CN107528350B - 一种适应中长期电源规划的风电出力典型场景生成方法 - Google Patents

一种适应中长期电源规划的风电出力典型场景生成方法 Download PDF

Info

Publication number
CN107528350B
CN107528350B CN201710915793.3A CN201710915793A CN107528350B CN 107528350 B CN107528350 B CN 107528350B CN 201710915793 A CN201710915793 A CN 201710915793A CN 107528350 B CN107528350 B CN 107528350B
Authority
CN
China
Prior art keywords
power output
day
scene
wind power
season
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710915793.3A
Other languages
English (en)
Other versions
CN107528350A (zh
Inventor
吴耀武
娄素华
汪昌霜
王永灿
王曦冉
吴志明
蒋效康
吕梦璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710915793.3A priority Critical patent/CN107528350B/zh
Publication of CN107528350A publication Critical patent/CN107528350A/zh
Application granted granted Critical
Publication of CN107528350B publication Critical patent/CN107528350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种适应中长期电源规划的风电出力典型场景生成方法,包括:获取历史数据,包括s季节典型日负荷曲线及s季节各日风电出力曲线;根据s季节典型日负荷曲线的高峰、低谷、腰荷特征,得到日高峰时段、日腰荷时段和日低谷时段,进而得到s季节各日风电出力曲线的特征指标;根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率、调峰平衡场景及其概率、电量平衡场景及其概率。本发明综合考虑了中长期电源规划的特点、电源结构特征,兼顾了风电出力的不确定性、季节特性以及源荷交互特性,可用于中长期电源规划及相关专题分析的各种场合。

Description

一种适应中长期电源规划的风电出力典型场景生成方法
技术领域
本发明属于风力发电领域,更具体地,涉及一种适应中长期电源规划的风电出力典型场景生成方法。
背景技术
随着化石能源日益短缺,环保呼声高涨,风力发电作为一种清洁、高效的新能源形式,开始大规模集中式接入电力***。然而,区别于常规电源确定性的出力特征,风力发电具有间歇性、不确定性,对电力***中长期电源规划带来巨大挑战。对电力***运行进行生产模拟分析是评价中长期电源规划方案经济性、合理性的重要手段,而建立能准确计及风电出力特性的出力模型是实现生产模拟分析及电力***中长期规划工作的前提。现有电力***中长期电源规划中采用的风电出力建模方法主要分为以下几类:
一是采用多状态机组建模,即将风电出力视为可能在某些离散点取值的多状态机组,该模型适用于随机生产模拟分析,但由于丢失了风电出力和负荷的时序特性,在电力***中长期电源规划调峰专题研究中较难应用。
二是采用基于风电时序出力模拟的负荷修正模型,通过模拟手段获得大量风电时序出力数据以反映风电出力的随机性,然后将风电时序出力作为负负荷对负荷曲线进行修正,该方法的缺点在于难以保证时序模拟的精度和相邻时刻风电出力的时间相关性。
三是根据大量风电出力历史数据聚类生成风电出力场景,但大多方法在生成场景时仅根据风电出力的源端特征进行聚类,既没有结合风电接入***的负荷特性,又会丢失了对***电力平衡、调峰平衡等影响较为严酷的场景。这种方法获得的场景只适用风电电量替代效益的评估,即电量平衡方面的分析,不能适应中长期电源规划中涉及电力平衡、调峰平衡综合分析的需要,技术经济指标计算不够精确。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种适应中长期电源规划的风电出力典型场景生成方法,由此解决目前大规模风电接入电力***后,现有风电建模方法由于忽视负荷匹配特性,且不能够准确反应中长期电源规划中风力发电对***电力平衡、调峰平衡、电量平衡的综合影响,从而造成各项经济技术指标不够准确的技术问题。
为实现上述目的,本发明提供了一种适应中长期电源规划的风电出力典型场景生成方法,包括:
(1)获取历史数据,包括s季节典型日负荷曲线及s季节各日风电出力曲线;
(2)根据s季节典型日负荷曲线的高峰、低谷、腰荷特征,得到日高峰时段TH、日腰荷时段TM和日低谷时段TL,然后根据日高峰时段TH、日腰荷时段TM和日低谷时段TL,得到s季节各日风电出力曲线的特征指标;
(3)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率、调峰平衡场景及其概率、电量平衡场景及其概率。
进一步的,s季节各日风电出力曲线的特征指标包括:
日高峰时段最大出力PHmax、日高峰时段最小出力PHmin、日高峰时段平均出力PHave、日腰荷时段最大出力PMmax、日腰荷时段最小出力PMmin、日腰荷时段平均出力PMave;日低谷时段最大出力PLmax、日低谷时段最小出力PLmin、日低谷时段平均出力PLave;日最大出力PDmax、日平均出力PDave、日最小出力 PDmin,日最大调峰需求Cmax和日最小调峰需求Cmin
进一步的,步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率,包括以下步骤:
(31)以日高峰时段最小出力PHmin作为电力平衡场景的特征指标,将各季节风电出力曲线按PHmin从小到大排序;
(32)根据的置信水平α,筛选出风电出力曲线及其对应的高峰时段最小出力特征指标保证s季节的高峰时段风电最小出力特征指标大于等于的概率大于α,得到满足条件的风电出力曲线集合为
(33)从中筛选出日平均出力特征指标大于等于β的风电出力曲线,满足条件的风电出力曲线集合为
(34)将中高峰时段最小出力特征指标最大的风电曲线作为规划年 s季节置信水平α下的电力平衡场景电力平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
进一步的,步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的调峰平衡场景及其概率,包括以下步骤:
(41)以日最大调峰需求Cmax作为调峰平衡场景的特征指标,将s季节包含的所有风电出力曲线按Cmax从大到小排序;
(42)根据的置信水平γ,筛选出风电出力曲线及其对应的日最大调峰需求特征指标保证s季节的日最大调峰需求特征指标小于等于的概率大于γ,得到满足条件的风电出力曲线集合为
(43)以为约束条件从中筛选出风电出力曲线集合
(44)将中日最大调峰需求特性指标最小的风电出力曲线作为规划年s季节置信水平γ下的调峰平衡场景调峰平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
进一步的,步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电量平衡场景及其概率,包括以下步骤:
(51)扣除s季节对应的电力平衡场景及调峰平衡场景后,随机选取 Rs条风电出力曲线,取第r条风电出力曲线对应的特征指标数组为第r个场景类的聚类中心,分别为第r条风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力,Ns为s季节包含的风电出力曲线数量,ceil(.)表示向上取整函数:
(52)依次计算s季节扣除电力平衡场景和调峰平衡场景后的Ns-2条风电出力曲线中的风电出力曲线对应的特征指标数组与第r个场景类的聚类中心之间的加权欧式距离Js(d,r),分别为风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力:
其中,kθ表示各负荷时段的权重;
(53)将风电出力曲线分配给使得加权欧式距离Js(d,r)最小的聚类中心对应的场景类,Ns-2条风电出力曲线全部分配完成后,记场景类包含的风电出力曲线数量为Ns(r);
(54)计算第r个场景类包含的所有风电出力曲线的高峰平均出力的平均值、腰荷平均出力的平均值、低谷平均出力的平均值,分别记为将s季节的第r个场景类的聚类中心更新为
(55)判断更新后的Rs个聚类中心与上一次计算获得的Rs个聚类中心相比是否发生变化,若至少有一个聚类中心发生变化返回步骤(52),若Rs个聚类中心均未发生变化,进入步骤(56);
(56)将s季节中第r个场景类包含的所有风电出力曲线各时刻出力平均值构成的风电出力曲线作为s季节的第r个电量平衡场景,计算s季节的第r个电量平衡场景对应的概率
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、相比现有方法,本发明基于***典型日负荷曲线高峰、低谷、腰荷时段划分,按日确定了风电出力的特征指标,并用于生成风电出力典型场景及其概率分布,能够实现对***日周期的全过程分析,解决了现有风电场景负荷匹配性较差,用于含风电场的中长期电源规划、相关专题研究,和技术经济指标计算不够准确的问题。
2、本发明分别从电力平衡、调峰平衡、电量平衡三个角度确定了风电出力典型场景及其概率分布,该场景既能反应风力发电对***电力平衡、调峰平衡的显著影响,又能以较低的计算耗费和较高的精度表征风电出力的全时空特性,可以较为准确的评估风力发电的容量效益、调峰效益、电量效益,获得各项技术经济指标的长期期望值。
3、电力***规划部门可将此本发明生成的场景纳入中长期电源规划,评估风力发电对***电力平衡、调峰平衡、电量平衡、经济运行的综合影响,从而制定合理的风电场优化规划方案;各电力企业可根据本发明开发含风电的电力***中长期电源规划软件。
附图说明
图1为本发明实施例提供的风电出力典型场景生成方法流程图;
图2为本发明实施例1提供的一种适应中长期电源规划的风电出力典型场景生成方法流程图;
图3为本发明实施例1提供的2020年春季典型日负荷曲线及负荷高峰、腰荷、低谷时段划分情况;
图4为本发明实施例1提供的2020年各季节风电出力电力平衡场景出力曲线图;
图5为本发明实施例1提供的2020年各季节风电出力调峰平衡场景出力曲线图;
图6为本发明实施例1提供的2020年春季风电出力电量平衡场景出力曲线及概率分布图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种适应中长期电源规划的风电出力典型场景生成方法,包括:
(1)获取历史数据,包括s季节典型日负荷曲线及s季节各日风电出力曲线;
(2)根据s季节典型日负荷曲线的高峰、低谷、腰荷特征,得到日高峰时段TH、日腰荷时段TM和日低谷时段TL,然后根据日高峰时段TH、日腰荷时段TM和日低谷时段TL,得到s季节各日风电出力曲线的特征指标;
(3)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率、调峰平衡场景及其概率、电量平衡场景及其概率。
实施例1
如图2所示,为本发明实施例1提供的一种适应中长期电源规划的风电出力典型场景生成方法流程图。本发明实施例1首先根据***各季节典型日负荷曲线确定日负荷高峰、腰荷、低谷时段,然后得到各季节风电出力曲线的特征指标,再根据特征指标生成随机性风电出力典型场景及其概率分布,具体步骤如下:
(1)获取***各季节典型日负荷曲线及历史风电出力曲线,根据典型日负荷曲线的高峰、低谷、腰荷特征,得到各季节典型日负荷曲线的日高峰时段TH、日腰荷时段TM和日低谷时段TL,方法如下:
式中,s=1,2,3,4,分别表示春、夏、秋、冬四个季节,表示规划年s 季节典型日负荷曲线t时刻负荷值,表示规划年s季节典型日负荷曲线的日最大负荷,表示规划年s季节典型日负荷曲线的日最小负荷,δ1,δ2为时段划分系数,其中δ1<1,δ2>1。
本发明实施例1中取中国西部某省一大型风电场2015年全年365天的历史风电出力曲线为样本进行研究,规划年为2020年,在确定典型场景过程中采用小时级风电出力和时序负荷,即日时刻数为24。如图3所示为中国西部某省一大型风电场所在地区,2020年春季的典型日负荷曲线及其日负荷高峰时段,日负荷低谷时段,日负荷腰荷时段的划分情况。其中,时段划分系数δ1取0.97,δ2取1.04,从而将上午10-12点,晚上19-21点确定为日负荷高峰时段,即一个早高峰,一个晚高峰;0-6点确定为日负荷低谷时段,其余时段为日负荷腰荷时段。
(2)基于典型日负荷曲线时段划分,得到规划年s季节各日风电出力曲线的特征指标,包括:日高峰时段最大出力PHmax、日高峰时段最小出力PHmin、日高峰时段平均出力PHave;日腰荷时段最大出力PMmax、日腰荷时段最小出力PMmin、日腰荷时段平均出力PMave;日低谷时段最大出力PLmax、日低谷时段最小出力PLmin、日低谷时段平均出力PLave;日最大出力PDmax、日平均出力PDave、日最小出力PDmin;日最大调峰需求Cmax、日最小调峰需求Cmin
其中,s季节第d条风电出力曲线对应的日最大调峰需求日最小调峰需求的计算方法如下:
其中,d∈[1,Ns],Ns为s季节包含的风电出力曲线数量。
(3)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率,具体步骤如下:
(31)以日负荷高峰时段风电最小出力PHmin作为电力平衡场景特征指标,将s季节包含的风电曲线按PHmin大小排序,并假设
其中,表示排序后s季节第d条风电出力曲线的高峰时段最小出力特征指标,Ns为s季节包含的风电出力曲线数量, 表示在t时刻出力。
(32)根据的置信水平α,筛选出风电出力曲线及其对应的高峰时段最小出力特征指标保证s季节的高峰时段风电最小出力特征指标大于等于的概率大于α,得到满足条件的风电出力曲线集合为
式中,对于Ns为规划年s季节包含的风电出力曲线数量。
(33)从中筛选出日平均出力特征指标大于等于β的风电出力曲线,满足条件的风电出力曲线集合为
(34)将中高峰时段最小出力特征指标最大的风电曲线作为规划年 s季节置信水平α下的电力平衡场景电力平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
如图4所示,为按照上述方法确定的实施例2020年各季节风电出力电力平衡场景。其中,置信水平α取90%,日平均出力水平β取0.15。可见,各电力平衡场景的高峰时段出力均较小,反应了风电出力容量价值较低的情况,将此场景单独提取并用于评估风电接入后***的电力平衡情况,确定常规机组组合,可以防止由于风电出力的随机变化导致***出现电力不足,影响中长期电源规划方***评估。
(4)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的调峰平衡场景及其概率,包括以下步骤:
(41)以日最大调峰需求Cmax作为调峰平衡场景的特征指标,将s季节包含的所有风电出力曲线按Cmax从大到小排序,构成次序统计量,并假设
其中,表示排序后s季节第d条风电出力曲线对应的日最大调峰需求特征指标,计算公式为 为s季节第d条风电出力曲线的低谷时段最大出力特征指标,为s季节第d条风电出力曲线的高峰时段最小出力特征指标,Ns为s季节包含的风电出力曲线数量。
(42)根据的置信水平γ,筛选出风电出力曲线及其对应的日最大调峰需求特征指标保证s季节的日最大调峰需求特征指标小于等于的概率大于γ,得到满足条件的风电出力曲线集合为
(43)为充分保证调峰平衡场景的反调峰特性,以为约束条件从中筛选出风电出力曲线集合
(44)将中日最大调峰需求特性指标最小的风电出力曲线作为规划年s季节置信水平γ下的调峰平衡场景调峰平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
如图5所示,为按照上述方法确定的实施例2020年各季节风电出力调峰平衡场景。其中置信水平γ取90%。可见,各调峰平衡场景均呈现明显的反调峰特性,峰谷差很大,将此场景单独提取可客观反映风电接入对电力***调峰需求、电源结构的综合影响。
(5)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电量平衡场景及其概率,包括以下步骤:
(51)扣除s季节对应的电力平衡场景及调峰平衡场景后,随机选取 Rs条风电出力曲线,取第r条风电出力曲线对应的特征指标数组为第r个场景类的聚类中心,分别为第r条风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力,Ns为s季节包含的风电出力曲线数量,ceil(.)表示向上取整函数:
(52)依次计算s季节扣除电力平衡场景和调峰平衡场景后的Ns-2条风电出力曲线中的风电出力曲线对应的特征指标数组与第r个场景类的聚类中心之间的加权欧式距离Js(d,r):
其中,kθ表示θ负荷时段风电平均出力特征指标的权重,θ=H,M,L,分别表示高峰、腰荷、低谷,分别为风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力。
(53)将风电出力曲线分配给使得加权欧式距离Js(d,r)最小的聚类中心对应的场景类,Ns-2条风电出力曲线全部分配完成后,记场景类包含的的风电出力曲线数量为Ns(r),应当满足具体分配方法如下:
(54)计算第r个场景类包含的所有风电出力曲线的高峰平均出力的平均值、腰荷平均出力的平均值、低谷平均出力的平均值,分别记为将s季节的第r个场景类的聚类中心更新为
其中,θ=H,M,L,分别表示高峰、腰荷、低谷;表示场景类中,第m条风电出力曲线在θ负荷时段的平均出力,Ns(r)为包含的的风电出力曲线数量。
(55)判断更新后的Rs个聚类中心与上一次计算获得的Rs个聚类中心相比是否发生变化,若至少有一个聚类中心发生变化返回步骤(52),若Rs个聚类中心均未发生变化,进入步骤(56)。
(56)将s季节中第r个场景类包含的所有风电出力曲线各时刻出力平均值构成的风电出力曲线作为s季节的第r个电量平衡场景,计算s季节的第r个电量平衡场景对应的概率
其中,表示s季节第r个电量平衡场景在t时刻的出力,表示场景类中,第m条风电出力曲线在t时刻的出力,Ns(r)为场景类包含的的风电出力曲线数量,Ns为s季节包含的风电出力曲线数量。
如图6所示,为按照上述方法确定的实施例2020年春季电量平衡场景及概率分布图。其中,计算获得R1=8,即将实施例春季扣除电力平衡场景和调峰平衡场景后的风电出力曲线聚类为8个电量平衡场景,聚类过程取 kH=kL=0.4,kM=0.2,各电量平衡场景的概率标于图例中。可以发现,聚类获得的8个电量平衡场景在日负荷不同时段呈现的出力特性各异,包含了高、中、低等多个出力水平,也包含了正调峰、平调峰、反调峰等全部调峰特征,并以不同的概率出现。所述电量平衡场景以较低的计算耗费和较高的精度表征了风电出力的不确定性、负荷交互特性、调峰特性。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种适应中长期电源规划的风电出力典型场景生成方法,其特征在于,包括如下步骤:
(1)获取历史数据,包括s季节典型日负荷曲线及s季节各日风电出力曲线;
(2)根据s季节典型日负荷曲线的高峰、低谷、腰荷特征,得到日高峰时段TH、日腰荷时段TM和日低谷时段TL,然后根据日高峰时段TH、日腰荷时段TM和日低谷时段TL,得到s季节各日风电出力曲线的特征指标;
(3)根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率、调峰平衡场景及其概率、电量平衡场景及其概率;
所述步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电量平衡场景及其概率,包括以下步骤:
(51)扣除s季节对应的电力平衡场景及调峰平衡场景后,随机选取Rs条风电出力曲线,取第r条风电出力曲线对应的特征指标数组为第r个场景类的聚类中心,分别为第r条风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力,Ns为s季节包含的风电出力曲线数量,ceil(.)表示向上取整函数:
(52)依次计算s季节扣除电力平衡场景和调峰平衡场景后的Ns-2条风电出力曲线中的风电出力曲线对应的特征指标数组与第r个场景类的聚类中心之间的加权欧式距离Js(d,r),分别为风电出力曲线的高峰平均出力、腰荷平均出力、低谷平均出力:
其中,kθ表示各负荷时段的权重;
(53)将风电出力曲线分配给使得加权欧式距离Js(d,r)最小的聚类中心对应的场景类,Ns-2条风电出力曲线全部分配完成后,记场景类包含的风电出力曲线数量为Ns(r);
(54)计算第r个场景类包含的所有风电出力曲线的高峰平均出力的平均值、腰荷平均出力的平均值、低谷平均出力的平均值,分别记为将s季节的第r个场景类的聚类中心更新为
(55)判断更新后的Rs个聚类中心与上一次计算获得的Rs个聚类中心相比是否发生变化,若至少有一个聚类中心发生变化返回步骤(52),若Rs个聚类中心均未发生变化,进入步骤(56);
(56)将s季节中第r个场景类包含的所有风电出力曲线各时刻出力平均值构成的风电出力曲线作为s季节的第r个电量平衡场景,计算s季节的第r个电量平衡场景对应的概率
2.如权利要求1所述的一种适应中长期电源规划的风电出力典型场景生成方法,其特征在于,所述s季节各日风电出力曲线的特征指标包括:
日高峰时段最大出力PHmax、日高峰时段最小出力PHmin、日高峰时段平均出力PHave、日腰荷时段最大出力PMmax、日腰荷时段最小出力PMmin、日腰荷时段平均出力PMave;日低谷时段最大出力PLmax、日低谷时段最小出力PLmin、日低谷时段平均出力PLave;日最大出力PDmax、日平均出力PDave、日最小出力PDmin,日最大调峰需求Cmax和日最小调峰需求Cmin
3.如权利要求1或2所述的一种适应中长期电源规划的风电出力典型场景生成方法,其特征在于,所述步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的电力平衡场景及其概率,包括以下步骤:
(31)以日高峰时段最小出力PHmin作为电力平衡场景的特征指标,将各季节风电出力曲线按PHmin从小到大排序;
(32)根据的置信水平α,筛选出风电出力曲线及其对应的高峰时段最小出力特征指标保证s季节的高峰时段风电最小出力特征指标大于等于的概率大于α,得到满足条件的风电出力曲线集合为
(33)从中筛选出日平均出力特征指标大于等于β的风电出力曲线,满足条件的风电出力曲线集合为
(34)将中高峰时段最小出力特征指标最大的风电曲线作为规划年s季节置信水平α下的电力平衡场景电力平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
4.如权利要求1或2所述的一种适应中长期电源规划的风电出力典型场景生成方法,其特征在于,所述步骤(3)中根据s季节风电出力曲线的特征指标,得到随机性风电出力典型场景的调峰平衡场景及其概率,包括以下步骤:
(41)以日最大调峰需求Cmax作为调峰平衡场景的特征指标,将s季节包含的所有风电出力曲线按Cmax从大到小排序;
(42)根据的置信水平γ,筛选出风电出力曲线及其对应的日最大调峰需求特征指标保证s季节的日最大调峰需求特征指标小于等于的概率大于γ,得到满足条件的风电出力曲线集合为
(43)以为约束条件从中筛选出风电出力曲线集合
(44)将中日最大调峰需求特性指标最小的风电出力曲线作为规划年s季节置信水平γ下的调峰平衡场景调峰平衡场景的概率为
其中,Ns为s季节包含的风电出力曲线数量。
CN201710915793.3A 2017-09-28 2017-09-28 一种适应中长期电源规划的风电出力典型场景生成方法 Active CN107528350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710915793.3A CN107528350B (zh) 2017-09-28 2017-09-28 一种适应中长期电源规划的风电出力典型场景生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710915793.3A CN107528350B (zh) 2017-09-28 2017-09-28 一种适应中长期电源规划的风电出力典型场景生成方法

Publications (2)

Publication Number Publication Date
CN107528350A CN107528350A (zh) 2017-12-29
CN107528350B true CN107528350B (zh) 2019-09-13

Family

ID=60684133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710915793.3A Active CN107528350B (zh) 2017-09-28 2017-09-28 一种适应中长期电源规划的风电出力典型场景生成方法

Country Status (1)

Country Link
CN (1) CN107528350B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108197843B (zh) * 2018-02-26 2020-11-06 中国电建集团西北勘测设计研究院有限公司 一种平坦地形风电出力特性评估方法
CN109672173B (zh) * 2018-12-15 2022-12-09 竺炜 一种大型风电腰荷接入的主网在线安全调度方法
CN109740949A (zh) * 2019-01-09 2019-05-10 云南电网有限责任公司 一种基于风电发电场景概率化的电力电量平衡方法
CN110336332B (zh) * 2019-07-30 2021-03-30 福州大学 一种基于出力曲线聚合的区间潮流典型场景构造方法
CN111738773A (zh) * 2020-07-01 2020-10-02 国网宁夏电力有限公司 一种基于新能源与负荷的净负荷峰谷时段划分方法及***
CN112508402B (zh) * 2020-12-04 2024-02-27 国网湖北省电力有限公司电力科学研究院 直流送电曲线场景生成方法、电子设备及介质
CN112883577B (zh) * 2021-02-26 2023-07-04 广东电网有限责任公司 一种海上风电场出力典型场景生成方法及存储介质
CN113962598B (zh) * 2021-11-11 2024-05-07 国网天津市电力公司 新能源日运行调峰需求测算方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296679A (zh) * 2013-05-20 2013-09-11 国家电网公司 电力***中长期优化运行的中长期风电出力模型建模方法
CN103997039A (zh) * 2014-05-30 2014-08-20 国网甘肃省电力公司 基于概率区间预测的计及风电接纳的旋转备用区间预测方法
CN106786791A (zh) * 2016-11-30 2017-05-31 云南电网有限责任公司 一种风电出力场景的生成方法
CN104268800B (zh) * 2014-09-30 2017-08-11 清华大学 基于场景库的风电并网调峰平衡判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296679A (zh) * 2013-05-20 2013-09-11 国家电网公司 电力***中长期优化运行的中长期风电出力模型建模方法
CN103997039A (zh) * 2014-05-30 2014-08-20 国网甘肃省电力公司 基于概率区间预测的计及风电接纳的旋转备用区间预测方法
CN104268800B (zh) * 2014-09-30 2017-08-11 清华大学 基于场景库的风电并网调峰平衡判定方法
CN106786791A (zh) * 2016-11-30 2017-05-31 云南电网有限责任公司 一种风电出力场景的生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
考虑高比例可再生能源的交直流输电网规划挑战与展望;程浩忠;《电力***自动化》;20170510;第41卷(第9期);第19-25页 *

Also Published As

Publication number Publication date
CN107528350A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
CN107528350B (zh) 一种适应中长期电源规划的风电出力典型场景生成方法
CN103683326B (zh) 一种区域电网风电多点接入最佳接纳能力的计算方法
CN102663513B (zh) 利用灰色关联度分析的风电场功率组合预测建模方法
CN106099993B (zh) 一种适应新能源大规模接入的电源规划方法
CN107609697B (zh) 一种风力发电功率预测方法
CN109103926A (zh) 基于多辐照特性年气象场景的光伏发电接纳能力计算方法
CN109002915A (zh) 基于Kmeans-GRA-Elman模型的光伏电站短期功率预测方法
CN103683274A (zh) 区域中长期风电发电量概率预测方法
CN107194495A (zh) 一种基于历史数据挖掘的光伏功率纵向预测方法
CN106786791B (zh) 一种风电出力场景的生成方法
Jiang et al. Comprehensive assessment of wind resources and the low-carbon economy: An empirical study in the Alxa and Xilin Gol Leagues of inner Mongolia, China
CN104037755A (zh) 一种求解风蓄火联合运行***多时段Pareto解集的优化方法
CN107679687A (zh) 一种光伏出力建模方法以及发电***可靠性评估方法
CN103996079A (zh) 一种基于条件概率的风电功率加权预测方法
CN103366030A (zh) 风电与抽水蓄能电站联合承担***基荷运行模拟方法
CN104463356A (zh) 一种基于多维信息人工神经网络算法的光伏发电功率预测方法
CN101916335A (zh) 城市需水量时间序列-指数平滑模型预测方法
CN105140967B (zh) 一种含新能源电力***调峰需求的评估方法
CN104112167A (zh) 可发电风资源分布的获取方法
CN112994115A (zh) 一种基于wgan场景模拟和时序生产模拟的新能源容量配置方法
CN109888770A (zh) 基于机会约束规划和波动成本的风电场装机容量优化方法
Jin et al. Wind and photovoltaic power time series data aggregation method based on an ensemble clustering and Markov chain
CN113991640B (zh) 基于火电的多能互补能源基地能源配置规划方法
CN105279582B (zh) 基于动态相关性特征的超短期风电功率预测方法
CN110147908A (zh) 一种基于三维最优相似度与改进布谷鸟算法的风电功率预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant