CN107537489A - Porous complex catalyst, preparation method and its usage - Google Patents

Porous complex catalyst, preparation method and its usage Download PDF

Info

Publication number
CN107537489A
CN107537489A CN201610498227.2A CN201610498227A CN107537489A CN 107537489 A CN107537489 A CN 107537489A CN 201610498227 A CN201610498227 A CN 201610498227A CN 107537489 A CN107537489 A CN 107537489A
Authority
CN
China
Prior art keywords
complex catalyst
porous complex
component
catalyst
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610498227.2A
Other languages
Chinese (zh)
Other versions
CN107537489B (en
Inventor
周健
陈剑
刘志成
王灿
贾银娟
石竹
高焕新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201610498227.2A priority Critical patent/CN107537489B/en
Publication of CN107537489A publication Critical patent/CN107537489A/en
Application granted granted Critical
Publication of CN107537489B publication Critical patent/CN107537489B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

The present invention relates to a kind of porous complex catalyst, preparation method and its usage, mainly solves the problems, such as that activity is low, selectivity of product is poor and stability is bad in existing porous complex catalyst.The present invention is by using porous complex catalyst, including following components:(A) inert component:At least one of silica, aluminum oxide, magnesia and zirconium oxide;(B) active component:At least one of platinum, rhodium, palladium, ruthenium, nickel, iron, cobalt and copper;(C) auxiliary agent:Titanium, vanadium, at least one of the oxide of chromium and manganese;The porous complex catalyst specific surface area is more than 2 meters squared per grams, pore space is more than 0.006 cubic centimetre/gram, and preparation method thereof technical scheme, preferably resolve not high catalyst activity, stability and anti-sintering property is poor and the problems such as easy carbon distribution, can be used in the catalysis industry production process of F- T synthesis, synthesis gas methanation and methane reforming.

Description

Porous complex catalyst, preparation method and its usage
Technical field
The present invention relates to porous complex catalyst and preparation method thereof, can be especially useful for F- T synthesis, synthesis gas first A kind of porous complex catalyst and preparation method of alkanisation and methane reforming.
Background technology
The trans-utilization of synthesis gas is significant under the energy background of the few gas of middle national wealth coal oil starvation.F- T synthesis, And synthesis gas methanation be all synthesized using synthesis gas as raw material under the conditions of catalyst and appropriate reaction with liquid fuel or The technical process of methane.On the other hand, developed with the exploitation of Chinese Unconventional gas particularly coal bed gas, shale gas etc., The chemical utilization of natural gas also has attracted increasing attention, and wherein methane reforming is a kind of important work that gas chemical industry utilizes Skill, methane reforming refer to the technique that methane is made into synthesis gas using water vapour, carbon dioxide or oxygen etc..Above-mentioned two skills Still there is many technical barriers in the application of art large-scale industrialization, wherein the most key is how targetedly to enter Row Catalyst Design, to improve the utilization ratio of catalyst, the yield of target product and selectivity.Therefore high performance urge is developed Agent, the exploitation for techniques such as F- T synthesis, synthesis gas methanation and methane reformings are significant.
At present, many porous complex catalysts are applied to above-mentioned technique.Such as Patent No. In ZL200410056853.3 Chinese patent, a kind of ternary composite metal oxide catalyst and preparation method thereof is disclosed, Using porous honeycomb ceramic as carrier, by the way that inside and outside two layers of oxide is respectively coated on ceramic matrix, internal layer aoxidizes including metal Thing and aluminum oxide, outer layer are metal oxide containing precious metals, and gained catalyst achieves preferable effect for purifying vehicle exhaust processing Fruit.But coating processes are complicated, and in the catalyst active component particle it is larger, use range is limited.Chinese patent CN103143364A discloses a kind of nano-complex catalyst of high degree of dispersion and preparation method and application, utilizes co-precipitation Complex precipitate is made in mixing salt solution and alkaline precipitating agent by method, is obtained after backflow, aging and roasting nano combined Thing catalyst, the catalyst are used in methane reforming, have good performance.But the preparation method of the nano-composite catalyst In must use zirconium oxide presoma, use range receives limitation.And the nano-composite catalyst needs to be further processed Catalytic reaction could be used for.The Chinese patent of Application No. 201010575387.5 discloses a kind of porous silica carried metal Or the preparation method of oxide, in the method, impregnated by porous silica, the synthesis of non-polar solven and Support Silica Porous silica/metal oxygen can be just obtained after the multi-steps such as metal precursor, the removal of non-polar solven and drying and roasting Compound composite.Because having used non-polar solven and infusion process in the patent, so as to cause preparation process cumbersome, and produce Interaction in thing between metal oxide and silica is weaker, causes the particle size of metal oxide more than 200nm.In State patent CN101005892 discloses a kind of composite oxide catalysts, and the catalyst contains Mo, V, alkaline-earth metal or dilute The particle of earth elements and silica carrier, the patent do not announce gained the porous property of catalyst granules architectural feature, but by In its preparation method be precipitation-calcination method, it is therefore contemplated that the porous of gained catalyst granules is poor.Moreover, on The infusion process of complex steps has all been used in the patent stated, has so not only increased cost, and has made preparation technology more multiple It is miscellaneous.
The content of the invention
The technical problems to be solved by the invention be catalyst preparation step present in prior art it is cumbersome, for Fischer-Tropsch Synthesis, synthesis gas methanation and selectivity of product difference and the problem of poor catalyst stability during methane reforming reaction;Provide one The porous complex catalyst of kind, the catalyst are used for having product when F- T synthesis, synthesis gas methanation and methane reforming reaction The advantages of selectivity height and good catalyst stability.
The two of the technical problems to be solved by the invention are to provide a kind of porous compound for solving one of technical problem and urged The preparation method of agent.
The three of the technical problems to be solved by the invention are to provide a kind of porous compound for solving one of technical problem and urged The purposes of agent.
To solve one of above-mentioned technical problem, the technical solution adopted in the present invention is as follows:
A kind of porous complex catalyst, in terms of parts by weight, including following components:
A) 30~100 parts are selected from least one of aluminum oxide, silica, magnesia and zirconium oxide inert component;
B) 0~20 part is selected from least one of platinum, ruthenium, rhodium and palladium element;
C) 0~20 part is selected from least one of nickel, iron, cobalt and copper element or its oxide;
D) 0~5 part is selected from:Titanium, vanadium, at least one of the oxide of chromium and manganese;
The content of wherein component (b) and component (c) is not all 0.
In above-mentioned technical proposal, it is preferred that component a) is in aluminum oxide, silica, magnesia, zirconium oxide and cerium oxide One kind;It is furthermore preferred that the one kind of component a) in magnesia, zirconium oxide and cerium oxide.
In above-mentioned technical proposal, it is preferred that component a) is selected from least one of aluminum oxide and silica and magnesia Mixture;It is furthermore preferred that the presoma of at least one of aluminum oxide and/or silica and the ratio of magnesia presoma are (50:1)~(8:1).
In above-mentioned technical proposal, it is preferred that in terms of parts by weight, component b) content is 0.1~15 part.
In above-mentioned technical proposal, it is preferred that in terms of parts by weight, component c) content is 0.1~15 part.
In above-mentioned technical proposal, it is preferred that in terms of parts by weight, component d) content is 0.5~2 part.
In above-mentioned technical proposal, it is preferred that component b) is preferably ruthenium.
In above-mentioned technical proposal, it is preferred that component b) is preferably nickel.
In above-mentioned technical proposal, it is preferred that the ratio of presoma containing ruthenium and nickeliferous presoma is (1:4)~(4:1).
In above-mentioned technical proposal, it is preferred that 0.1~1 part of gallium and/or indium is also included in terms of parts by weight, in catalyst Element or its oxide.
In above-mentioned technical proposal, it is preferred that the microscopic particles size of the porous complex catalyst is received in 10-1000 Rice, average pore size in 2-200 nanometers, specific surface area in 2-400 meters squared per grams, pore volume 0.006-1 cubic centimetres/gram;It is more excellent Choosing, average pore size in 3-120 nanometers, specific surface area in 50-330 meters squared per grams, pore volume 0.05-0.6 cubic centimetres/gram.
In above-mentioned technical proposal, preferably but it is not limited to:Microscopic particles size is in 20-200 nanometers.
In above-mentioned technical proposal, the preparation method of the porous complex catalyst, comprise the following steps:
A) after inert component predecessor is uniformly mixed with surfactant in water, burin-in process, burin-in process are carried out Temperature is 70~270 DEG C, and the time is 3~200 hours, and the precursor A of porous complex catalyst is made;
B) by component b)~d) predecessor, and above-mentioned porous complex catalyst precursor A uniformly mixing after, then Secondary carry out burin-in process, temperature are 50~230 DEG C, and the time is 5~220 hours, obtains the presoma of porous complex catalyst The mass ratio of each material is in B, wherein precursor B:Precursor A:Component b)~c) predecessor:Component d) predecessor=1: (0.003~0.25):(0.001~0.15);
C) after the precursor B of above-mentioned porous complex catalyst being dried processing, is calcined porous compound is obtained to urge The presoma C of agent;
D) the presoma C of above-mentioned porous complex catalyst is subjected to reduction treatment, temperature is 480-850 DEG C, the time 2 ~30 hours, obtain porous complex catalyst.
In the preparation method, preferably but be not limited to, 1) burin-in process temperature be 100~200 DEG C, the time 5 ~90 hours;2) burin-in process temperature is 70~130 DEG C again, and the time is 8~120 hours, the quality of each material in precursor B Than for:Precursor A:The predecessor of active component:Predecessor=1 of auxiliary agent:(0.03~0.15):(0.01~0.12);3) do Dry treatment temperature is 60~120 DEG C, and the time is 3~80 hours;Calcination processing temperature is 500~700 DEG C, and the time is 4~20 small When;4) reduction treatment temperature is 200-660 DEG C, and the time is 4~15 hours.
In the preparation method, the type difference of predecessor is as follows:Inert component predecessor be selected from boehmite, diatomite, At least one of silica gel and silicate, aluminate, aluminium salt, magnesium salts, the oxide of magnesium and zirconates;Active component predecessor is selected from At least one of nitrate, sulfate, halide salt, acetate, carbonate and basic salt;Auxiliary agent predecessor be selected from halide salt, At least one of nitrate, acetate, sulfate and carbonate;Surfactant is selected from alkylbenzenesulfonate, alkyl sulfonic acid At least one of salt, soap, polyoxyethylene, Pluronic F68, polyethylene glycol or polyvinyl alcohol.
In such scheme, preferably but be not limited to, inert component predecessor be selected from boehmite, diatomite, silica gel and At least one of silicate, aluminate, aluminium salt, magnesium salts, the oxide of magnesium and cerium salt;Active component predecessor is selected from nitric acid At least one of salt, acetate, carbonate and basic salt;Auxiliary agent predecessor is in nitrate, acetate and halide salt It is at least one;Surfactant is selected from soap, polyoxyethylene, Pluronic F68, polyethylene glycol or poly- At least one of vinyl alcohol.
In above-mentioned technical proposal, it is preferred that inert component predecessor is for magnesium salts/magnesium oxide and selected from boehmite and/or silicon At least one of diatomaceous earth.
In above-mentioned technical proposal, it is preferred that inert component predecessor is for magnesium salts/magnesium oxide and selected from boehmite and/or silicon One kind in diatomaceous earth.
In above-mentioned technical proposal, it is preferred that inert component predecessor is magnesia/magnesium carbonate and boehmite/diatomite.
In above-mentioned technical proposal, it is furthermore preferred that the mass ratio of boehmite/diatomite and magnesia/magnesium carbonate is (50:1) ~(8:1).
A kind of method that F- T synthesis prepares C5~C20 hydrocarbon, using synthesis gas as raw material, raw material contacts instead with above-mentioned catalyst C5~C20 hydrocarbon should be obtained.
A kind of method of synthesis gas methanation, using synthesis gas as raw material, raw material obtains first with above-mentioned catalyst haptoreaction Alkane.
A kind of method of reforming of methane on Ni-Ce, using methane and carbon dioxide as raw material, raw material connects with above-mentioned catalyst Tactile reaction obtains synthesis gas.
In above-mentioned technical proposal, raw material is generally acknowledged that with the reaction condition residing for catalyst for those skilled in the art can be real The reaction condition now converted.
In the present invention, the presoma for being primarily due to inert component forms the skeleton knot of stable opening after burin-in process Structure, the skeleton structure of this opening can carry the predecessor of active component and auxiliary agent, while this stable opening as carrier Skeleton structure pass through calcination processing, the hydroxyl on surface is relatively more, therefore in loading active component and when auxiliary agent, Both can form stronger chemical bond, so as to form stable compound.Additionally, due to active component presoma and help The hybrid mode of the presoma of agent is mixing in situ, after burin-in process, active component is formed with auxiliary agent homogeneous compound Thing;In addition, inert component, active component and the in situ of auxiliary agent presoma add in preparation process, after avoiding complex steps Loading process.Due to the presence of surfactant, the specific surface area of compound is improved, also enables active component more uniformly It is distributed in inert component, while also improves the voids content of compound and the decentralization of active component.
The above measure, solve unstable composite structure in traditional preparation methods, carrier and activearm and divide it Interaction Force is small, active component easy-sintering, voids content are low and the problems such as preparation process is cumbersome, obtains efficient, stably Porous compound, thus be accordingly used in the catalysis industry production process of F- T synthesis, synthesis gas methanation and methane reforming, make Catalyst activity and stability and life-span are all significantly improved.
Below by embodiment and comparative example, the present invention is further elaborated, but the porous compound and preparation method It is not limited to following embodiments.
Brief description of the drawings:
The transmission electron microscope photo of Fig. 1 embodiments 1.
The transmission electron microscope photo of Fig. 2 comparative examples 1.
Embodiment
【Embodiment 1】
After 100 grams of boehmites are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, burin-in process, processing temperature are carried out Spend for 120 DEG C, the time is 15 hours, and precursor A is made;By 13.6 grams of platinum chlorides (equivalent to 10g platinum), 12.7 grams of manganese nitrates (equivalent to 5g manganese oxide) and above-mentioned precursor A uniformly after mixing, carry out burin-in process again, and temperature is 160 DEG C, and the time is 20 hours, precursor B is obtained, processing then is dried in above-mentioned precursor B, temperature is 120 DEG C, and the time is 20 hours;So Calcination processing afterwards, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Above-mentioned presoma C is subjected to reduction treatment, temperature Spend for 600 DEG C, the time is 5 hours, you can obtains porous complex catalyst, preparation process condition such as table 1, catalyst physical property is shown in Table 2.
The catalyst is used for F- T synthesis, reaction temperature is 230 DEG C, volume space velocity 600h-1, pressure 1.8MPa, Hydrogen-carbon ratio is 2 in raw material, and its structure composition feature is shown in Tables 1 and 2, stability (conversion ratio with catalytic performance>90%) reach 420h。
The catalyst is used in catalyst synthesis gas methanation, 350 DEG C of reaction temperature, volume space velocity 2200h-1, Pressure 1.8MPa, hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2,
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material, and catalytic performance is shown in Table 2, and the conversion ratio of methane is 87%, the choosing of hydrogen Selecting property is 90%.
【Embodiment 2~5】
The synthesis step as described in embodiment 1, change inert component presoma, active component presoma and surfactant Species and quality, preparation condition is adjusted, can synthesize to obtain the porous complex catalyst of the present invention, preparation process condition such as table 1, catalyst physical property is shown in Table 2.
The catalyst is respectively used to F- T synthesis, synthesis gas methanation and methane reforming reaction, reaction condition and reality Apply that example 1 is identical, and catalytic performance is shown in Table 2.
【Embodiment 6】
After 98 grams of boehmites, 2 grams of magnesia are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, carry out at aging Reason, treatment temperature are 120 DEG C, and the time is 15 hours, and precursor A is made;By 13.6 grams of platinum chlorides (equivalent to 10g platinum), 12.7 Gram manganese nitrate (equivalent to 5g manganese oxide) and above-mentioned precursor A uniformly after mixing, carry out burin-in process, temperature 160 again DEG C, the time is 20 hours, obtains precursor B, and above-mentioned precursor B then is dried into processing, and temperature is 120 DEG C, and the time is 20 hours;Then calcination processing, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Above-mentioned presoma C is gone back Original place is managed, and temperature is 600 DEG C, and the time is 5 hours, you can obtains porous complex catalyst, preparation process condition such as table 1.
The catalyst is used for F- T synthesis, reaction temperature is 230 DEG C, volume space velocity 600h-1, pressure 1.8MPa, Hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2.
The catalyst is used in catalyst synthesis gas methanation, 350 DEG C of reaction temperature, volume space velocity 2200h-1, Pressure 1.8MPa, hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2.
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material, and catalytic performance is shown in Table 2.
【Embodiment 7】
Preparation technology, raw material dosage, treatment conditions are all same as Example 6.It is simply 89 grams by boehmite Mass adjust- ment, Magnesia quality is adjusted to 11 grams, and porous complex catalyst, preparation process condition such as table 1 is prepared, and catalyst physical property is shown in Table 2.
The catalyst is respectively used to F- T synthesis, synthesis gas methanation and methane reforming reaction, reaction condition and reality Apply that example 6 is identical, and catalytic performance is shown in Table 2.
【Embodiment 8】
Preparation technology, raw material dosage, treatment conditions are all same as Example 6.Boehmite is simply adjusted to diatomite, matter Amount is still 98 grams, porous complex catalyst, preparation process condition such as table 1 is prepared, catalyst physical property is shown in Table 2.
The catalyst is respectively used to F- T synthesis, synthesis gas methanation and methane reforming reaction, reaction condition and reality Apply that example 6 is identical, and catalytic performance is shown in Table 2.
【Embodiment 9】
Preparation technology, raw material dosage, treatment conditions are all same as Example 6.Diatomite quality is simply adjusted to 89 grams, Magnesia quality is adjusted to 11 grams, and porous complex catalyst, preparation process condition such as table 1 is prepared, and catalyst physical property is shown in Table 2.
The catalyst is respectively used to F- T synthesis, synthesis gas methanation and methane reforming reaction, reaction condition and reality Apply that example 6 is identical, and catalytic performance is shown in Table 2.
【Embodiment 10】
After 100 grams of boehmites are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, burin-in process, processing temperature are carried out Spend for 120 DEG C, the time is 15 hours, and precursor A is made;By 13.6 grams of platinum chlorides (equivalent to 10g platinum), 12.7 grams of manganese nitrates After (equivalent to 5g manganese oxide), 0.55 gram of gallium nitrate and above-mentioned precursor A uniformly mix, burin-in process, temperature are carried out again For 160 DEG C, the time is 20 hours, obtains precursor B, and above-mentioned precursor B then is dried into processing, and temperature is 120 DEG C, when Between be 20 hours;Then calcination processing, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Above-mentioned presoma C is entered Row reduction treatment, temperature are 600 DEG C, and the time is 5 hours, you can obtains porous complex catalyst, preparation process condition such as table 1, catalyst physical property is shown in Table 2.
The catalyst is used for F- T synthesis, reaction temperature is 230 DEG C, volume space velocity 600h-1, pressure 1.8MPa, Hydrogen-carbon ratio is 2 in raw material, and its structure composition feature is shown in Tables 1 and 2, stability (conversion ratio with catalytic performance>90%) reach 420h。
The catalyst is used in catalyst synthesis gas methanation, 350 DEG C of reaction temperature, volume space velocity 2200h-1, Pressure 1.8MPa, hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2,
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material, and catalytic performance is shown in Table 2, and the conversion ratio of methane is 87%, the choosing of hydrogen Selecting property is 90%.
【Embodiment 11】
After 100 grams of boehmites are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, burin-in process, processing temperature are carried out Spend for 120 DEG C, the time is 15 hours, and precursor A is made;By 13.6 grams of platinum chlorides (equivalent to 10g platinum), 12.7 grams of manganese nitrates After (equivalent to 5g manganese oxide), 1.6 grams of indium nitrates and above-mentioned precursor A uniformly mix, burin-in process is carried out again, temperature is 160 DEG C, the time is 20 hours, obtains precursor B, and above-mentioned precursor B then is dried into processing, and temperature is 120 DEG C, the time For 20 hours;Then calcination processing, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Above-mentioned presoma C is carried out Reduction treatment, temperature are 600 DEG C, and the time is 5 hours, you can obtain porous complex catalyst, preparation process condition such as table 1, Catalyst physical property is shown in Table 2.
The catalyst is used for F- T synthesis, reaction temperature is 230 DEG C, volume space velocity 600h-1, pressure 1.8MPa, Hydrogen-carbon ratio is 2 in raw material, and its structure composition feature is shown in Tables 1 and 2, stability (conversion ratio with catalytic performance>90%) reach 420h。
The catalyst is used in catalyst synthesis gas methanation, 350 DEG C of reaction temperature, volume space velocity 2200h-1, Pressure 1.8MPa, hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2,
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material, and catalytic performance is shown in Table 2, and the conversion ratio of methane is 87%, the choosing of hydrogen Selecting property is 90%.
【Embodiment 12】
After 100 grams of boehmites are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, burin-in process, processing temperature are carried out Spend for 120 DEG C, the time is 15 hours, and precursor A is made;By 13.6 grams of platinum chlorides (equivalent to 10g platinum), 12.7 grams of manganese nitrates After (equivalent to 5g manganese oxide), 0.25 gram of gallium nitrate and 0.3 gram of indium nitrate and above-mentioned precursor A uniformly mix, carry out again Burin-in process, temperature are 160 DEG C, and the time is 20 hours, obtains precursor B, above-mentioned precursor B then is dried into processing, Temperature is 120 DEG C, and the time is 20 hours;Then calcination processing, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Will Above-mentioned presoma C carries out reduction treatment, and temperature is 600 DEG C, and the time is 5 hours, you can obtains porous complex catalyst, prepares Process conditions such as table 1, catalyst physical property are shown in Table 2.
The catalyst is used for F- T synthesis, reaction temperature is 230 DEG C, volume space velocity 600h-1, pressure 1.8MPa, Hydrogen-carbon ratio is 2 in raw material, and its structure composition feature is shown in Tables 1 and 2, stability (conversion ratio with catalytic performance>90%) reach 420h。
The catalyst is used in catalyst synthesis gas methanation, 350 DEG C of reaction temperature, volume space velocity 2200h-1, Pressure 1.8MPa, hydrogen-carbon ratio is 2 in raw material, and catalytic performance is shown in Table 2,
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material, and catalytic performance is shown in Table 2, and the conversion ratio of methane is 87%, the choosing of hydrogen Selecting property is 90%.
【Comparative example 1~4】
Compound is prepared using infusion process.100 grams of boehmites, 25 grams of polyethylene glycol are mixed and added in 200 grams of water first, And homogeneous phase solution is evenly stirred until, product is then subjected to burin-in process, treatment temperature is 120 DEG C, and the time is 15 hours, then Dried 10 hours at 100 DEG C, and 550 DEG C of calcinings can obtain carrier in 10 hours in air atmosphere.By 13.6 grams of platinum chlorides After (equivalent to 10g platinum), 12.7 grams of manganese nitrates (equivalent to 5g manganese oxide) and 20g water are made into mixed solution, isometric leaching is utilized Stain method is loaded to above-mentioned carrier, again in air atmosphere 550 DEG C calcining 10 hours after carry out reduction treatment, temperature 600 again DEG C, the time is 5 hours, you can obtains the porous complex catalyst in comparative example 1.Feed change proportion of composing, preparation technology, The species and quality of inert component presoma, active component presoma and surfactant, can obtain porous complex catalysts Agent, its structure composition feature are shown in Table 3 and table 4 with catalytic performance.
【Comparative example 5-8】
After 100 grams of boehmites are uniformly mixed with 25 grams of polyethylene glycol in 200 grams of water, burin-in process, processing temperature are carried out Spend for 120 DEG C, the time is 15 hours, and precursor A is made;12.7 grams of manganese nitrates (equivalent to 5g manganese oxide) and above-mentioned presoma A uniformly after mixing, carries out burin-in process again, and temperature is 160 DEG C, and the time is 20 hours, obtains precursor B, then will be above-mentioned Processing is dried in precursor B, and temperature is 120 DEG C, and the time is 20 hours;Then calcination processing, temperature are 550 DEG C, and the time is 10 hours;Obtain presoma C;Above-mentioned presoma C is subjected to reduction treatment, temperature is 600 DEG C, and the time is 5 hours, you can is obtained Porous complex catalyst.
The catalyst is used for methane reforming reaction, 750 DEG C of reaction temperature, volume space velocity 1400h-1, pressure 0.2MPa, methane and carbon dioxide mol ratio is 2 in raw material.
Comparative example 6 is that boehmite is adjusted into diatomite, and other conditions are identical with comparative example 6.
Comparative example 7 is that boehmite is adjusted into magnesia, and other conditions are identical with comparative example 6.
Comparative example 8 be by boehmite be adjusted to boehmite/magnesia mixture (wherein boehmite quality be 89 grams, oxygen Change magnesia amount as 11 grams), other conditions are identical with comparative example 6.
Comparative example 6-9 structure composition feature is shown in Table 3 and table 4 with catalytic performance.
Table 1
Table 2
Table 3
Table 4

Claims (10)

1. a kind of porous complex catalyst, in terms of parts by weight, including following components:
A) 30~100 parts are selected from least one of aluminum oxide, zirconium oxide, magnesia and silica inert component;
B) 0~20 part is selected from least one of platinum, ruthenium, rhodium and palladium element;
C) 0~20 part is selected from least one of nickel, iron, cobalt and copper element or its oxide;
D) 0~5 part selected from titanium, vanadium, chromium and manganese at least one of oxide;
The content of wherein component (b) and component (c) is not all 0.
2. porous complex catalyst according to claim 1, it is characterised in that component a) be selected from aluminum oxide, magnesia, One kind in zirconium oxide, cerium oxide and silica.
3. porous complex catalyst according to claim 1, it is characterised in that in terms of parts by weight, component b) content For 0.1~15 part.
4. porous complex catalyst according to claim 1, it is characterised in that in terms of parts by weight, component c) content For 0.1~15 part.
5. porous complex catalyst according to claim 1, it is characterised in that in terms of parts by weight, component d) content For 0.5~2 part.
6. porous complex catalyst according to claim 1, it is characterised in that the porous complex catalyst it is micro- Particle size is seen in 10-1000 nanometers, average pore size in 2-200 nanometers, specific surface area in 2-400 meters squared per grams, pore volume to exist 0.006-1 cubic centimetres/gram.
7. porous complex catalyst according to claim 6, it is characterised in that average pore size compares table in 3-120 nanometers Area in 50-330 meters squared per grams, pore volume 0.05-0.6 cubic centimetres/gram.
8. the preparation method of the porous complex catalyst described in claim any one of 1-7, comprises the following steps:
A) after inert component predecessor is uniformly mixed with surfactant in water, burin-in process, burin-in process temperature are carried out For 70~270 DEG C, the time is 3~200 hours, and the precursor A of porous complex catalyst is made;
B) by component b)~d) predecessor, and above-mentioned porous complex catalyst precursor A uniformly mixing after, enter again Row burin-in process, temperature are 50~230 DEG C, and the time is 5~220 hours, obtains the precursor B of porous complex catalyst, its The mass ratio of each material is in middle precursor B:Precursor A:Component b)~c) predecessor:Component d) predecessor=1: (0.003~0.25):(0.001~0.15);
C) porous complex catalyst is obtained after the precursor B of above-mentioned porous complex catalyst being dried into processing, roasting Presoma C;
D) the presoma C of above-mentioned porous complex catalyst is subjected to reduction treatment, temperature is 480-850 DEG C, and the time is 2~30 Hour, obtain porous complex catalyst.
9. a kind of method that F- T synthesis prepares C5~C20 hydrocarbon, using synthesis gas as raw material, raw material and any one of claim 1~7 The catalyst haptoreaction obtains C5~C20 hydrocarbon.
10. a kind of method of synthesis gas methanation, using synthesis gas as raw material, raw material and the catalysis of any one of claim 1~7 Agent haptoreaction obtains methane.
CN201610498227.2A 2016-06-29 2016-06-29 Porous composite catalyst, preparation method and application thereof Active CN107537489B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610498227.2A CN107537489B (en) 2016-06-29 2016-06-29 Porous composite catalyst, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610498227.2A CN107537489B (en) 2016-06-29 2016-06-29 Porous composite catalyst, preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN107537489A true CN107537489A (en) 2018-01-05
CN107537489B CN107537489B (en) 2021-05-11

Family

ID=60966458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610498227.2A Active CN107537489B (en) 2016-06-29 2016-06-29 Porous composite catalyst, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN107537489B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111097494A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Multi-component composite catalyst and preparation method thereof
CN111097496A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Molecular sieve composite catalyst and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203238A (en) * 2012-01-13 2013-07-17 中国石油化工股份有限公司 Fischer-Tropsch synthesis catalyst, its preparation and application
CN104096564A (en) * 2013-04-02 2014-10-15 北京化工大学 Fischer-Tropsch synthesis iron-based catalyst, preparation method and application thereof
CN104148065A (en) * 2013-05-14 2014-11-19 中国科学院大连化学物理研究所 Catalyst used for methanation of carbon dioxide, preparation method therefor and applications thereof
CN104226327A (en) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 Catalyst for alkene preparation from synthesis gas and preparation method thereof
CN104923221A (en) * 2014-03-17 2015-09-23 中国石油化工股份有限公司 Silicon-based composite metal oxide and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203238A (en) * 2012-01-13 2013-07-17 中国石油化工股份有限公司 Fischer-Tropsch synthesis catalyst, its preparation and application
CN104096564A (en) * 2013-04-02 2014-10-15 北京化工大学 Fischer-Tropsch synthesis iron-based catalyst, preparation method and application thereof
CN104148065A (en) * 2013-05-14 2014-11-19 中国科学院大连化学物理研究所 Catalyst used for methanation of carbon dioxide, preparation method therefor and applications thereof
CN104226327A (en) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 Catalyst for alkene preparation from synthesis gas and preparation method thereof
CN104923221A (en) * 2014-03-17 2015-09-23 中国石油化工股份有限公司 Silicon-based composite metal oxide and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张德祥: "《煤制油技术基础与应用研究》", 30 January 2013, 上海科学技术出版社 *
徐耀武 等: "《煤化工手册》", 31 January 2013, 化学工业出版社 *
陈诵英 等: "《固体催化剂制备原理与技术》", 30 November 2012, 化学工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111097494A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Multi-component composite catalyst and preparation method thereof
CN111097496A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Molecular sieve composite catalyst and preparation method thereof

Also Published As

Publication number Publication date
CN107537489B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
CN107537480A (en) Complex catalyst and its application method
CN102441393B (en) A kind of take modified aluminas as fischer-tropsch synthetic catalyst and the application thereof of carrier
AU2012343061B2 (en) Fischer-Tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
CN103203238B (en) A kind of fischer-tropsch synthetic catalyst and Synthesis and applications thereof
WO2005079979A1 (en) Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
CN105772049A (en) Cobalt carbide based catalyst used for directly preparing olefin from synthesis gas, and preparation method and application thereof
CN107051439A (en) One kind is used for oil field association exhaust combustion catalyst and its preparation method and application
ZA200503464B (en) Improved supports for high surface area catalysts
CN101698152A (en) Cobalt-based compounded catalyst and preparing method and application thereof
CN112169799A (en) Method for synthesizing low-carbon olefin by carbon dioxide hydrogenation by iron-based catalyst
CN109718787B (en) Cerium/yttrium stabilized zirconia support and catalyst
CN103418388B (en) A kind of fischer-tropsch synthetic catalyst and Synthesis and applications thereof
CN107537489A (en) Porous complex catalyst, preparation method and its usage
CN107308936A (en) A kind of copper nano-complex catalyst and its preparation method and application
WO2012031330A1 (en) Catalyst and method for producing same
CN107537482A (en) Porous complex catalyst and its application method
CN104923221A (en) Silicon-based composite metal oxide and preparation method thereof
CN107537487A (en) Composite catalyst and preparation method thereof
CN107537475A (en) Complex catalyst, preparation method and its usage
CN112403475A (en) Preparation method of catalyst for preparing synthesis gas by reforming carbon dioxide
CN114588934B (en) Silicon-modified indium-based oxide-molecular sieve composite material and preparation method and application thereof
CN112705218A (en) Catalyst for preparing low-carbon olefin from synthesis gas, preparation method and application thereof
CN114433059A (en) CO2Catalyst for synthesizing low-carbon olefin compound by hydrogenation, preparation and application thereof
CN105727954A (en) Preparation method of catalyst for synthetic gas to natural gas
CN105727972A (en) Preparation method of catalyst for methane reforming with carbon dioxide to synthetic gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant