CN107606830A - 一种电子膨胀阀调节方法 - Google Patents

一种电子膨胀阀调节方法 Download PDF

Info

Publication number
CN107606830A
CN107606830A CN201710790800.1A CN201710790800A CN107606830A CN 107606830 A CN107606830 A CN 107606830A CN 201710790800 A CN201710790800 A CN 201710790800A CN 107606830 A CN107606830 A CN 107606830A
Authority
CN
China
Prior art keywords
expansion valve
electric expansion
temperature
exhaust
adjusting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710790800.1A
Other languages
English (en)
Other versions
CN107606830B (zh
Inventor
黄元躬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ama & Hien Technology Co Ltd
Original Assignee
Zhejiang Ama & Hien Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ama & Hien Technology Co Ltd filed Critical Zhejiang Ama & Hien Technology Co Ltd
Priority to CN201710790800.1A priority Critical patent/CN107606830B/zh
Publication of CN107606830A publication Critical patent/CN107606830A/zh
Application granted granted Critical
Publication of CN107606830B publication Critical patent/CN107606830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明提供的电子膨胀阀调节方法,包括以下步骤:(a)获取制冷***过热度调节阈值F;(b)测量过热度SVn的值,n为自然数;(c)根据步骤(b)中测量的过热度SVn的值确定所述电子膨胀阀的运行模式:当F‑f≤SVn<F+f时,所述电子膨胀阀保持当前开度不变;当SVn<F‑f时,所述电子膨胀阀开度减小;当SVn≥F+f时,所述电子膨胀阀开度增大;其中f为偏差值。此控制方法在***运行时检测***数据,可以实时变化开度使***更稳定,在负荷及外部条件变化时,使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性,克服了现有技术中电子膨胀阀在外界环境变化时控制方法不够完善,不能使***时刻处于最优状态的缺陷。

Description

一种电子膨胀阀调节方法
技术领域
本发明涉及制冷***控制领域,具体涉及一种电子膨胀阀调节方法。
背景技术
在制冷***中,蒸发器、冷凝器、压缩机和节流阀是制冷***中必不可少的四大件。制冷剂被吸入压缩机绝热压缩,成为高温高压气体,经过冷凝器和节流阀,使温度和压力降低,再进入蒸发器带走被冷却物体的热量,变为低温低压气体后流回压缩机。
电子膨胀阀是现有技术中常用的一种节流阀,通过控制器来控制电子膨胀阀,但如何通过在负荷及外部条件变化时,通过适当的控制作用保证制冷***工艺要求的性能指标,并使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性的问题一直都没有更完善的解决方案。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中电子膨胀阀在外界环境变化时控制方法不够完善,不能使***时刻处于最优状态的缺陷,从而提供一种在负荷及外部条件变化时,使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性的电子膨胀阀调节方法。
本发明的设计方案如下:
一种电子膨胀阀调节方法,包括以下步骤:(a)获取制冷***过热度调节阈值F;(b)测量过热度SVn的值,n为自然数;(c)根据步骤(b)中测量的过热度SVn的值确定所述电子膨胀阀的运行模式:当F-f≤SVn<F+f 时,所述电子膨胀阀保持当前开度不变;当SVn<F-f时,所述电子膨胀阀开度减小;当SVn≥F+f时,所述电子膨胀阀开度增大;其中f为偏差值。
所述步骤(b)中所述过热度SVn的测量方法为:测量压缩机的吸气温度T吸气和蒸发器的盘管温度T盘管,并计算所述过热度SVn=T吸气-T盘管
所述步骤(a)中所述过热度调节阈值F的获取步骤如下:在名义工况下运行所述制冷***,在-10至10之间取若干个值作为临时过热度调节阈值Fm,m为自然数,并按步骤(c)运行***,并测量相应的真实过热度SVm的值,选择与预设过热度SV0差值最小的一个所述临时过热度调节阈值Fm作为所述过热度调节阈值F。
优选的,所述偏差值f为1-5之间的任意取值。
优选的,所述电子膨胀阀执行步骤(c)的间隔第一设定时间t1调节一次,每次调节为一个周期。
优选的,所述第一设定时间t1为60秒。
优选的,所述电子膨胀阀采用步进电机调节,每周期内调节的最大幅度为8*f步。
优选的,所述步骤(a)之前还包括初始开度Q0设定:Q0=A+B*T环境–γ*(C-T目标);当T目标<C时,γ=γ1;当T目标≥C时,γ=γ2;γ1<γ2;所述初始开度在最小开度和最大开度之间;其中,T环境表示环境温度,γ表示为开度系数,T目标表示***内作为参照目标的目标温度,A为常值,B为环境温度系数,C为所述目标温度的参考值。
优选的,所述常值A为230,所述环境温度系数B为3.5,所述参照目标为受加热的水箱,所述目标温度的参考值C为45℃,γ1为2,γ2为20。
优选的,当所述制冷***进入除霜模式时,将所述电子膨胀阀开度至最大;当所述制冷***退出除霜模式时,使所述电子膨胀阀保持最大开度运行第二设定时间t2后,再将所述电子膨胀阀的开度调整至除霜前并保持第三设定时间t3,之后再根据步骤(c)正常运行。
优选的,所述第二设定时间t2为60秒,所述第三设定时间t3为120 秒。
优选的,当所述制冷***的压缩机需要关闭时,记录当前开度为关机前开度Qoff,之后将电子膨胀阀开至最大开度Qmax;当所述压缩机启动时,保持最大开度第四设定时间t4,然后开度调整至所述关机前开度Qoff或初始开度Q0中较大的一个,保持第五设定时间t5。
优选的,所述第四设定时间t4为30秒,所述第五设定时间t5为120 秒。
优选的,当环境温度T环境满足以下条件时,对所述过热度调节阈值F 的值进行修正获得F修正=F+F环境修正,并取代步骤(c)中的所述过热度调节阈值F,其中F环境修正为环境修正值:当T环境>T环参1时,F环境修正=0;当T环参2<T 环境≤T环参1时,F环境修正=1;当T环境≤T环参2时,F环境修正=2;其中T环参1为第一环境参考温度,T环参2为第二环境参考温度。
优选的,所述第一环境参考温度T环参1为10℃,所述第二环境参考温度 T环参2为-5℃。
优选的,当所述压缩机的排气温度T排气满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F排气修正,并取代步骤(c)中的所述过热度调节阈值F,其中F排气修正为排气温度修正值:当T排气<T排参1时,F排气修正=0;当T排参1≤T排气<T排参2时,F排气修正=-1;当T排气≥T排参2时,F排气修正=-2;其中T排参1为第一排气参考温度,T排参2为第二排气参考温度。
优选的,所述第一排气参考温度T排参1为75℃,所述第二排气参考温度 T排参2为95℃。
优选的,所述方法还包括排气温度控制步骤:当所述排气温度T排气上升至第一排气临界温度T排临1时,所述电子膨胀阀的开度锁定只能开大不能关小;当所述排气温度T排气下降至第二排气临界温度T排临2时,电子膨胀阀正常运行。
优选的,所述第一排气临界温度T排临1为105℃,所述第二排气临界温度T排临2比所述第一排气临界温度T排临1低5℃。
优选的,所述排气温度控制还包括以下步骤:当所述排气温度T排气大于第三排气临界温度T排临3时,所述电子膨胀阀第六设定时间t6强制开大,增幅为保险开度值K保险;当所述排气温度T排气下降至所述第一排气临界温度T排临1低时,所述电子膨胀阀正常运行。
优选的,所述第六设定时间t6为30秒,所述保险开度值K保险=δ*(T 排气-T排临1),其中保险开度系数δ满足1≤δ≤6。
本发明技术方案,具有如下优点:
1、本发明提供的电子膨胀阀调节方法,包括以下步骤:(a)获取制冷***过热度调节阈值F;(b)测量过热度SVn的值,n为自然数;(c)根据步骤(b)中测量的过热度SVn的值确定所述电子膨胀阀的运行模式:当F-f ≤SVn<F+f时,所述电子膨胀阀保持当前开度不变;当SVn<F-f时,所述电子膨胀阀开度减小;当SVn≥F+f时,所述电子膨胀阀开度增大;其中f 为偏差值。此控制方法在***运行时检测***数据,可以实时变化开度使***更稳定,在负荷及外部条件变化时,使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性,克服了现有技术中电子膨胀阀在外界环境变化时控制方法不够完善,不能使***时刻处于最优状态的缺陷。由于制冷***的调节与反馈之间存在一定滞后性,因此通过设定偏差值f可以避免调节过于频繁或调节过度。
2、本发明提供的电子膨胀阀调节方法,所述步骤(a)中所述过热度调节阈值F的获取步骤如下:在名义工况下运行所述制冷***,在-10至 10之间取若干个值作为临时过热度调节阈值Fm,m为自然数,并按步骤(c) 运行***,并测量相应的所述过热度SVn的值,选择与相应的SVn差值最小的一个所述临时过热度调节阈值Fm作为所述过热度调节阈值F。通过此方法可以使采用此过热度调节阈值时,***在名义工况下的真实过热度更加趋近于实际需求。
3、本发明提供的电子膨胀阀调节方法,所述电子膨胀阀执行步骤(c) 的间隔第一设定时间时间t1调节一次,每次调节为一个周期,从而避免***频繁调节造成***紊乱。
4、本发明提供的电子膨胀阀调节方法,所述步骤(a)之前还包括初始开度Q0设定:Q0=A+B*T环境–γ*(C-T目标);当T目标<C时,γ=γ1;当T 目标≥C时,γ=γ2;γ1<γ2;所述初始开度在最小开度和最大开度之间;其中,T环境表示环境温度,γ表示为开度系数,T目标表示***内作为参照目标的目标温度,A为常值,B为环境温度系数,C为所述目标温度的参考值。从而可以通过环境温度和目标温度来确定电子膨胀阀的初始开度,初始开度值随环境温度升高而增大,同时,当目标温度低于目标温度的参考值时,采用较小的开度系数,当目标温度高于目标温度的参考值时,采用较大的开度系数,使***开机时就能进入一个比较稳定的状态。
5、本发明提供的电子膨胀阀调节方法,当所述制冷***进入除霜模式时,将所述电子膨胀阀开度至最大,使***在除霜加大流量快速将霜出去;当所述制冷***退出除霜模式时,使所述电子膨胀阀保持最大开度运行第二设定时间t2后,再将所述电子膨胀阀的开度调整至除霜前并保持第三设定时间t3,之后再根据步骤(c)正常运行,由于刚化完霜,***处于低压高温状态,所以将电子膨胀阀开至最大先使***平衡。
6、本发明提供的电子膨胀阀调节方法,当所述制冷***的压缩机需要关闭时,记录当前开度为关机前开度Qoff,之后将电子膨胀阀开至最大开度 Qmax;当所述压缩机启动时,保持最大开度第四设定时间t4,然后开度调整至所述关机前开度Qoff或初始开度Q0中较大的一个,保持第五设定时间t5,从而保护***各器件在一个较安全的开度下启停。
7、本发明提供的电子膨胀阀调节方法,当环境温度T环境满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F环境修正,并取代步骤(c)中的所述过热度调节阈值F,其中F环境修正为环境修正值:当T环境>T 环参1时,F环境修正=0;当T环参2<T环境≤T环参1时,F环境修正=1;当T环境≤T环参2时, F环境修正=2;其中T环参1为第一环境参考温度,T环参2为第二环境参考温度。***在运行时环境温度不同过热度的需求也不同,通过环境温度修正使***在高低温下多能稳定运行。
8、本发明提供的电子膨胀阀调节方法,当所述压缩机的排气温度T排气满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F排气修正,并取代步骤(c)中的所述过热度调节阈值F,其中F排气修正为排气温度修正值:当T排气<T排参1时,F排气修正=0;当T排参1≤T排气<T排参2时,F排气修正=-1;当T排气≥T排参2时,F排气修正=-2;其中T排参1为第一排气参考温度,T排参2为第二排气参考温度。***在运行时压缩机排气温度对压机寿命有影响,通过排气温度高时修正过热度能使压机排气在安全范围内运行。
9、本发明提供的电子膨胀阀调节方法,还包括排气温度控制步骤:当所述排气温度T排气上升至第一排气临界温度T排临1时,所述电子膨胀阀的开度锁定只能开大不能关小;当所述排气温度T排气下降至第二排气临界温度T 排临2时,电子膨胀阀正常运行,从而防止在压缩机排气温度过高的状态下,电子膨胀阀减小开度,造成压缩机排气温度继续升高的可能。
10、本发明提供的电子膨胀阀调节方法,还包括以下步骤:当所述排气温度T排气大于第三排气临界温度T排临3时,所述电子膨胀阀第六设定时间 t6强制开大,增幅为保险开度值K保险;当所述排气温度T排气下降至所述第一排气临界温度T排临1低时,所述电子膨胀阀正常运行。从而在压缩机温度过高的状态下,电子膨胀阀每间隔一段时间便增大一定开度,从而逐步使排气温度恢复正常,保护***。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的电子膨胀阀调节方法基本流程示意图;
图2为本发明的电子膨胀阀调节方法可选流程示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述。
图1示出了本发明一种具体实施例提供的电子膨胀阀调节方法的基本流程图,图2为优选调节方法的流程图。如图2所示一种电子膨胀阀调节方法,所应用的制冷***为热泵***,包括以下步骤:(a)获取热泵***过热度调节阈值F;(b)测量过热度SVn的值,n为自然数;(c)根据步骤 (b)中测量的过热度SVn的值确定所述电子膨胀阀的运行模式:当F-f≤SVn<F+f时,所述电子膨胀阀保持当前开度不变;当SVn<F-f时,所述电子膨胀阀开度减小;当SVn≥F+f时,所述电子膨胀阀开度增大;其中偏差值 f为3。此控制方法在***运行时检测***数据,可以实时变化开度使***更稳定,在负荷及外部条件变化时,使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性,克服了现有技术中电子膨胀阀在外界环境变化时控制方法不够完善,不能使***时刻处于最优状态的缺陷。由于热泵***的调节与反馈之间存在一定滞后性,因此通过设定偏差值f可以避免调节过于频繁或调节过度。
所述步骤(b)中所述过热度SVn的测量方法为:测量压缩机的吸气温度T吸气和蒸发器的盘管温度T盘管,并计算所述过热度SVn=T吸气-T盘管。所述步骤(a)中所述过热度调节阈值F的获取步骤如下:在名义工况下运行所述热泵***,在-10至10之间取若干个值作为临时过热度调节阈值Fm,m 为自然数,并按步骤(c)运行***,测量并使用焓湿图获得相应的真实过热度SVm的值,选择与预设过热度SV0差值最小的一个所述临时过热度调节阈值Fm作为所述过热度调节阈值F。通过此方法可以使采用此过热度调节阈值时,***在名义工况下的真实过热度更加趋近于实际需求。
所述电子膨胀阀执行步骤(c)的间隔第一设定时间t1调节一次,每次调节为一个周期。所述第一设定时间t1为60秒,从而避免***频繁调节造成***紊乱。所述电子膨胀阀采用步进电机调节,每周期内调节的最大幅度为8*f步。
所述步骤(a)之前还包括初始开度Q0设定:Q0=A+B*T环境–γ*(C-T目标);当T目标<C时,γ=γ1;当T目标≥C时,γ=γ2;γ1<γ2;所述初始开度在最小开度和最大开度之间;其中,T环境表示环境温度,γ表示为开度系数,T目标表示***内作为参照目标的目标温度,A为常值,B为环境温度系数,C为所述目标温度的参考值。其中所述常值A为230,所述环境温度系数B为3.5,所述参照目标为受加热的水箱,所述目标温度的参考值C为 45℃,γ1为2,γ2为20。从而可以通过环境温度和目标温度来确定电子膨胀阀的初始开度,初始开度值随环境温度升高而增大,同时,当目标温度低于目标温度的参考值时,采用较小的开度系数,当目标温度高于目标温度的参考值时,采用较大的开度系数,使***开机时就能进入一个比较稳定的状态。
当所述热泵***进入除霜模式时,将所述电子膨胀阀开度至最大;当所述热泵***退出除霜模式时,使所述电子膨胀阀保持最大开度运行第二设定时间t2后,再将所述电子膨胀阀的开度调整至除霜前并保持第三设定时间t3,之后再根据步骤(c)正常运行。所述第二设定时间t2为60秒,所述第三设定时间t3为120秒。由于刚化完霜,***处于低压高温状态,所以将电子膨胀阀开至最大先使***平衡。
当所述热泵***的压缩机需要关闭时,记录当前开度为关机前开度Qoff, 之后将电子膨胀阀开至最大开度Qmax;当所述压缩机启动时,保持最大开度第四设定时间t4,然后开度调整至所述关机前开度Qoff或初始开度Q0中较大的一个,保持第五设定时间t5。所述第四设定时间t4为30秒,所述第五设定时间t5为120秒,从而保护***各器件在一个较安全的开度下启停。
当环境温度T环境满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F环境修正,并取代步骤(c)中的所述过热度调节阈值F,其中F环境修正为环境修正值:当T环境>T环参1时,F环境修正=0;当T环参2<T环境≤T环参1时,F环境修正=1;当T环境≤T环参2时,F环境修正=2;其中T环参1为第一环境参考温度,T环参2为第二环境参考温度。所述第一环境参考温度T环参1为10℃,所述第二环境参考温度T环参2为-5℃。***在运行时环境温度不同过热度的需求也不同,通过环境温度修正使***在高低温下多能稳定运行。
当所述压缩机的排气温度T排气满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F排气修正,并取代步骤(c)中的所述过热度调节阈值F,其中F排气修正为排气温度修正值:当T排气<T排参1时,F排气修正=0;当 T排参1≤T排气<T排参2时,F排气修正=-1;当T排气≥T排参2时,F排气修正=-2;其中T排参1为第一排气参考温度,T排参2为第二排气参考温度。所述第一排气参考温度T排参1为75℃,所述第二排气参考温度T排参2为95℃。***在运行时压缩机排气温度对压机寿命有影响,通过排气温度高时修正过热度能使压机排气在安全范围内运行。
所述方法还包括排气温度控制步骤:当所述排气温度T排气上升至第一排气临界温度T排临1时,所述电子膨胀阀的开度锁定只能开大不能关小;当所述排气温度T排气下降至第二排气临界温度T排临2时,电子膨胀阀正常运行。所述第一排气临界温度T排临1为105℃,所述第二排气临界温度T排临2比所述第一排气临界温度T排临1低5℃,从而防止在压缩机排气温度过高的状态下,电子膨胀阀减小开度,造成压缩机排气温度继续升高的可能。当所述排气温度T排气大于第三排气临界温度T排临3时,所述电子膨胀阀第六设定时间t6 强制开大,增幅为保险开度值K保险;当所述排气温度T排气下降至所述第一排气临界温度T排临1低时,所述电子膨胀阀正常运行。所述第六设定时间t6 为30秒,所述保险开度值K保险=δ*(T排气-T排临1),其中保险开度系数δ满足1≤δ≤6,从而在压缩机温度过高的状态下,电子膨胀阀每间隔一段时间便增大一定开度,从而逐步使排气温度恢复正常,保护***。
需要指出的是,本发明所提供的电子膨胀阀的控制方法不限应用于上述实施例中所使用的***为热泵***,还可以为应用于其他制冷***,如通常的制冷空调***等。
需要指出的是,上述实施例中所给出的具体数值只作为用于说明控制方法的优选实施方式,实际运行中可根据不同的条件和需求而调整,而使用本控制方法,仍可在负荷及外部条件变化时,使***运行始终维持在安全、合理的工况范围内,同时提高***在各种工况变动条件下的运行经济性。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (21)

1.一种电子膨胀阀调节方法,其特征在于,包括以下步骤:
(a)获取制冷***过热度调节阈值F;
(b)测量过热度SVn的值,n为自然数;
(c)根据步骤(b)中测量的过热度SVn的值确定所述电子膨胀阀的运行模式:
当F-f≤SVn<F+f时,所述电子膨胀阀保持当前开度不变;
当SVn<F-f时,所述电子膨胀阀开度减小;
当SVn≥F+f时,所述电子膨胀阀开度增大;
其中f为偏差值。
2.根据权利要求1中所述的电子膨胀阀调节方法,其特征在于,所述步骤(b)中所述过热度SVn的测量方法为:测量压缩机的吸气温度T吸气和蒸发器的盘管温度T盘管,并计算所述过热度SVn=T吸气-T盘管
3.根据权利要求1或2中所述的电子膨胀阀调节方法,其特征在于,所述步骤(a)中所述过热度调节阈值F的获取步骤如下:在名义工况下运行所述制冷***,在-10至10之间取若干个值作为临时过热度调节阈值Fm,m为自然数,并按步骤(c)运行***,并测量相应的真实过热度SVm的值,选择与预设过热度SV0差值最小的一个所述临时过热度调节阈值Fm作为所述过热度调节阈值F。
4.根据权利要求1-3任一项中所述的电子膨胀阀调节方法,其特征在于,所述偏差值f为1-5之间的任意值。
5.根据权利要求1-4任一项中所述的电子膨胀阀调节方法,其特征在于,所述电子膨胀阀执行步骤(c)的间隔第一设定时间t1调节一次,每次调节为一个周期。
6.根据权利要求5中所述的电子膨胀阀调节方法,其特征在于,所述第一设定时间t1为60秒。
7.根据权利要求5或6中所述的电子膨胀阀调节方法,其特征在于,所述电子膨胀阀采用步进电机调节,每周期内调节的最大幅度为8*f步。
8.根据权利要求1-7任一项中所述的电子膨胀阀调节方法,其特征在于,所述步骤(a)之前还包括初始开度Q0设定:
Q0=A+B*T环境–γ*(C-T目标);
当T目标<C时,γ=γ1
当T目标≥C时,γ=γ2
γ1<γ2
所述初始开度在最小开度和最大开度之间;
其中,T环境表示环境温度,γ表示为开度系数,T目标表示***内作为参照目标的目标温度,A为常值,B为环境温度系数,C为所述目标温度的参考值。
9.根据权利要求8中所述的电子膨胀阀调节方法,其特征在于,所述常值A为230,所述环境温度系数B为3.5,所述参照目标为受加热的水箱,所述目标温度的参考值C为45℃,γ1为2,γ2为20。
10.根据权利要求1-9任一项中所述的电子膨胀阀调节方法,其特征在于:
当所述制冷***进入除霜模式时,将所述电子膨胀阀开度调节至最大;
当所述制冷***退出除霜模式时,使所述电子膨胀阀保持最大开度运行第二设定时间t2后,再将所述电子膨胀阀的开度调整至除霜前并保持第三设定时间t3,之后再根据步骤(c)正常运行。
11.根据权利要求10中所述的电子膨胀阀调节方法,其特征在于,所述第二设定时间t2为60秒,所述第三设定时间t3为120秒。
12.根据权利要求1-11任一项中所述的电子膨胀阀调节方法,其特征在于:
当所述制冷***的压缩机需要关闭时,记录当前开度为关机前开度Qoff,之后将电子膨胀阀开至最大开度Qmax
当所述压缩机启动时,保持最大开度第四设定时间t4,然后开度调整至所述关机前开度Qoff或初始开度Q0中较大的一个,保持第五设定时间t5。
13.根据权利要求12中所述的电子膨胀阀调节方法,其特征在于,所述第四设定时间t4为30秒,所述第五设定时间t5为120秒。
14.根据权利要求1-13任一项中所述的电子膨胀阀调节方法,其特征在于,当环境温度T环境满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F环境修正,并取代步骤(c)中的所述过热度调节阈值F,其中F环境修正为环境修正值:
当T环境>T环参1时,F环境修正=0;
当T环参2<T环境≤T环参1时,F环境修正=1;
当T环境≤T环参2时,F环境修正=2;
其中T环参1为第一环境参考温度,T环参2为第二环境参考温度。
15.根据权利要求14中所述的电子膨胀阀调节方法,其特征在于,所述第一环境参考温度T环参1为10℃,所述第二环境参考温度T环参2为-5℃。
16.根据权利要求1-15任一项中所述的电子膨胀阀调节方法,其特征在于,当所述压缩机的排气温度T排气满足以下条件时,对所述过热度调节阈值F的值进行修正获得F修正=F+F排气修正,并取代步骤(c)中的所述过热度调节阈值F,其中F排气修正为排气温度修正值:
当T排气<T排参1时,F排气修正=0;
当T排参1≤T排气<T排参2时,F排气修正=-1;
当T排气≥T排参2时,F排气修正=-2;
其中T排参1为第一排气参考温度,T排参2为第二排气参考温度。
17.根据权利要求16中所述的电子膨胀阀调节方法,其特征在于,所述第一排气参考温度T排参1为75℃,所述第二排气参考温度T排参2为95℃。
18.根据权利要求17中所述的电子膨胀阀调节方法,其特征在于,所述方法还包括排气温度控制步骤:
当所述排气温度T排气上升至第一排气临界温度T排临1时,所述电子膨胀阀的开度锁定只能开大不能关小;
当所述排气温度T排气下降至第二排气临界温度T排临2时,电子膨胀阀正常运行。
19.根据权利要求18中所述的电子膨胀阀调节方法,其特征在于,所述第一排气临界温度T排临1为105℃,所述第二排气临界温度T排临2比所述第一排气临界温度T排临1低5℃。
20.根据权利要求18或19中所述的电子膨胀阀调节方法,其特征在于,所述排气温度控制还包括以下步骤:
当所述排气温度T排气大于第三排气临界温度T排临3时,所述电子膨胀阀第六设定时间t6强制开大,增幅为保险开度值K保险
当所述排气温度T排气下降至所述第一排气临界温度T排临1低时,所述电子膨胀阀正常运行。
21.根据权利要求20中所述的电子膨胀阀调节方法,其特征在于,所述第六设定时间t6为30秒,所述保险开度值K保险=δ*(T排气-T排临1),其中保险开度系数δ满足1≤δ≤6。
CN201710790800.1A 2017-09-05 2017-09-05 一种电子膨胀阀调节方法 Active CN107606830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710790800.1A CN107606830B (zh) 2017-09-05 2017-09-05 一种电子膨胀阀调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710790800.1A CN107606830B (zh) 2017-09-05 2017-09-05 一种电子膨胀阀调节方法

Publications (2)

Publication Number Publication Date
CN107606830A true CN107606830A (zh) 2018-01-19
CN107606830B CN107606830B (zh) 2020-05-12

Family

ID=61057455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710790800.1A Active CN107606830B (zh) 2017-09-05 2017-09-05 一种电子膨胀阀调节方法

Country Status (1)

Country Link
CN (1) CN107606830B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344213A (zh) * 2018-02-08 2018-07-31 广东高而美制冷设备有限公司 一种电子膨胀阀最佳开度的调阀方法和调阀装置
CN108826582A (zh) * 2018-04-28 2018-11-16 四川长虹空调有限公司 低温制热冷媒流量匹配控制方法及空调
CN109140842A (zh) * 2018-09-07 2019-01-04 北京京仪自动化装备技术有限公司 基于过热度控制电子膨胀阀的方法及装置
CN109668248A (zh) * 2018-12-27 2019-04-23 四川长虹空调有限公司 制冷剂流量控制方法及***
CN110243115A (zh) * 2018-03-07 2019-09-17 浙江盾安机电科技有限公司 一种冷凝压力控制***及方法
CN110440420A (zh) * 2019-07-31 2019-11-12 广东志高暖通设备股份有限公司 一种模块水机的电子膨胀阀的控制方法
CN110762915A (zh) * 2019-10-31 2020-02-07 南开大学 一种基于电子膨胀阀开度的制冷***智能除霜的方法
CN112361670A (zh) * 2020-10-15 2021-02-12 珠海格力电器股份有限公司 一种电子膨胀阀控制方法及***
CN112856874A (zh) * 2021-01-18 2021-05-28 乐金空调(山东)有限公司 一种风冷螺杆热泵用电子膨胀阀的控制方法
CN113218114A (zh) * 2021-06-04 2021-08-06 江苏拓米洛环境试验设备有限公司 一种电子膨胀阀的控制方法
CN113719978A (zh) * 2020-05-25 2021-11-30 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707903A2 (en) * 2005-03-22 2006-10-04 Fujikoki Corporation Valve control system, valve control apparatus and valve control method
CN101688699A (zh) * 2007-06-29 2010-03-31 大金工业株式会社 制冷装置
CN102242996A (zh) * 2011-07-05 2011-11-16 海尔集团公司 中央空调机组中电子膨胀阀的开度的控制方法
CN103423836A (zh) * 2012-04-24 2013-12-04 杭州三花研究院有限公司 车辆空调***过热度控制方法及车辆空调***
CN103851847A (zh) * 2012-12-03 2014-06-11 美的集团股份有限公司 空调电子膨胀阀控制***、控制方法及多联机空调室外机
CN104949413A (zh) * 2015-07-07 2015-09-30 珠海格力电器股份有限公司 获取电子膨胀阀初始开度的方法和装置
CN104976840A (zh) * 2015-07-03 2015-10-14 南京天加空调设备有限公司 一种风冷冷水或热水机组的电子膨胀阀控制方法
CN105674610A (zh) * 2016-01-29 2016-06-15 合肥美的电冰箱有限公司 一种制冷剂流量控制方法***及冰箱
CN106225361A (zh) * 2016-07-18 2016-12-14 广东志高空调有限公司 一种电子膨胀阀的开度控制方法、装置和变频制冷***
CN106403140A (zh) * 2015-07-27 2017-02-15 青岛海尔空调电子有限公司 一种风冷机组的电子膨胀阀控制方法
CN107062556A (zh) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 一种模块水机的冷媒流量控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707903A2 (en) * 2005-03-22 2006-10-04 Fujikoki Corporation Valve control system, valve control apparatus and valve control method
CN101688699A (zh) * 2007-06-29 2010-03-31 大金工业株式会社 制冷装置
CN102242996A (zh) * 2011-07-05 2011-11-16 海尔集团公司 中央空调机组中电子膨胀阀的开度的控制方法
CN103423836A (zh) * 2012-04-24 2013-12-04 杭州三花研究院有限公司 车辆空调***过热度控制方法及车辆空调***
CN103851847A (zh) * 2012-12-03 2014-06-11 美的集团股份有限公司 空调电子膨胀阀控制***、控制方法及多联机空调室外机
CN104976840A (zh) * 2015-07-03 2015-10-14 南京天加空调设备有限公司 一种风冷冷水或热水机组的电子膨胀阀控制方法
CN104949413A (zh) * 2015-07-07 2015-09-30 珠海格力电器股份有限公司 获取电子膨胀阀初始开度的方法和装置
CN106403140A (zh) * 2015-07-27 2017-02-15 青岛海尔空调电子有限公司 一种风冷机组的电子膨胀阀控制方法
CN105674610A (zh) * 2016-01-29 2016-06-15 合肥美的电冰箱有限公司 一种制冷剂流量控制方法***及冰箱
CN106225361A (zh) * 2016-07-18 2016-12-14 广东志高空调有限公司 一种电子膨胀阀的开度控制方法、装置和变频制冷***
CN107062556A (zh) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 一种模块水机的冷媒流量控制方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344213A (zh) * 2018-02-08 2018-07-31 广东高而美制冷设备有限公司 一种电子膨胀阀最佳开度的调阀方法和调阀装置
CN108344213B (zh) * 2018-02-08 2020-10-30 广东高而美制冷设备有限公司 一种电子膨胀阀最佳开度的调阀方法和调阀装置
CN110243115A (zh) * 2018-03-07 2019-09-17 浙江盾安机电科技有限公司 一种冷凝压力控制***及方法
CN110243115B (zh) * 2018-03-07 2021-09-28 浙江盾安机电科技有限公司 一种冷凝压力控制***及方法
CN108826582B (zh) * 2018-04-28 2020-11-10 四川长虹空调有限公司 低温制热冷媒流量匹配控制方法及空调
CN108826582A (zh) * 2018-04-28 2018-11-16 四川长虹空调有限公司 低温制热冷媒流量匹配控制方法及空调
CN109140842A (zh) * 2018-09-07 2019-01-04 北京京仪自动化装备技术有限公司 基于过热度控制电子膨胀阀的方法及装置
CN109140842B (zh) * 2018-09-07 2020-12-11 北京京仪自动化装备技术有限公司 基于过热度控制电子膨胀阀的方法及装置
CN109668248A (zh) * 2018-12-27 2019-04-23 四川长虹空调有限公司 制冷剂流量控制方法及***
CN109668248B (zh) * 2018-12-27 2020-11-24 四川长虹空调有限公司 制冷剂流量控制方法及***
CN110440420A (zh) * 2019-07-31 2019-11-12 广东志高暖通设备股份有限公司 一种模块水机的电子膨胀阀的控制方法
CN110762915A (zh) * 2019-10-31 2020-02-07 南开大学 一种基于电子膨胀阀开度的制冷***智能除霜的方法
CN110762915B (zh) * 2019-10-31 2021-03-19 南开大学 一种基于电子膨胀阀开度的制冷***智能除霜的方法
CN113719978B (zh) * 2020-05-25 2022-09-16 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN113719978A (zh) * 2020-05-25 2021-11-30 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN112361670A (zh) * 2020-10-15 2021-02-12 珠海格力电器股份有限公司 一种电子膨胀阀控制方法及***
CN112856874A (zh) * 2021-01-18 2021-05-28 乐金空调(山东)有限公司 一种风冷螺杆热泵用电子膨胀阀的控制方法
CN113218114A (zh) * 2021-06-04 2021-08-06 江苏拓米洛环境试验设备有限公司 一种电子膨胀阀的控制方法

Also Published As

Publication number Publication date
CN107606830B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN107606830A (zh) 一种电子膨胀阀调节方法
CN105627651B (zh) 压缩冷凝机组的控制方法
CN102242996B (zh) 中央空调机组中电子膨胀阀的开度的控制方法
CN108139132B (zh) 用于控制有可变接收器压力设定点的蒸气压缩***的方法
CN104457072B (zh) 电子膨胀阀控制方法、装置及制冷/制热***
CN105020846B (zh) 空气调节器的控制方法
CN106482411B (zh) 一种多联机空调压缩机防液击控制方法
CN108375175A (zh) 空调***控制方法及装置
US20100107660A1 (en) Refrigerant charging device, refrigeration device, and refrigerant charging method
CN107062720B (zh) 一种空调机组控制方法及空调机组
CN106288567B (zh) 中央空调启动控制方法
JP2018531359A6 (ja) 可変のレシーバ圧力設定点を有する蒸気圧縮システムを制御する方法
CN107421176A (zh) 电子膨胀阀的控制方法及热泵***
CN109855336A (zh) 一种制冷***的控制方法
CN104833022B (zh) 一种空调机组低冷却进水温度启动的控制方法
CN102620458A (zh) 制冷循环装置
CN106322829B (zh) 热泵***的控制方法、***及热泵
CN104792072A (zh) 空调机组及其冷媒流量控制方法
WO2018095786A1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
EP3862649A1 (en) Refrigeration cycle apparatus
CN106286246A (zh) 一种压缩机***的控制方法
US11959676B2 (en) Method for controlling a vapour compression system at a reduced suction pressure
CN111981719A (zh) 制冷机组压缩制冷循环控制方法、装置和制冷机组
GB2530453A (en) Refrigeration cycle device
US10823474B2 (en) Perturbation of expansion valve in vapor compression system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant