CN107649118B - 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法 - Google Patents

一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107649118B
CN107649118B CN201710829743.3A CN201710829743A CN107649118B CN 107649118 B CN107649118 B CN 107649118B CN 201710829743 A CN201710829743 A CN 201710829743A CN 107649118 B CN107649118 B CN 107649118B
Authority
CN
China
Prior art keywords
tio
solution
visible light
powder
bivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710829743.3A
Other languages
English (en)
Other versions
CN107649118A (zh
Inventor
石良
曲晓飞
杜芳林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710829743.3A priority Critical patent/CN107649118B/zh
Publication of CN107649118A publication Critical patent/CN107649118A/zh
Application granted granted Critical
Publication of CN107649118B publication Critical patent/CN107649118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

TiO2作为一种常见的半导体材料,量子效率较低、对可见光无响应等缺点严重制约了其在光催化领域的应用。本发明以钛酸异丙酯为原料,首先制备了无定型TiO2微米球,再通过绿色环保的水热过程制备了具有锐钛矿/板钛矿混合晶相的TiO2介孔球,该结构由纳米颗粒组成,通过纳米化过程降低电荷迁移过程中复合作用。其次通过简易的湿化学法将BiVO4纳米颗粒负载到TiO2介孔球上,得到的异质结构具有良好的可见光响应,对亚甲基蓝具有可见光降解作用。BiVO4/TiO2复合光催化剂以初级纳米颗粒自组装而成的微米级球状颗粒形式存在,易于从污水中回收,在工业废水处理中具有十分重要的实际意义。

Description

一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法
技术领域:
本发明涉及一种BiVO4负载TiO2介孔微米球结构光催化剂的制备方法,更具体的说,利用水热法制备含有锐钛矿/板钛矿混合晶相的TiO2花状纳米结构为载体,通过湿化学法将BiVO4纳米颗粒负载到TiO2,制备具有可见光响应的异质结纳米光催化剂。本技术属于纳米材料的制备领域。
背景技术:
近年来,随着社会经济的快速发展,环境污染问题日益凸显。国家对于工业废水排放的高标准,要求各企业尤其是中小型企业寻找一种高效、经济的污水处理方法。
半导体光催化技术是近几十年兴起的一种利用太阳能进行催化反应的高效技术,广泛应用到光解水制氢、光催化降解有机物等方面。1972年,Fujishima等人使用TiO2光电极将水进行了分解,自此掀起了光催化技术研究的热潮。二氧化钛作为一种半导体材料,由于其成本低廉、无毒无害、化学稳定性高的特点,受到了社会的广泛关注。然而,二氧化钛具有一些突出的缺点,使其在光催化领域的应用受到限制:
(1)二氧化钛的量子效率较低,光生电子-空穴的复合率高,将二氧化钛纳米化可以提高光生电荷的转移,但工业上对催化剂的回收产生了一定的困难;
(2)二氧化钛的禁带宽度为3.2eV,只能利用波长小于387nm的紫外光,而紫外光部分大约只占太阳光谱的4%,大大限制了对光能的利用。
为了解决上述问题,通常对TiO2材料进行改性处理。一方面通过自组装过程,使二氧化钛纳米化的基础上,构筑较为复杂的纳米管、纳米棒、3D纳米结构,这些结构由纳米尺寸的初级颗粒组成了尺寸较大的次级结构,有利于催化剂的沉降、回收。另一方面是通过离子掺杂、贵金属沉积、半导体复合等方式改性,其中半导体复合是较为有效的方式。钒酸铋作为一种窄带隙(2.4eV)半导体,但由于其具有较短的电子迁移长度,通常单独用作光催化剂时效果并不理想。可以用于与TiO2进行复合,增强光催化剂的光吸收范围,并通过异质结的构建达到增加电荷分离寿命的目的,提高光催化效率。目前关于BiVO4负载TiO2复合光催化剂的报道较少,且大多数研究集中在先制备BiVO4颗粒,再利用溶胶法将TiO2负载在BiVO4表面(Applied Catalysis B:Environmental 104(2011)30-36、Journal of Alloys andCompounds 688(2016)703-711);且制备的BiVO4负载TiO2多以分散的小颗粒形式存在(Chemical Engineering Journal 314(2017)443–452、Ceramics International 41(2015)5999–6004),不利于催化反应后的回收。值得一提的是,目前几乎没有BiVO4负载混合晶相的TiO2球可见光催化剂的相关报道。
发明内容:
本发明的目的是提供一种BiVO4负载混合晶相TiO2可见光催化剂的制备方法,以克服现有技术上的不足,该方案可以实现半导体复合以提高催化剂的催化活性,同时以纳米颗粒自组装而成的微米介孔球的形式存在,易于从液相中分离,不易造成二次污染,同时也有利于催化剂的回收利用。
为实现上述的目的,解决上述技术问题,利用以下的技术方案,一种BiVO4负载混合晶相TiO2可见光催化剂的制备方法,包含以下的步骤:
(1)选用钛酸异丙酯(TTIP)作原料,溶解于500mL乙醇中,加入一定量的浓度为0.1mol·L-1的KCl 溶液,引发水解反应,出现白色沉淀后停止搅拌,静置12-48h。离心、水洗、干燥,得到白色TiO2·nH2O 粉末;
(2)将0.6g(1)中粉末加入到含有60mL的0.1mol·L-1NaOH溶液水热釜内衬中,滴加0.9mL的质量分数为3%双氧水,在鼓风干燥箱中140-200℃反应2-20h。冷却到室温后,将产物离心、水洗、干燥,得到白色钛酸钠粉末;
(3)将1.0g钛酸钠粉末加入到250mL 0.1M稀盐酸中,充分搅拌1小时,静置1小时。将产物离心、水洗、干燥。得到的白色产物在马弗炉中400-500℃煅烧60-120min,得到白色TiO2介孔球粉末;
(4)将2.425g Bi(NO3)3·5H2O加入到100mL的0.4mol·L-1的稀硝酸溶液中,充分搅拌得到硝酸铋溶液。将0.585g的NH4VO3加入到100mL的80℃去离子水中,充分搅拌得到偏钒酸铵溶液,加入一定质量的步骤(3)中得到的TiO2介孔球,充分搅拌,并将上述钒酸铋溶液滴加到该溶液中。使用氨水调节体系的pH=4,将混合物置于90℃水浴中加热蒸发,最终得到亮黄色浆状产物。水洗、离心、干燥,得到亮黄色粉末;
(5)将步骤(4)中得到的粉末在马弗炉中煅烧,400-500℃煅烧60-120min,最终得到BiVO4负载混合晶相TiO2可见光催化剂。
本专利选用的BiVO4作为一种重要的窄带隙(约2.4eV)半导体材料,通常单独作为一种可见光催化剂使用,同时可以看作是一种优异的光敏化剂。将BiVO4与TiO2复合,可以显著拓宽TiO2的光谱相应范围。当入射光的能量不足以激发TiO2产生光生电子-空穴从而引发氧化还原反应时,BiVO4却可以被激发,提高了太阳能的利用率。其次,混合晶相的TiO2本身可以形成异质结构,进一步增强光生电荷的分离效果。最后,与其他形貌相比,复合光催化剂以纳米颗粒自组装而成的次级介孔微米球的形式存在,有利于催化剂使用后从污水中回收利用。
与现有技术相比,本发明的有益效果是:
(1)本发明利用湿化学法制备了BiVO4负载的TiO2介孔微米球结构,设备简便,成本较低。
(2)用窄带隙半导体BiVO4与TiO2复合,拓宽了光谱响应范围,提高了太阳能利用率。
(3)花状TiO2前驱体结构使得BiVO4的接触面积提高,形成良好的异质结构,增强抑制光生电子和空穴的复合;同时TiO2中锐钛矿/板钛矿混合晶相进一步增强分离效果。
(4)复合光催化剂以纳米颗粒自组装而成的次级介孔微米球的形式存在,易于从处理后的污水中回收利用,避免二次污染,是一种环境友好型光催化剂。
附图说明:
图1:混合晶相TiO2花状球前驱体的TEM图片
图2:实施例1中BiVO4/TiO2介孔微米球的TEM图片
图3:实施例1中BiVO4/TiO2介孔微米球的光谱响应
具体实施方式:
实施例1
向500mL乙醇中加入2mL 0.1mol·L-1的KCl溶液,搅拌10min。加入9mL TTIP,搅拌30分钟。静置24小时后,将白色浊液离心,并用乙醇、水洗,干燥。将0.6g的上述产物加入到60mL的0.1mol·L-1 NaOH溶液中,搅拌30分钟,然后加入0.9mL质量分数3%的过氧化氢溶液,搅拌2分钟,封装水热釜于鼓风干燥箱中180℃反应10h。取出水热釜后,冷却至室温,将产物水洗、干燥。将1.0g上述产物加入到250毫升0.1mol·L-1的稀盐酸中,持续搅拌1h,之后停止搅拌静置1h。之后倒掉上层清液,水洗、干燥产物,将产物于马弗炉中煅烧450℃2h。称取2.425g Bi(NO3)3加入到100mL 0.4mol·L-1的硝酸溶液中,搅拌30min,形成溶液A。称取0.585g的NH4VO3加入到100mL去离子水中,80℃水浴加热并搅拌均匀,加入3.994g TiO2,搅拌10min,形成悬浊液B。将溶液A缓慢滴加到悬浊液B中,搅拌30min。氨水调节溶液pH=4,90℃水浴得到亮黄色泥浆。水洗、干燥,于马弗炉中450℃煅烧2h。即可得到摩尔比为Bi:Ti=1:10的BiVO4负载的混合晶相TiO2介孔复合光催化剂。图2为BiVO4/TiO2介孔微米球的 TEM图片,图3为BiVO4/TiO2介孔微米球的光谱响应图。
实施例2
向500mL乙醇中加入2mL 0.1mol·L-1的KCl溶液,搅拌10min。加入9mL TTIP,搅拌30分钟。静置24小时后,将白色浊液离心,并用乙醇、水洗,干燥。将0.6g的上述产物加入到60mL的0.1mol·L-1 NaOH溶液中,搅拌30分钟,然后加入0.9mL质量分数3%的过氧化氢溶液,搅拌2分钟,封装水热釜于鼓风干燥箱中180℃反应10h。取出水热釜后,冷却至室温,将产物水洗、干燥。将1.0g上述产物加入到250毫升0.1mol·L-1的稀盐酸中,持续搅拌1h,之后停止搅拌静置1h。之后倒掉上层清液,水洗、干燥产物,将产物于马弗炉中煅烧450℃2h。称取2.425g Bi(NO3)3加入到100mL 0.4mol·L-1的硝酸溶液中,搅拌30min,形成溶液A。称取0.585g的NH4VO3加入到100mL去离子水中,80℃水浴加热并搅拌均匀,加入19.966g TiO2,搅拌10min,形成悬浊液B。将溶液A缓慢滴加到悬浊液B中,搅拌30min。氨水调节溶液pH=4,90℃水浴得到亮黄色泥浆。水洗、干燥,于马弗炉中450℃煅烧2h。即可得到摩尔比为Bi:Ti=1:50的BiVO4负载的混合晶相TiO2介孔复合光催化剂。

Claims (2)

1.一种BiVO4负载混合晶相TiO2可见光催化剂的制备方法,其特征在于,按以下步骤进行:
(1)选用钛酸异丙酯(TTIP)作原料,溶解于500mL乙醇中,加入一定量的浓度为0.1mol·L-1的KCl溶液,引发水解反应,出现白色沉淀后停止搅拌,静置12-48h;离心、水洗、干燥,得到白色TiO2·nH2O粉末;
(2)将600mg的TiO2·nH2O粉末加入到含有60mL的0.1mol·L-1NaOH溶液水热釜内衬中,滴加0.9mL的质量分数为3%双氧水,在鼓风干燥箱中140-200℃反应2-20h;冷却到室温后,将产物离心、水洗、干燥,得到白色钛酸钠粉末;
(3)将1.0g钛酸钠粉末加入到250mL 0.1M稀盐酸中,充分搅拌1小时,静置1小时;将产物离心、水洗、干燥;得到的白色产物在马弗炉中400-500℃煅烧120min,得到白色TiO2介孔球粉末;
(4)将2.425g Bi(NO3)3·5H2O加入到100mL的浓度0.4mol·L-1的稀硝酸溶液中,充分搅拌得到硝酸铋溶液;将0.585g的NH4VO3加入到100mL的80℃去离子水中,充分搅拌得到偏钒酸铵溶液,加入一定量的步骤(3)中得到的TiO2介孔球,充分搅拌,并将上述钒酸铋溶液滴加到该溶液中;使用氨水调节体系的pH=4,将混合物置于90℃水浴中加热蒸发,最终得到亮黄色浆状产物;水洗、离心、干燥,得到亮黄色粉末;
(5)将步骤(4)中得到的粉末在马弗炉中煅烧,400-500℃煅烧60-120min,最终得到BiVO4负载混合晶相TiO2可见光催化剂。
2.如权利要求1所述的BiVO4负载混合晶相TiO2可见光催化剂的制备方法,其特征在于,步骤(4)TiO2介孔球的加入量为0.399-19.968g。
CN201710829743.3A 2017-09-15 2017-09-15 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法 Active CN107649118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710829743.3A CN107649118B (zh) 2017-09-15 2017-09-15 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710829743.3A CN107649118B (zh) 2017-09-15 2017-09-15 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN107649118A CN107649118A (zh) 2018-02-02
CN107649118B true CN107649118B (zh) 2021-03-02

Family

ID=61130225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710829743.3A Active CN107649118B (zh) 2017-09-15 2017-09-15 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107649118B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479752B (zh) * 2018-04-26 2021-04-06 青岛科技大学 一种二维碳层负载的BiVO4/TiO2异质可见光催化剂的制备方法
CN109603809B (zh) * 2019-01-25 2021-12-28 泉州师范学院 一种钒酸铋量子点与二氧化钛纳米带复合光催化剂的制备和应用
CN110026170B (zh) * 2019-05-23 2022-07-08 乐山师范学院 一种光催化降解罗丹明B的TiO2光催化剂及其制备方法
CN111229206B (zh) * 2020-02-25 2023-07-21 南开大学 一种异质结可见光催化剂的制备方法及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592842B2 (en) * 1999-10-01 2003-07-15 Battelle Memorial Institute Nanocrystalline heterojunction materials
CN1638868A (zh) * 2002-06-03 2005-07-13 旭化成株式会社 光催化剂组合物
CN1935362A (zh) * 2006-09-22 2007-03-28 中国海洋大学 一种纳米粉体光催化剂的制备方法
CN101698506A (zh) * 2009-11-23 2010-04-28 江苏河海纳米科技股份有限公司 一种混晶型纳米二氧化钛的制备方法
WO2011012935A2 (en) * 2009-07-29 2011-02-03 Universidade Do Minho Photocatalytic coating for the controlled release of volatile agents
CN102580721A (zh) * 2011-12-19 2012-07-18 陕西科技大学 微波水热制备TiO2/BiVO4复合光催化剂的方法
CN103506110A (zh) * 2013-10-10 2014-01-15 青岛科技大学 一种TiO2包覆WO3的TiO2/WO3双层复合纳米管的制备方法
CN104549199A (zh) * 2014-11-05 2015-04-29 华文蔚 一种以高岭土为基体的可见光响应TiO2催化剂的制备方法
CN105540656A (zh) * 2015-12-28 2016-05-04 南昌航空大学 一种锐钛矿/板钛矿二氧化钛异质结纳米复合材料
CN106031869A (zh) * 2015-03-12 2016-10-19 大连民族学院 一种具有可见光活性的BiVO4/TiO2复合纳米棒及制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720615B2 (ja) * 2015-03-31 2020-07-08 Toto株式会社 光触媒コーティング組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592842B2 (en) * 1999-10-01 2003-07-15 Battelle Memorial Institute Nanocrystalline heterojunction materials
CN1638868A (zh) * 2002-06-03 2005-07-13 旭化成株式会社 光催化剂组合物
CN1935362A (zh) * 2006-09-22 2007-03-28 中国海洋大学 一种纳米粉体光催化剂的制备方法
WO2011012935A2 (en) * 2009-07-29 2011-02-03 Universidade Do Minho Photocatalytic coating for the controlled release of volatile agents
CN101698506A (zh) * 2009-11-23 2010-04-28 江苏河海纳米科技股份有限公司 一种混晶型纳米二氧化钛的制备方法
CN102580721A (zh) * 2011-12-19 2012-07-18 陕西科技大学 微波水热制备TiO2/BiVO4复合光催化剂的方法
CN103506110A (zh) * 2013-10-10 2014-01-15 青岛科技大学 一种TiO2包覆WO3的TiO2/WO3双层复合纳米管的制备方法
CN104549199A (zh) * 2014-11-05 2015-04-29 华文蔚 一种以高岭土为基体的可见光响应TiO2催化剂的制备方法
CN106031869A (zh) * 2015-03-12 2016-10-19 大连民族学院 一种具有可见光活性的BiVO4/TiO2复合纳米棒及制备和应用
CN105540656A (zh) * 2015-12-28 2016-05-04 南昌航空大学 一种锐钛矿/板钛矿二氧化钛异质结纳米复合材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation";Liang Shi et al.;《Journal of Materials Science》;20180517;第53卷;第11329-11342页 *
"Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment";Bin Zhao et al.;《Journal of Materials Chemistry A》;20131231;第1卷(第5期);第1659-1668页 *
"Visible Light-Driven BiVO4/TiO2 Composite Photocatalysts: Preparation Methods and Photocatalytic Performance";Shuyun Wang et al.;《AUSTRALIAN JOURNAL OF CHEMISTRY》;20150319;第68卷(第8期);第1269-1273页 *
焦艳超等." 板钛矿与锐钛矿混晶及其光催化性能".《 第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集》.2011, *

Also Published As

Publication number Publication date
CN107649118A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN107649118B (zh) 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
CN101792117B (zh) 钨掺杂锐钛矿型纳米二氧化钛复合粉末的制备方法
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
CN107098381B (zh) 特殊形貌的钛酸锌光催化材料的制备方法
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN106492854A (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN105056956B (zh) 一种可见光响应的钛酸铁钠光催化材料及其制备方法和应用
Ren et al. In situ synthesis of gC 3 N 4/TiO 2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation
CN102600822A (zh) 碳掺杂的二氧化硅-二氧化钛复合光催化剂及其制备方法
CN103170333A (zh) 一种可回收磁性二氧化钛纳米光催化剂的制备方法
CN101318698A (zh) 锐钛矿型纳米二氧化钛制备方法
CN106975509B (zh) 一种氮、铁共掺杂钒酸铋可见光催化剂的制备方法及应用
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN104226320B (zh) 钒硼共掺杂二氧化钛与氧化镍复合光催化剂的制备方法
CN103962122A (zh) 一种钒酸铋复合二氧化钛的制备方法
Zhang et al. Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light
CN103816897A (zh) 二氧化钛-银复合核壳结构球及其制备方法和用途
CN105817241B (zh) 一种磷钨酸铜@二氧化钛核壳结构纳米材料的制备方法
CN101696032B (zh) 一种铬氮共掺杂纳米二氧化钛粉体的制备方法
CN106311235A (zh) 一种铜掺杂TiO2光催化剂的制备方法
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN109529951B (zh) 一种小粒径稳定分散纳米二氧化钛合成方法
CN112142104A (zh) 一种气溶胶法制备纳米黑色TiO2的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant