CN107663633B - 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法 - Google Patents

一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法 Download PDF

Info

Publication number
CN107663633B
CN107663633B CN201710764056.8A CN201710764056A CN107663633B CN 107663633 B CN107663633 B CN 107663633B CN 201710764056 A CN201710764056 A CN 201710764056A CN 107663633 B CN107663633 B CN 107663633B
Authority
CN
China
Prior art keywords
silica
nanometer pipe
carbon nanotube
doped carbon
carbon nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710764056.8A
Other languages
English (en)
Other versions
CN107663633A (zh
Inventor
李颖
赵高扬
刘晋成
张虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710764056.8A priority Critical patent/CN107663633B/zh
Publication of CN107663633A publication Critical patent/CN107663633A/zh
Application granted granted Critical
Publication of CN107663633B publication Critical patent/CN107663633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials

Abstract

本发明公开了一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法,包括以下步骤:步骤1,分别制备氧化硅溶胶和碳纳米管‑无水乙醇混合溶液;步骤2,先按照20:0.5‑1的体积比分别量取经步骤1得到的氧化硅溶胶和碳纳米管‑无水乙醇混合溶液,然后将量取后的氧化硅溶胶和碳纳米管‑无水乙醇混合溶液混合,并在密封条件下搅拌均匀,得到碳纳米管‑氧化硅混合溶液;步骤3,选取基板,并采用浸渍提拉法使基板在经步骤3得到碳纳米管‑氧化硅混合溶液中提拉成膜,制备出碳纳米管‑氧化硅凝胶薄膜,之后对制备出的碳纳米管‑氧化硅凝胶薄膜进行热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。

Description

一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法
技术领域
本发明属于储存器薄膜材料制备技术领域,具体涉及一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法。
背景技术
阻变存储器薄膜材料最早开发的是钙钛矿氧化物,如PCMO、LSMO等。之后作为过渡,金属二元氧化物以其成分简单、易于制备所需化学配比的氧化物、成本低、与CMOS工艺兼容等优点而受到极大的关注,并且得到众多半导体厂商的青睐;许多基于该类材料的阻变存储器具有双极性的存储特性,即通过施加极性相反的电压,电阻值可在高低两个状态之间进行可逆转换。但是阻变存储器在运行的过程中,存在易击穿、易疲劳以及耐电压能力差的缺点,致使其阻变性能较差,发展受到较大限制。
发明内容
本发明的目的是提供一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法,解决阻变器件存在易击穿、易疲劳以及耐电压能力差的问题。
本发明所采用的技术方案是,一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.5-1的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在惰性气体的保护下,对经步骤3提拉出的凝胶薄膜进行热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
本发明的特点还在于:
在所述步骤3中:所述基板的材质为铂。
在所述步骤4中:所述热处理的温度为200℃-700℃。
在所述步骤4中:所述热处理的时间为20min-30min。
在所述步骤4中:所述惰性气体为氩气。
本发明的有益效果是:本发明的制备方法无需复杂的制备工艺简便、工艺参数易于控制,能大大地降低生产成本;利用本发明制备方法制备出的掺杂碳纳米管的氧化硅阻变薄膜作为应用在阻变存储器上时,该阻变存储器在运行过程中不易击穿、而且抗疲劳性好和耐电压能力也好,具有较好的阻变性能。
附图说明
图1是利用本发明制备方法制备出的掺杂碳纳米管的氧化硅阻变薄膜在电子显微镜下的扫描图;
图2是利用本发明制备方法制备出的掺杂碳纳米管的氧化硅阻变薄膜在空气中进行热处理的电学性能测试图;
图3是利用本发明的通过制备方法制备出的掺杂碳纳米管的氧化硅阻变薄膜在氩气保护下进行热处理的电学性能测试图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.5-1的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,基板的材质为铂,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用200℃-700℃的温度对经步骤3提拉出的凝胶薄膜进行20min-30min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
如图1所示,通过本发明制备方法制备得到的掺杂碳纳米管的氧化硅阻变薄膜,由尺寸均匀的微粒构成,其表面较为平整,微粒的尺寸在15nm-20nm之间,微粒的高度在1.26nm-1.47nm之间,表面粗糙度在0.146nm-0.976nm。
在步骤4进行热处理的过程中,随着热处理温度的升高,碳纳米管会被逐渐氧化成为二氧化碳,故热处理时可采用氩氢保护气对碳纳米管进行保护。具体可采用气氛管式烧结炉,气氛管式烧结炉的型号NBD-T1700。
基板在渡上通过本发明制备方法制备得到的掺杂碳纳米管的氧化硅阻变薄膜后,放入溅射仪(溅射仪的型号为SBC-12,北京中科科仪技术发展有限责任公司生产)中进行电极溅射,电极溅射完毕后即得到阻变存储器,该阻变存储器具有掺杂碳纳米管的氧化硅阻变薄膜。采用吉时利电流电压源表(keithley公司生产,型号为2400)对这种阻变存储器的电阻反转特性的进行电学性能分析,结果如图3所示。
可通过上述方法制备另一个阻变存储器,不过该阻变存储器具有的掺杂碳纳米管的氧化硅阻变薄膜是通过本发明制备方法在空气中进行热处理得到的。采用吉时利电流电压源表(keithley公司生产,型号为2400)对该阻变存储器的电阻反转特性的进行电学性能分析,结果如图2所示。
由图2和图3可知,两个阻变存储器的负向电压的扫描区都呈现单极性,但是图3中阻变存储器的电阻转变效应明显优于图2中阻变存储器的电阻转变效应;图3中阻变存储器在加负向电压时,开始是高阻态,电流几乎为0,但是从-2V左右开始,阻态发生明显变化,呈现低组态,耐电压可达到-4.0V;图2中阻变存储器则看不到明显的阻态变化,耐电压只能达到-2.0V。
实施例1
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.5的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用200℃的温度对经步骤3提拉出的凝胶薄膜进行20min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
实施例2
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.6的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用300℃的温度对经步骤3提拉出的凝胶薄膜进行22min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
实施例3
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.7的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用450℃的温度对经步骤3提拉出的凝胶薄膜进行20min-30min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
实施例4
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.8的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用600℃的温度对经步骤3提拉出的凝胶薄膜进行28min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
实施例5
本发明掺杂碳纳米管的氧化硅阻变薄膜的制备方法,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:1的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在氩气保护下,用700℃的温度对经步骤3提拉出的凝胶薄膜进行30min热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。

Claims (5)

1.一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,以碳纳米管粉末为溶质,无水乙醇为溶剂,制备浓度为10-5g/mL的碳纳米管溶液;
步骤2,按照20:0.5-1的体积比分别量取氧化硅溶胶、经步骤1制备得到的碳纳米管溶液,将量取后的氧化硅溶胶和碳纳米管溶液混合并搅拌均匀,得到掺杂碳纳米管的氧化硅溶液;
步骤3,选取基板,将基板置于经步骤2得到的掺杂碳纳米管的氧化硅溶液中,并采用浸渍提拉法在其表面提拉一层凝胶薄膜;
步骤4,在惰性气体的保护下,对经步骤3提拉出的凝胶薄膜进行热处理,最终得到掺杂碳纳米管的氧化硅阻变薄膜。
2.根据权利要求1所述的掺杂碳纳米管的氧化硅阻变薄膜的制备方法,其特征在于,在所述步骤3中:所述基板的材质为铂。
3.根据权利要求1所述的掺杂碳纳米管的氧化硅阻变薄膜的制备方法,其特征在于,在所述步骤4中:所述热处理的温度为200℃-700℃。
4.根据权利要求3所述的掺杂碳纳米管的氧化硅阻变薄膜的制备方法,其特征在于,在所述步骤4中:所述热处理的时间为20min-30min。
5.根据权利要求1所述的掺杂碳纳米管的氧化硅阻变薄膜的制备方法,其特征在于,在所述步骤4中:所述惰性气体为氩气。
CN201710764056.8A 2017-08-30 2017-08-30 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法 Active CN107663633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710764056.8A CN107663633B (zh) 2017-08-30 2017-08-30 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710764056.8A CN107663633B (zh) 2017-08-30 2017-08-30 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107663633A CN107663633A (zh) 2018-02-06
CN107663633B true CN107663633B (zh) 2019-09-27

Family

ID=61097912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710764056.8A Active CN107663633B (zh) 2017-08-30 2017-08-30 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107663633B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157684A (zh) * 2010-12-17 2011-08-17 天津理工大学 一种利用碳纳米管作为固态电解液的阻变存储器
CN106809817A (zh) * 2017-01-16 2017-06-09 东华大学 一种多孔碳纳米管的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394712B (zh) * 2007-09-21 2010-08-25 清华大学 黑孔化溶液及其制备方法
JP2012059862A (ja) * 2010-09-08 2012-03-22 Toshiba Corp 不揮発性記憶装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157684A (zh) * 2010-12-17 2011-08-17 天津理工大学 一种利用碳纳米管作为固态电解液的阻变存储器
CN106809817A (zh) * 2017-01-16 2017-06-09 东华大学 一种多孔碳纳米管的制备方法

Also Published As

Publication number Publication date
CN107663633A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
Yan et al. Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance
Shen et al. Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films
CN103713160B (zh) 一种贵金属超微电极及其制备方法
Xu et al. Coexistence of the bipolar and unipolar resistive switching behaviors in vanadium doped ZnO films
Yang et al. Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels
Ramgir et al. Growth and gas sensing characteristics of p-and n-type ZnO nanostructures
Tonezzer et al. Size-dependent response of single-nanowire gas sensors
Yu et al. Synthesis and H2S gas sensing properties of cage-like α-MoO3/ZnO composite
Umar et al. MgO polyhedral nanocages and nanocrystals based glucose biosensor
Dong et al. High performance bipolar resistive switching memory devices based on Zn 2 SnO 4 nanowires
CN102621199B (zh) 一种石墨烯修饰的Pt电极及检测痕量重金属的方法
Wang et al. CuO nanowire-based humidity sensor
Cao et al. Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles
Hao et al. Ce-doping induced enhancement of resistive switching performance of Pt/NiFe2O4/Pt memory devices
Hu et al. Unipolar resistive switching effect and mechanism of solution-processed spinel Co3O4 thin films
CN103173733B (zh) 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
CN108483389A (zh) 一种银纳米电极及其制备方法
CN107663633B (zh) 一种掺杂碳纳米管的氧化硅阻变薄膜的制备方法
Li et al. Optimal construction and gas sensing properties of SnO2@ TiO2 heterostructured nanorods
Pan et al. Ultralow power resistance random access memory device and oxygen accumulation mechanism in an indium–tin-oxide electrode
He et al. Unipolar resistive switching properties of Pr-doped ZnO thin films
CN107170894A (zh) 一种钙钛矿太阳能电池及其制备方法
CN108205002B (zh) 一种高气体响应和选择性的LaFeO3基乙醇气体传感器元件及其制备方法
CN103922798B (zh) 一种Cu掺杂氧化锆电阻存储器薄膜的制备方法
CN103214189B (zh) 玻璃基底/银纳米薄膜/聚苯胺电致变色薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant