107665775A
Authority
CN
China
Prior art keywords
porous carbon
ultracapacitor
carbon nanosheet
preparation
pcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710773213.1A
Other languages
Chinese (zh)
Inventor
侯建华
蒋坤
沈明
代滇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710773213.1A priority Critical patent/CN107665775A/en
Publication of CN107665775A publication Critical patent/CN107665775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The present invention discloses ultracapacitor based on porous carbon nanosheet and preparation method thereof.Capacitor includes setting septate porous carbon nano-electrode piece among at least two layers.Its preparation method includes:(10) microwave bulking carbonization, the activation of (20) ammonia atmosphere, the purification of the porous carbon nanosheet of (30) functionalization, the preparation of (40) electrode slice, the assembling of (50) ultracapacitor:It is all provided with one layer of barrier film between adjacent two layers porous carbon nano-electrode piece, after assembled formation, is infiltrated with electrolyte, obtain ultracapacitor.The ultracapacitor based on porous carbon nanosheet of the present invention, energy density is high, power density is high.

Description

Ultracapacitor based on porous carbon nanosheet and preparation method thereof
Technical field
The invention belongs to energy storage device technical field, particularly a kind of ultracapacitor based on porous carbon nanosheet and its Preparation method.
Background technology
Double layer capacitor (EDLCs) or ultracapacitor, it is considered to be a kind of new energy storage devices, because it is super High specific power density, good stability and long circulation life, cause people greatly pay close attention to (Science 2015, 350,1508-1513).However, compared to commercialized lithium ion battery, (energy density is about 180Wh kg-1), super capacitor Device is still limited by relatively low energy density (generally below 8Wh kg at present-1), this significantly limit it as major impetus The application prospect of power supply.
At present, nano material derived from numerous carbon for example porous charcoal, graphene, CNT, carbon fiber, carbon aerogels with And mesoporous carbon etc., the extensive use in ultracapacitor as electrode material.There are some researches show the ratio surface of carbon material Product, surface microstructure, chemical composition etc. are vital (J.Am. to ultracapacitor chemical property Chem.Soc.2015,137,219-225).Particularly, the controlled dimensions of nano-pore and geometry have become people's concern Focus because nano-pore structure has a great impact to the power density and energy density of carbon-based material.Up to the present, Substantial amounts of research, including high-temp chlorination carbonaceous material (ACS Nano 2015,9,2556- have been carried out to optimization micro-structural 2564), various template method and the application (ACS Nano 2015,9,11225-11233) the methods of KOH activation methods.It is actual On, mesoporous carbon template and KOH activation methods are considered as synthesis bigger serface, high porosity, and are used as high-speed ion Passage is to obtain the common method of high-energy and quality electric capacity.However, there is no doubt that a large amount of pore-creating may result in micro- knot Structure caves in and brings high pore volume.When specific surface area is higher than 2400m2g-1When, pore volume would generally exceed 1.9cm3g-1, high hole Gap rate can cause the decline of volume capacity and energy density (Energy Environ.Sci.2016,9,2249-2256) again.Separately Outside, template and high-temperature chlorination are very time-consuming in most cases because of its complicated processing method.Recently, some are studied As a result show, particular kind of micropore in carbon material, especially less than 1nm duct, because " micropore effect " to ion go it is molten Agent and the energy density (Nat.Commun.2015,6,7221-7230) for greatly improving ultracapacitor.However, micropore In slowly sheath desolvation and Particles Moving so that high rate performance is relatively low.
Therefore, the problem of prior art is present be:The energy density of ultracapacitor is not high, power density is low.
The content of the invention
It is an object of the invention to provide a kind of ultracapacitor based on porous carbon nanosheet, and energy density is high, power Density is high.Another object is to provide a kind of preparation method of the ultracapacitor based on porous carbon nanosheet.
The technical solution for realizing the object of the invention is:
A kind of ultracapacitor based on porous carbon nanosheet, including at least two layers of porous carbon nano-electrode piece, adjacent Barrier film is provided between porous carbon nano-electrode piece.
Preferably, the porous carbon nano-electrode piece is by rich amyloid graininess presoma heated by microwave, by swollen Change the porous carbon nanosheet of functionalization (N is adulterated at high proportion) that carbonization obtains, ammonia atmosphere activates to obtain to be made.
The technical scheme for realizing another object of the present invention is:
A kind of preparation method based on porous carbon nanosheet ultracapacitor, comprises the following steps:
(10) microwave bulking is carbonized:By the rich amyloid graininess presoma microwave heating 10-17 minutes of drying, pass through Expanded carbonization can obtain porous carbon nanometer sheet;
(20) ammonia atmosphere activates:By porous carbon nanosheet under ammonia atmosphere carbonization-activation, obtain the porous of functionalization Carbon nanosheet (N is adulterated at high proportion);Activator ground and mixed and carbonization-activation can be added simultaneously, are increased porous carbon nanosheet and are compared table Area;
(30) purification of the porous carbon nanosheet of functionalization:By the porous carbon nanosheet grinding of above-mentioned functionalization, wash, dry, Obtain the porous carbon nanosheet of functionalization with superhigh specific surface area;
(40) prepared by electrode slice:Distilled water is added to be sufficiently mixed stirring above-mentioned porous carbon nanosheet, conductive black, binding agent Slurry is made, rubs grouting material repeatedly to obtain sheet electrode material;Then above-mentioned sheet electrode material is placed on corresponding big It is placed at 120 DEG C and dries on small collector, after cold pressing, obtains super capacitor electrode slice;
(50) ultracapacitor assembles:One layer of barrier film, assembled formation are all provided between adjacent two layers porous carbon nano-electrode piece Afterwards, infiltrated with electrolyte, obtain ultracapacitor.
Preferably, the graininess presoma is corn, rice, millet, highland barley, glutinous rice, sorghum rice, one kind of rice cake.
Preferably, in described (20) carbonization-activation step, carbonization-activation temperature is 750-900 DEG C, time 2h.
Preferably, in described (20) carbonization-activation step, selectable activator includes alkali activator, acidic activated Agent, neutral activator etc..
Preferably, in described (40) electrode slice preparation process, porous carbon nanosheet, conductive black, the mass ratio of binding agent For 85:10:5.
Preferably, in described (40) electrode slice preparation process, cold pressing pressure is 10~15 MPas, is cold-pressed time 20-60 Second.
Preferably, in described (40) electrode slice preparation process, the electrode slice of gained ultracapacitor smears density and is more than 12 mg/cm2
Preferably, in described (50) ultracapacitor number of assembling steps, barrier film can be nylon cloth, all-glass paper, PE micropores One kind in film, polyvinyl alcohol film, asbestos paper.
Preferably, in described (50) ultracapacitor number of assembling steps, electrolyte include aqueous electrolyte, organic electrolyte and Il electrolyte.
The present invention makes its " blast " process by the heating of simple microwave, you can will be enriched in the graininess presoma of starch Become crispy and delicious puffed rice (by taking corn as an example), it is caused by fuel factor " bulking effect " that it, which produces mechanism,.Due to outside The lasting supply of energy, the liquid gasification inside particle, the internal pressure of material increase sharply, and after pressure is released, rice turns It is melted into puffed rice.It is interesting that the volume ratio iblet of puffed rice expands more than 20 times, this mainly expands instant of detonation and formed Honeycomb laminated structure (accompanying drawing 1)." bulking effect " is a kind of pure physical-chemical reaction, and it possesses quick and environmentally friendly excellent Point.Corn continues the porous carbon nanosheet of microwave heating carbonization acquisition after expanded.By combining physical chemistry " bulking effect " and ammonia The activation of gas atmosphere obtains the porous carbon nanosheet of high-specific surface area functionalization derived from puffed rice, and as the electricity of ultracapacitor Pole material.This material has the specific surface area (3301m of superelevation2/ g, wherein micropore area reach 95%, particularly 0.69nm Preferred hole), and show relatively low pore volume (especially particle passage type hole because it has substantial amounts of micropore Road), and high content N element, thus superior performance of the supercapacitor is shown, it is 0.2A g in current density-1, 6M KOH To reach 348F g during electrolyte-1, even in 90A g-1High current density under can also reach 286F g-1.Most of all, Energy density of this material in il electrolyte has reached 103Wh kg-1(53Wh L-1), this is all reported Biomass derived carbon in one of highest.The invention provides a kind of new synthesis strategy, using it is ready-made, reproducible, Cheap raw material, by method quick, green and capable of being industrialized, prepare for the optimal of high-performance super capacitor Electrode material.
Compared with prior art, its remarkable advantage is the present invention:
1st, the invention provides a kind of microwave bulking carbonizatin method to prepare porous carbon nanosheet (PCF), and as high power, height The method of energy density electrode material for super capacitor;
2nd, PCF provided by the invention has the advantages that high-specific surface area and aperture are adjustable, is a kind of preferable electrode material, It can be not only used for the electrochemical energy storing devices such as ultracapacitor, lithium ion battery, lithium-sulfur cell, additionally it is possible to for hydrogen storage, catch Obtain carbon dioxide, the absorption of environmental contaminants, catalyst carrier, biology and optical sensor and wait multiple fields;
3rd, PCF provided by the invention is activated under ammonia atmosphere, has a high proportion of N doping, it is abundant to be advantageous to electrolyte Into and infiltrate duct, so as to greatly improve the capacity of ultracapacitor;
4th, when PCF provided by the invention is used as electrode material for super capacitor, not only shown in aqueous electrolyte excellent Different performance (is 0.2A g in current density using 6M KOH as electrolyte-1Capacity is up to 348F g under low current density-1; 90A g-1High current density be high current density under capacity remain to reach 286F g-1), in il electrolyte Energy density has reached 103Wh kg-1(53Wh L-1)。
The present invention is described in further detail with reference to the accompanying drawings and detailed description.
Brief description of the drawings
Fig. 1 is the flow chart of the preparation method of the invention based on porous carbon nanosheet ultracapacitor.
Fig. 2 is the scanning electron microscope (SEM) photograph (SEM) of PCF prepared by embodiment 1.
Fig. 3 is the transmission electron microscope picture (TEM) of PCF prepared by embodiment 1.
Fig. 4 is PCF XRD prepared by embodiment 1-4 and Raman figure.
Fig. 5 is the ammonia gas absorption-desorption curve figure and pore size distribution curve figure of PCF prepared by embodiment 1-4.
Table 1 is PCF specific surface area prepared by embodiment 1-4 and its pore volume tables of data.
Fig. 6 is that PCF prepared by embodiment 1-4 is applied to ultracapacitor device, in aqueous electrolyte (6M KOH) Performance map.
Fig. 7 is that PCF prepared by embodiment 3-4 is applied to ultracapacitor device, in il electrolyte (EMIMBF4) in performance of the supercapacitor figure.
Fig. 8 is the scanning electron microscope (SEM) photograph (SEM) of PCF prepared by embodiment 5-8.
Fig. 9 is the transmission electron microscope picture (TEM) of PCF prepared by embodiment 8.
The XPS that Figure 10 is PCF prepared by embodiment 8 schemes.
Figure 11 is that PCF prepared by embodiment 9-12 is applied to ultracapacitor device, in il electrolyte (EMIMBF4) in cyclic voltammetric performance map.
Embodiment
The present invention is elaborated with reference to the accompanying drawings and examples.
Embodiment 1
Step 1:The rich amyloid corn particle presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaOH after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 750 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Fig. 2 is the scanning electron microscope (SEM) photograph (SEM) of PCF prepared by embodiment 1.It is corn particle presoma after " bulking effect " The puffed rice (Fig. 2 a-b) with alveolate texture is formd, this cellular structure is made up of 400-900nm thin slice, hole Footpath is about 10 μm, and original skeleton structure does not change (Fig. 2 c) in pre- carbonisation.After KOH is activated (Fig. 2 d), Above-mentioned PCF is provided with substantial amounts of micropore and multi-layer thin layer structure.
Fig. 3 is the transmission electron microscope picture (TEM) of PCF prepared by embodiment 1.From the graph, it is apparent that lived by NaOH PCF after change produces substantial amounts of micropore and Multilayer ultrathin structure, this structure are advantageous to increasing specific surface area, enable electrolyte Well into duct, so as to improve performance of the supercapacitor.
Embodiment 2
Step 1:The rich amyloid corn particle presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaOH after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 800 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Embodiment 3
Step 1:The rich amyloid corn particle presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaOH after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 850 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Embodiment 4
Step 1:The rich amyloid corn particle presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaOH after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 900 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Fig. 4 is PCF-X prepared by embodiment 1-4 (X is activation temperature) XRD and Raman figure.From XRD it can be seen that (Fig. 4 a), PCF-X have two wide diffraction maximums at 25.2 and 43.6 °, corresponding to (002) and (101) face, show prepared Material is typical agraphitic carbon, and the peak width of (002) is significantly increased due to loose structure.In addition, low angle diffracted intensity To be remarkably reinforced be caused by the presence of a large amount of micropores.In PCF-X Raman spectrum (Fig. 4 b), high IG/ID peak intensities ratio Imply the generation of a large amount of defects and the presence of a large amount of micropores.Numerous studies show that the fault of construction of carbon can increase avtive spot Quantity or active surface, and increase the capacity of ultracapacitor.
Fig. 5 is the ammonia gas absorption-desorption curve figure and pore size distribution curve figure of PCF prepared by embodiment 1-4.Inhaled from ammonia Attached-desorption curve figure (Fig. 5 a) is as can be seen that PCF-X is typical poromerics.Can be with from pore size distribution curve figure (Fig. 5 b) To find out, PCF-X nano aperture is less than 3nm, most of micropores for less than 2nm, and occurs peak value at 0.69nm, this It is consistent with the accessible nano aperture of optimal ion.Such microcellular structure is advantageous to the abundant infiltrating material of electrolyte, so as to carry High capacity of super capacitor.Table 1 is corresponding PCF specific surface area and its pore volume tables of data.As can be seen from the table, with The raising of KOH activation temperatures, ascendant trend is presented in PCF-X specific surface area, and specific surface area is commercial activated carbon (YP-17D) 1.5-2 times.The specific surface area of superelevation can provide more avtive spots for contact of the electrolyte with PCF-X, hold to improving Measure significant.
Fig. 6 is that PCF prepared by embodiment 1-4 is applied to ultracapacitor device, in aqueous electrolyte (6M KOH) Performance map.Fig. 6 a are PCF cyclic voltammetry curve (CV curves), and wherein PCF-900 CV curve shapes are in 500mV s-1Sweep Speed is lower close to symmetrical rectangle, shows its preferable double electric layers supercapacitor performance.Fig. 6 b are PCF crossing current charging and discharging curve Figure, wherein PCF-900 and PCF-850 are in 10A g-1High current density under show more symmetrical charging and discharging curve.From how Qwest curve (Fig. 6 c) is visible, and PCF-X shows almost vertical curve in low frequency region, shows fabulous electric capacity row For.Warburg diffusion profiles (slope at 45 ° of curve) indicate more preferable ion diffuser efficiency.Corresponding timeconstantτ0(figure 6d) reduce with the rise of activation temperature, PCF-900 τ0Only 1.0s.It is 0.2A g in current density-1When, PCF ratio Capacity is YP-17D 2 times (Fig. 6 e), and PCF-900 has reached highest 348F g-1.Shown from the visible PCF-900 of Fig. 6 f High stability, capability retention is up to 95% after 10000 cycle periods.
Fig. 7 is that PCF prepared by embodiment 3-4 is applied to ultracapacitor device, in il electrolyte (EMIMBF4) performance map in, voltage window are 3.5 times of aqueous electrolyte.Fig. 7 a are PCF-900 cyclic voltammetry curve (CV curves), wherein PCF-900 CV curves keep symmetrical rectangular structure in 0-3.5V, and are 100mV s sweeping speed-1When throw away Nearly rectangular shape is kept, shows its preferable double electric layers supercapacitor performance.Fig. 7 b are PCF-900 in different current densities Under charging and discharging curve figure, show symmetrical charging and discharging curve.Can be seen that PCF-900 from Fig. 7 c has than PCF-850 Higher electric capacity and more preferable conservation rate.Fig. 7 d can be seen that PCF-900 and PCF-850 is shown almost in low frequency region Vertical curve, show its good capacitance behavior.But in high-frequency region, PCF-900 shows relatively low ESR and shorter Warburg curves.Fig. 7 e are PCF-900 and PCF-850 energy comparison figure, and wherein PCF-900 energy density is about 103W h kg-1(53Wh L-1), and in 8A g-1Current density under still keep 66Wh kg-1(34W h L-1) energy density;In 5A g-1After lower 5000 circulations of current density (Fig. 7 f), capacity is 193F g-1, conservation rate 88%, show good performance.
Embodiment 5
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaCl after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 750 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Embodiment 6
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaCl after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 800 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Embodiment 7
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaCl after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 850 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Embodiment 8
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with NaCl after mixing, under protection of ammonia in tube furnace Carbonization-activation 30 minutes, temperature are 900 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and infiltrated with 6M KOH, you can It is assembled into ultracapacitor device.
Fig. 8 PCF derived from the rice prepared by embodiment 5-8 scanning electron microscope (SEM) photograph (SEM).Rice pellets presoma exists Puffed rice (Fig. 8 a with alveolate texture are also form after " bulking effect "1-c1), this cellular structure is by 500- 1000nm thin slice composition, aperture is about 5-10 μm, and inherits raw skeleton structure (Fig. 8 a in follow-up pre- carbonisation2- c3)。
Fig. 9 PCF derived from the rice prepared by embodiment 8 transmission electron microscope picture (TEM).It is it can be seen that big PCF derived from rice has porous porous, Multilayer ultrathin laminated structure, and is rich in N element.Abundant N element can make electrolyte Quickly enter and infiltrate nano pore, so as to greatly improve performance of the supercapacitor.
The XPS that Figure 10 is PCF prepared by embodiment 8 schemes.It was found from XPS composes (Figure 10 a) entirely, prepared PCF is except C With O elements, also containing a small amount of N element.The doping of N element, PCF is set to be easier to be infiltrated by electrolyte, so as to improve material double Performance in electric layer ultracapacitor.
Embodiment 9
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with KOH after mixing, under protection of ammonia in tube furnace carbon Change activation 30 minutes, temperature is 750 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and uses EMIMBF4Infiltration, i.e., It can be assembled into ultracapacitor device.
Embodiment 10
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with KOH after mixing, under protection of ammonia in tube furnace carbon Change activation 30 minutes, temperature is 800 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and uses EMIMBF4Infiltration, i.e., It can be assembled into ultracapacitor device.
Embodiment 11
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with KOH after mixing, under protection of ammonia in tube furnace carbon Change activation 30 minutes, temperature is 850 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and uses EMIMBF4Infiltration, i.e., It can be assembled into ultracapacitor device.
Embodiment 12
Step 1:The rich amyloid rice pellets presoma microwave of drying is heated 12 minutes, is by expanded carbonization It can obtain porous carbon nanosheet;
Step 2:The porous carbon nanosheet of gained is fully ground with KOH after mixing, under protection of ammonia in tube furnace carbon Change activation 30 minutes, temperature is 900 DEG C, obtained black solid;
Step 3:By the black solid grind into powder in step 2, with hydrochloric acid and distillation water washing and filter to neutrality After dry, you can obtain the porous carbon nanosheet (PCF) with superhigh specific surface area;
Step 4:By above-mentioned porous carbon nanosheet (active material), conductive black, binding agent in mass ratio 85:10:5, add Distilled water is sufficiently mixed stirring and slurry is made, and rubs grouting material repeatedly to obtain sheet electrode material;Then by above-mentioned electrode material Material is placed on correspondingly sized collector, and 10 MPas of cold pressings were placed at 105 DEG C and dried after 30 seconds, obtained the pole of ultracapacitor Piece, and the smearing density of electrode material is more than 12mg/cm2
Step 5:Electrode slice/barrier film/electrode slice is assembled with " sandwich " structure, and uses EMIMBF4Infiltration, i.e., It can be assembled into ultracapacitor device.
Figure 11 is that PCF prepared by embodiment 9-12 is applied to ultracapacitor device, in il electrolyte (EMIMBF4) in cyclic voltammetric performance map.Sweep speed for 20,50,100,200mV/s when, PCF-X cyclic voltammetry curve Quasi- symmetrical rectangular shape is presented in (Figure 11 a), shows good capacitance behavior.

Claims (13)

  1. A kind of 1. ultracapacitor based on porous carbon nanosheet, it is characterised in that:
    Including at least two layers of porous carbon nano-electrode piece, barrier film is provided between adjacent porous carbon nano-electrode piece.
  2. 2. ultracapacitor according to claim 1, it is characterised in that:
    The porous carbon nano-electrode piece is obtained more by rich amyloid graininess presoma heated by microwave by expanded carbonization Hole carbon nanosheet, activated to obtain the porous carbon nanosheet of functionalization of high-specific surface area and N doping again with ammonia atmosphere.
  3. 3. ultracapacitor according to claim 2, it is characterised in that:
    In the ammonia atmosphere activation process, add activator ground and mixed and mixed with increasing porous carbon nanosheet specific surface area and N It is miscellaneous.
  4. 4. a kind of preparation method of ultracapacitor as claimed in claim 1, it is characterised in that comprise the following steps:
    (10) microwave bulking is carbonized:The rich amyloid graininess presoma microwave of drying is heated 5~40 minutes, expanded carbonization Obtain porous carbon nanosheet;
    (20) ammonia atmosphere activates:By porous carbon nanosheet under ammonia atmosphere carbonization-activation, obtain the function of the doping of N at high proportion Change porous carbon nanosheet;
    (30) purification of the porous carbon nanosheet of functionalization:By the porous carbon nanosheet grinding of above-mentioned functionalization, wash, dry, obtain High-quality has the porous carbon nanosheet of superhigh specific surface area functionalization;
    (40) prepared by electrode slice:Distilled water is added to be sufficiently mixed stirring system above-mentioned porous carbon nanosheet and conductive black, binding agent Into slurry, grouting material is rubbed repeatedly to obtain sheet electrode material;Then above-mentioned sheet electrode material is placed on correspondingly sized Collector on, be placed at 120 DEG C and dry after cold pressing, obtain super capacitor electrode slice;
    (50) ultracapacitor assembles:It is all provided with one layer of barrier film between adjacent two layers porous carbon nano-electrode piece, after assembled formation, uses Electrolyte infiltrates, and obtains ultracapacitor.
  5. 5. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    The graininess presoma is corn, rice, millet, highland barley, glutinous rice, sorghum rice, one kind of rice cake.
  6. 6. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (20) the ammonia atmosphere activation step, activation temperature is 450~900 DEG C, and the time is 1-6 hours.
  7. 7. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (20) the ammonia atmosphere activation step, selectable alkali activator activator includes potassium carbonate, sodium hydroxide, carbon Sour sodium, ammonia spirit;Acidic activator includes phosphoric acid, phosphoric acid hydrogen ammonia, ammonium di-hydrogen phosphate, potassium dihydrogen phosphate;Neutral activator bag Include zinc chloride, sodium chloride, magnesium chloride, aluminium chloride.
  8. 8. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (40) the electrode slice preparation process, porous carbon nanosheet, conductive black, the mass ratio of binding agent are 85:10:5.
  9. 9. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (40) the electrode slice preparation process, cold pressing pressure is 1~30 MPa, is cold-pressed 20~60 seconds time.
  10. 10. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (40) the electrode slice preparation process, the electrode slice of gained ultracapacitor smears density and is more than 12mg/cm2
  11. 11. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (50) the ultracapacitor number of assembling steps, barrier film be nylon cloth, all-glass paper, PE microporous barriers, polyvinyl alcohol film, One kind in asbestos paper.
  12. 12. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (50) the ultracapacitor number of assembling steps, electrolyte includes aqueous electrolyte, organic electrolyte or ionic liquid electricity Solve liquid.
  13. 13. the preparation method of ultracapacitor according to claim 4, it is characterised in that:
    In (20) the ammonia atmosphere activation step, activator ground and mixed is added to increase porous carbon nanosheet specific surface area.
CN201710773213.1A 2017-08-31 2017-08-31 Ultracapacitor based on porous carbon nanosheet and preparation method thereof Pending CN107665775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710773213.1A CN107665775A (en) 2017-08-31 2017-08-31 Ultracapacitor based on porous carbon nanosheet and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710773213.1A CN107665775A (en) 2017-08-31 2017-08-31 Ultracapacitor based on porous carbon nanosheet and preparation method thereof

Publications (1)

Publication Number Publication Date
CN107665775A true CN107665775A (en) 2018-02-06

Family

ID=61097827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710773213.1A Pending CN107665775A (en) 2017-08-31 2017-08-31 Ultracapacitor based on porous carbon nanosheet and preparation method thereof

Country Status (1)

Country Link
CN (1) CN107665775A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335924A (en) * 2018-01-24 2018-07-27 复旦大学 A kind of flexible super capacitor and preparation method thereof with self-stick notes function
CN108649181A (en) * 2018-05-11 2018-10-12 浙江大学 A kind of no dendrite high circulation service life potassium metal electrode and its preparation method and application
CN108806994A (en) * 2018-05-28 2018-11-13 南昌大学 A kind of preparation method of metal oxide nano-sheet capacitor
CN108963252A (en) * 2018-06-12 2018-12-07 北京英耐时新能源科技有限公司 A kind of hard carbon material and preparation method thereof
CN108975308A (en) * 2018-08-08 2018-12-11 中国林业科学研究院林产化学工业研究所 A kind of level duct charcoal nanometer sheet and its preparation method and application
CN109399766A (en) * 2018-09-27 2019-03-01 扬州大学 A kind of capacitive deionization device and preparation method thereof
CN109467073A (en) * 2018-09-25 2019-03-15 江苏天雨环保集团有限公司 A kind of preparation method and applications of porous carbon
CN109879267A (en) * 2019-03-14 2019-06-14 中山大学 A kind of preparation method of nanoporous carbon materials
CN110739161A (en) * 2019-10-14 2020-01-31 华北电力大学(保定) Preparation method of supercapacitor electrode materials based on two-dimensional carbon nanosheets
WO2020062223A1 (en) * 2018-09-30 2020-04-02 哈尔滨工业大学(深圳) One-stop supercapacitor and preparation method therefor
CN111540617A (en) * 2020-06-09 2020-08-14 华中农业大学 Preparation system and method of straw nitrogen-phosphorus-iron co-doped active carbon electrode material
CN114974915A (en) * 2022-05-18 2022-08-30 华南理工大学 Two-dimensional lamellar hierarchical porous carbon material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253161A (en) * 1998-10-30 2000-05-17 王存孝 Carbon balls as thermally insulating material and preparing process thereof
CN101269336A (en) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 Multilevel hole material load cobalt catalyst, preparation method and application thereof
CN104310373A (en) * 2014-10-08 2015-01-28 西南科技大学 Thin-wall foam carbon material with nanoscale wall thickness and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253161A (en) * 1998-10-30 2000-05-17 王存孝 Carbon balls as thermally insulating material and preparing process thereof
CN101269336A (en) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 Multilevel hole material load cobalt catalyst, preparation method and application thereof
CN104310373A (en) * 2014-10-08 2015-01-28 西南科技大学 Thin-wall foam carbon material with nanoscale wall thickness and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANHUA HOU等: "Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335924A (en) * 2018-01-24 2018-07-27 复旦大学 A kind of flexible super capacitor and preparation method thereof with self-stick notes function
CN108649181A (en) * 2018-05-11 2018-10-12 浙江大学 A kind of no dendrite high circulation service life potassium metal electrode and its preparation method and application
CN108806994A (en) * 2018-05-28 2018-11-13 南昌大学 A kind of preparation method of metal oxide nano-sheet capacitor
CN108963252A (en) * 2018-06-12 2018-12-07 北京英耐时新能源科技有限公司 A kind of hard carbon material and preparation method thereof
CN108975308A (en) * 2018-08-08 2018-12-11 中国林业科学研究院林产化学工业研究所 A kind of level duct charcoal nanometer sheet and its preparation method and application
CN109467073A (en) * 2018-09-25 2019-03-15 江苏天雨环保集团有限公司 A kind of preparation method and applications of porous carbon
CN109467073B (en) * 2018-09-25 2022-04-29 江苏天雨环保集团有限公司 Preparation method and application of porous carbon
CN109399766A (en) * 2018-09-27 2019-03-01 扬州大学 A kind of capacitive deionization device and preparation method thereof
WO2020062223A1 (en) * 2018-09-30 2020-04-02 哈尔滨工业大学(深圳) One-stop supercapacitor and preparation method therefor
CN109879267A (en) * 2019-03-14 2019-06-14 中山大学 A kind of preparation method of nanoporous carbon materials
WO2020181633A1 (en) * 2019-03-14 2020-09-17 中山大学 Method for preparing nano-porous carbon material
CN110739161A (en) * 2019-10-14 2020-01-31 华北电力大学(保定) Preparation method of supercapacitor electrode materials based on two-dimensional carbon nanosheets
CN111540617A (en) * 2020-06-09 2020-08-14 华中农业大学 Preparation system and method of straw nitrogen-phosphorus-iron co-doped active carbon electrode material
CN114974915A (en) * 2022-05-18 2022-08-30 华南理工大学 Two-dimensional lamellar hierarchical porous carbon material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN107665775A (en) Ultracapacitor based on porous carbon nanosheet and preparation method thereof
Selvaraj et al. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors
Mehare et al. Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application
Elaiyappillai et al. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application
Chen et al. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors
Li et al. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor
Wei et al. Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors
Peng et al. Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors
Momodu et al. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors
Inagaki et al. Carbon materials for electrochemical capacitors
Kalpana et al. Recycled waste paper—A new source of raw material for electric double-layer capacitors
Raymundo‐Piñero et al. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds
Gunasekaran et al. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO2 activation
Xu et al. Nanoporous activated carbon derived from rice husk for high performance supercapacitor
CN107958791B (en) Three-dimensional material, preparation method thereof and electrode for supercapacitor
Yuanyuan et al. A facile self-template strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene for conductive agent-free supercapacitors with excellent electrochemical performance
Li et al. Activated carbon prepared from lignite as supercapacitor electrode materials
Guo et al. Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor
Zhang et al. Functionalization of petroleum coke-derived carbon for synergistically enhanced capacitive performance
Wang et al. Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes
Muthu Balasubramanian et al. Groundnut shell–derived porous carbon-based supercapacitor with high areal mass loading using carbon cloth as current collector
Surya et al. Novel interconnected hierarchical porous carbon electrodes derived from bio-waste of corn husk for supercapacitor applications
Aparna et al. Momordica Charantia pericarp derived activated carbon with dual redox additive electrolyte for high energy density supercapacitor devices
Li et al. Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor
Lu et al. Preparation of hierarchically porous carbon spheres by hydrothermal carbonization process for high-performance electrochemical capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180206

WD01 Invention patent application deemed withdrawn after publication