CN107500524B - 一种稀土掺杂光纤预制棒及其制备方法 - Google Patents

一种稀土掺杂光纤预制棒及其制备方法 Download PDF

Info

Publication number
CN107500524B
CN107500524B CN201710770855.6A CN201710770855A CN107500524B CN 107500524 B CN107500524 B CN 107500524B CN 201710770855 A CN201710770855 A CN 201710770855A CN 107500524 B CN107500524 B CN 107500524B
Authority
CN
China
Prior art keywords
optical fiber
doped
quartz cladding
layer
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710770855.6A
Other languages
English (en)
Other versions
CN107500524A (zh
Inventor
黄宏琪
孙程
杨玉诚
岳天勇
徐峰
周游
李郴
曹蓓蓓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Optical Fibre and Cable Co Ltd
Original Assignee
Yangtze Optical Fibre and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Optical Fibre and Cable Co Ltd filed Critical Yangtze Optical Fibre and Cable Co Ltd
Priority to CN201710770855.6A priority Critical patent/CN107500524B/zh
Publication of CN107500524A publication Critical patent/CN107500524A/zh
Application granted granted Critical
Publication of CN107500524B publication Critical patent/CN107500524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种掺杂光纤预制棒及其制备方法。所述预制棒内至外包括掺杂芯层、第一石英包层、以及第二石英包层;第二石英包层相对于第一石英包层的数值孔径在0.1至0.24之间;所述第二石英包层截面外形呈圆形。其按照如下方法制备:(1)将掺杂芯层用第一石英包层材料包裹并拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;(2)将预制棒半成品,用第二石英包层材料包裹,并将其截面加工成圆形,获得所述掺杂光纤预制棒。本发明提供的光纤预制棒便于拉丝成型同时泵浦光泄露大幅降低,其制备方法能保证所述预制棒的几何同心性,提高光纤生产批次之间的一致性。

Description

一种稀土掺杂光纤预制棒及其制备方法
技术领域
本发明属于光纤激光技术领域,更具体地,涉及一种激光器用稀土掺杂光纤预制棒及其制备方法。
背景技术
光纤激光器是一种利用光纤作为激光增益介质的激光器,通过在光纤石英基质中掺杂不同的稀土离子,得到不同波段的激光输出。光纤激光器因具有光束质量高、比表面积大、散热好、转换效率高、体积小、结构紧凑、易于维护等优点,在工业加工、医疗、军事以及通信等多领域得到广泛应用。
早期使用的都是单包层掺稀土光纤,要求泵浦光直接注入到纤芯中,当泵浦功率逐渐增加的时候,通常只有几十μm的纤芯很难进一步提高泵浦光注入效率和功率。通过在传统的光纤纯石英包层的外面涂覆一定厚度的低折射率涂料(其折射率从1.3到1.4),向包层注入更多的多模泵浦光,然后再通过全反射耦合进掺杂芯层,极大地提高泵浦光注入效率和功率。目前采用该设计方案的双包层光纤,尤其是掺镱双包层光纤,包层直径达400μm,可以实现单纤激光输出数千瓦,甚至达万瓦级别。而其他掺稀土光纤,如掺铥,铒等双包层光纤也能达到数千瓦的激光输出。
同时这种双包层光纤,通过向包层注入多模泵浦光,在低NA和小尺寸的掺稀土纤芯(通常纤芯大小10μm或者20μm)中转换为模式更好、功率更高的特定波长的激光。为了获得更高的激光转换效率,其石英包层往往采用非圆形的截面以破坏其对称形,使得更多泵浦光注入纤芯,从而被纤芯吸收转换为需要的激光输出。在双包层光纤中,以纯石英玻璃为内包层,以掺氟丙烯酸树脂涂料为外包层。由于掺氟丙烯酸树脂涂料具有超低的折射率(折射率在1.3左右),注入到内包层的泵浦光在内包层与外包层界面处发生全反射。但界面并不是完全的镜面,同时有部分的泵浦光会以倏逝波的形式在掺氟丙烯酸树脂中传播,当经过长时间的激光辐射时,过高的温度、激光辐射以及水汽的侵入都会使得低折射率涂料发生老化。在高功率激光器中,该老化速度将加快。当低折射率涂层发生老化时,其绝对折射率会升高、与玻璃包层的附着力会降低,同时出现剥离脱落、产生微裂纹等情况,影响了光纤的增益性能,严重时会出现漏光,使光纤烧毁,甚至损坏掉光纤激光器的其他器件,包括合束器,泵浦源,隔离器等。
另外,将非对称的光纤预制棒拉制成符合要求的光纤难度较大,现有的技术条件下光纤的几何参数难以控制,尤其是丝径的控制和拉丝张力的测量都出现不稳定性,丝径的波动带来光纤熔接损耗,张力的波动会造成光纤的强度变差、损耗变大。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种激光器用稀土掺杂光纤预制棒及其制备方法。通过在不规则的石英包层外加上一层截面外形为圆形的低折石英包层,从而解决非圆形预制棒拉丝丝径与张力波动导致光纤参数差异大的问题,同时减少泵浦光泄露、延长光纤使用寿命。
为实现上述目的,按照本发明的一个方面,提供了一种稀土掺杂光纤预制棒,由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述第二石英包层相对于第一石英包层的数值孔径在0.1至0.24之间;
所述第二石英包层截面外形呈圆形。
优选地,所述稀土掺杂光纤预制棒,其第一石英包层截面外形为非圆形。
优选地,所述稀土掺杂光纤预制棒,其第一石英包层截面外形呈4D、D型、八边形、六边形、梅花型、正方形、或长方形。
优选地,所述稀土掺杂光纤预制棒,其第一石英包层和掺杂芯层的截面面积比在3-1600∶1之间。
优选地,所述稀土掺杂光纤预制棒,其第二石英包层和所述第一石英包层的截面面积比在1∶3-50之间。
优选地,所述稀土掺杂光纤预制棒,其第二石英包层截面外形呈圆形,且与所述掺杂纤芯呈几何同心。
优选地,所述稀土掺杂光纤预制棒,其第二石英包层为掺氟石英层。
优选地,所述稀土掺杂光纤预制棒,其掺杂芯层相对于第一石英包层的数值孔径在0.06至0.25之间,掺杂芯层直径在2mm至6mm之间。
按照本发明的另一个方面,提供了一种所述稀土掺杂光纤预制棒的制备方法,包括以下步骤:
(1)将掺杂芯层用第一石英包层材料包裹并拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,用第二石英包层材料包裹,并将其截面加工成圆形,获得所述掺杂光纤预制棒。
优选地,所述稀土掺杂光纤预制棒的制备方法,其步骤(2)具体为:
将步骤(1)获得的预制棒半成品与第二石英包层套管管棒(RIT)熔缩,使得所述套管与预制棒半成品烧实为实心棒。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明提供的稀土掺杂光纤预制棒第二石英包层截面外形为圆形,易于拉制成形,能改善光纤的拉丝丝径波动,由于传统的双包层光纤玻璃部分的在拉丝前后都是非圆形,拉丝过程中光纤的扭转将会使丝径控制难度增加,本发明光纤的玻璃外层为圆形,圆形拉丝光纤的丝径控制相当于常规的通信光纤,更加容易控制,减小丝径波动,提高批次一致性。
同时由于稀土掺杂光纤预制棒截面为圆形,制备的光纤截面亦为圆形既能提高光纤的端面切割成功率,同时可以提高泵浦光纤(其截面为标准圆形)与稀土掺杂光纤的耦合效率。
由于稀土掺杂光纤预制棒第二石英包层相对于第一石英包层折射率低,其制备的多包层光纤可以更好的保护低折涂料包层,延长光纤寿命。
本发明提供的稀土掺杂光纤预制棒的制备方法,在非圆形的预制棒半成品上包裹圆形的第二石英包层,优选方案采用RIT熔缩的方法,将非圆形的预制棒半成品稳固的固定在圆形的第二石英包层套管之内,确保光纤预制棒的同心度,从而提高光纤质量及批次之间的一致性。
附图说明
图1是掺杂芯棒与第一石英包层套管经RIT拉伸工艺拉制出规格尺寸的半成品实心棒;
图2是图1中的实心棒通过打磨工艺制备出的掺杂正八边形半成品预制棒;
图3是正八边形半成品预制棒与掺氟包层套管通过RIT熔缩工艺制备出的掺氟包层半成品实心棒;
图4是三包层稀土掺杂光纤用预制棒芯层及玻璃包层的折射率分布及其各自对应的尺寸;
图5是掺氟包层磨圆后的掺杂预制棒截面图。
其中1为掺杂芯层,2为第一石英包层,3为第二石英包层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种稀土掺杂光纤预制棒,由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述掺杂芯层相对于第一石英包层的数值孔径在0.06至0.25之间,掺杂芯层直径在2mm至6mm之间。
所述第一石英包层,优选为纯石英包层;截面外形为非圆形,优选为4D、D型、八边形、六边形、梅花型、正方形、或长方形。所述第一石英包层和掺杂芯层的截面面积比在3-1600∶1之间。
所述第二石英包层相对于第一石英包层的竖直孔径在0.1至0.24之间,其与第一石英包层的截面面积之比在1∶3-50之间。所述第二石英包层截面外形呈圆形,且与所述掺杂纤芯呈几何同心。优选所述第二石英包层为掺氟石英层。
本发明提供的稀土掺杂光纤预制棒包括掺杂芯层、纯石英玻璃包层、掺氟玻璃包层。其中芯层为产生激光的关键部分,一是用于提供合适的波导结构,二是提供增益介质;两个包层的作用都是将泵浦光耦合进芯层,纯石英包层为非圆形,用于提高耦合效率,掺氟包层为圆形既方便拉丝控制,又可以保护有机高分子包层。
本发明提供的稀土掺杂光纤预制棒的制备方法,包括以下步骤:
(1)将掺杂芯层用第一石英包层材料包裹并拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,用第二石英包层材料包裹,并将其截面加工成圆形,获得所述掺杂光纤预制棒。
优选采用熔缩烧实法,具体为:
(1)将掺杂芯棒与第一石英包层套管RIT拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,与第二石英包层套管RIT熔缩成实心棒,并将其截面加工成圆形,获得所述稀土掺杂光纤预制棒。
本发明提供的光纤预制棒便于拉丝丝径等几何控制,更重要的是有效地减少进入光纤有机涂料包层的泵浦光,既提高稀土掺杂光纤效率又对光纤起到保护作用。其制备方法能保证所述预制棒的同心度,从而提高无源光纤与稀土掺杂光纤的耦合效率。
以下为实施例:
实施例1
20/350/400型掺镱三包层光纤预制棒及其制备方法
一种稀土掺杂光纤预制棒,由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述掺杂芯层相对于第一石英包层的数值孔径为0.06,掺杂芯层半径为3.00mm。所述纤芯掺杂组份为1.0%wt Yb2O3,3.5%wt P2O5,3.0%wt Al2O3,92.5%wt SiO2
所述第一石英包层,为纯石英包层;截面外形为正八边形。所述第一石英包层和掺杂芯层的直径比(如图4a2:a1)为17.5∶1(第一石英包层和掺杂芯层的截面积比为322∶1)。
所述第二石英包层相对于第一石英包层的数值孔径为0.22,其与第一石英包层的直径比(如图4a3:a2)为20∶17.5(第二石英包层与第一石英包层截面面积之比为1:4.18)。
所述第二石英包层截面外形呈圆形,且与所述掺杂纤芯呈几何同心。所述第二石英包层为掺氟石英层,其组份为4.3%wt SiF4,95.7%wt SiO2
所述预制棒按照如下方法制备:
(1)将掺杂芯棒与第一石英包层套管RIT拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;具体为:
将MCVD制备的棒径为18.00mm掺杂芯棒与外径60.00mm、内径18.50mm的纯石英衬管RIT拉伸(拉伸温度在2100℃左右),在拉伸塔上拉伸成外径为20.00mm的实心棒,控制在19.50mm到20.00mm之间,按20/350/400的尺寸打磨成边对边距离为17.50mm的正八边形预制棒半成品。打磨过程中需要确保芯层与纯石英包层的同心度控制在2%以内。
因为在制备掺杂预制棒的时,衬管的尺寸是一定的,所以MCVD制备的芯棒纯石英包层存在包层厚度不够的问题,故需要通过拉伸工艺给掺杂芯棒匹配足够厚度的纯石英包层。
(2)将步骤(1)中获得的预制棒半成品,用第二石英包层材料包裹,并将其截面加工成圆形,获得所述稀土掺杂光纤预制棒。具体为:
将步骤(2)中获得的预制半成品,与掺氟石英套管经过RIT熔缩工艺在熔缩床上熔缩成实心棒。其中掺氟石英套管是通过PCVD工艺在纯石英衬管上沉积一定厚度的含四氟化硅玻璃,其PCVD衬管外径31.00mm,壁厚2.00mm,沉积掺氟玻璃层单边厚度在3.00mm左右。
熔缩后的实心棒呈类似于八边形的端面,进一步地通过磨圆工艺,将实心棒外形打磨成外径为20.00mm的圆形,保证掺氟石英包层与掺杂芯层的同心度小于2%,即获得本实施例提供的稀土掺杂光纤预制棒。
实施例2
一种掺镱三包层光纤预制棒及其制备方法
一种稀土掺杂光纤预制棒,由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述掺杂芯层相对于第一石英包层的数值孔径为0.2,掺杂芯层半径为6.00mm。所述纤芯掺杂组份为1.0%wt Yb2O3,3.5%wt P2O5,6.2%wt Al2O3
所述第一石英包层,为纯石英包层;截面外形为正六边形,半径为7.8mm,所述第一石英包层半径是指六边形两条平行对边距离的一半。
所述第二石英包层相对于第一石英包层的数值孔径为0.12;第二石英包层为掺氟石英层,掺氟质量百分数1.18%。所述第二石英包层截面内形呈与第一石英包层相配合;其外形呈圆形与所述掺杂纤芯呈几何同心。所述第二石英包层半径为9mm。
所述预制棒按照如下方法制备:
(1)将掺杂芯层用第一石英包层材料采用石英砂喷涂工艺包裹并拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成所述半径的正六边形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,用第二石英包层材料cai用石英砂喷涂工艺包裹,并将其截面加工成圆形,获得所述掺杂光纤预制棒。
实施例3
一种掺镱三包层光纤预制棒及其制备方法
一种稀土掺杂光纤预制棒,由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述掺杂芯层相对于第一石英包层的数值孔径为0.1,掺杂芯层半径为12.00mm。所述纤芯掺杂组份为1.0%wt Yb2O3,3.5%wt P2O5,4.1%wt Al2O3
所述第一石英包层,为纯石英包层;截面外形为正八边形。半径为24mm,所述第一石英包层半径是指八边形两条平行对边距离的一半。
所述第二石英包层相对于第一石英包层的数值孔径为0.20;第二石英包层为掺氟石英层,掺氟质量百分数3.96%。所述第二石英包层截面内形呈与第一石英包层相配合;其外形呈圆形,且与所述掺杂纤芯呈几何同心,所述第二石英包层半径为168mm。
所述预制棒按照如下方法制备:
(1)将掺杂芯层采用第一石英包层材料进行外气相沉积,并拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成所述半径的正八边形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,用第二石英包层材料采用外气象沉积包裹,并将其截面加工成圆形,获得所述掺杂光纤预制棒。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种稀土掺杂光纤预制棒的制备方法,其特征在于,包括以下步骤:
所述稀土掺杂光纤预制棒由内至外包括掺杂芯层、第一石英包层、以及第二石英包层;
所述第一石英包层截面外形为非圆形;第一石英包层截面外形呈D型、八边形、六边形、梅花型、正方形、或长方形;
所述第二石英包层相对于第一石英包层的数值孔径在0.1至0.24之间;
所述第二石英包层截面外形呈圆形;
(1)将掺杂芯棒与第一石英包层套管RIT拉伸至截面面积比与第二石英包层截面面积比相匹配,将其截面加工成预定外形,获得预制棒半成品;
(2)将步骤(1)中获得的预制棒半成品,与第二石英包层套管RIT熔缩成实心棒,并将其截面加工成圆形,获得所述稀土掺杂光纤预制棒。
2.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述第一石英包层和掺杂芯层的截面面积比在3-1600:1之间。
3.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述第二石英包层和所述第一石英包层的截面面积比在1:3-50之间。
4.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述第二石英包层截面外形呈圆形,且与所述掺杂纤芯呈几何同心。
5.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述第二石英包层为掺氟石英层。
6.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述掺杂芯层相对于第一石英包层的数值孔径在0.06至0.25之间,掺杂芯层半径在2mm至6mm之间。
7.如权利要求1所述的稀土掺杂光纤预制棒的制备方法,其特征在于,所述步骤(2)具体为:
将步骤(1)获得的预制棒半成品与第二石英包层套管管棒熔缩,使得所述套管与预制棒半成品烧实为实心棒。
CN201710770855.6A 2017-08-31 2017-08-31 一种稀土掺杂光纤预制棒及其制备方法 Active CN107500524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710770855.6A CN107500524B (zh) 2017-08-31 2017-08-31 一种稀土掺杂光纤预制棒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710770855.6A CN107500524B (zh) 2017-08-31 2017-08-31 一种稀土掺杂光纤预制棒及其制备方法

Publications (2)

Publication Number Publication Date
CN107500524A CN107500524A (zh) 2017-12-22
CN107500524B true CN107500524B (zh) 2020-06-02

Family

ID=60694418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710770855.6A Active CN107500524B (zh) 2017-08-31 2017-08-31 一种稀土掺杂光纤预制棒及其制备方法

Country Status (1)

Country Link
CN (1) CN107500524B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333675A (zh) * 2018-02-27 2018-07-27 长飞光纤光缆股份有限公司 一种手征性耦合纤芯增益光纤及制备方法
CN111517637B (zh) * 2020-05-22 2021-04-27 长飞光纤光缆股份有限公司 掺稀土多芯光纤、光纤预制棒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657943A (zh) * 2007-08-28 2010-02-24 株式会社藤仓 稀土掺杂纤芯多包层光纤、光纤放大器和光纤激光器
CN102298173A (zh) * 2011-08-29 2011-12-28 武汉安扬激光技术有限责任公司 侧向泵浦光纤结构及其制造方法
CN104865635A (zh) * 2015-06-01 2015-08-26 武汉睿芯特种光纤有限责任公司 一种椭圆包层保偏大模场增益光纤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460036B1 (en) * 2009-05-27 2017-06-28 biolitec Unternehmensbeteiligungs II AG Precisely-shaped core fibers and method of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657943A (zh) * 2007-08-28 2010-02-24 株式会社藤仓 稀土掺杂纤芯多包层光纤、光纤放大器和光纤激光器
CN102298173A (zh) * 2011-08-29 2011-12-28 武汉安扬激光技术有限责任公司 侧向泵浦光纤结构及其制造方法
CN104865635A (zh) * 2015-06-01 2015-08-26 武汉睿芯特种光纤有限责任公司 一种椭圆包层保偏大模场增益光纤

Also Published As

Publication number Publication date
CN107500524A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN107329205B (zh) 一种稀土掺杂光纤
US9014523B2 (en) Large mode field active optical fiber and manufacture method thereof
US8655130B2 (en) Precisely-shaped core fibers and method of manufacture
CN110194587B (zh) 一种光子晶体光纤、其预制棒、制备方法及应用
CN106458697B (zh) 旋转的圆形芯部光纤
US20060088261A1 (en) Rare earth doped single polarization double clad optical fiber and a method for making such fiber
CN110850522A (zh) 一种部分掺稀土光纤及其制备方法
CN102621628A (zh) 一种环形掺杂层光纤、其制备方法及包含该光纤的激光器
CN112456788B (zh) 一种高功率用保偏型光纤及其制备方法
CN212134989U (zh) 一种激光传输光纤
CN107935370B (zh) 一种增益泵浦一体化光纤的制备方法
CN102262263B (zh) 圆芯多扇形区***多扇形纤芯光纤及其制作方法
CN102654603B (zh) 一种空气间隙包层光纤的实现方法
CN202486354U (zh) 一种环形掺杂层光纤及包含该光纤的激光器
CN110954988A (zh) 一种激光传输光纤及其制作方法
JP2013102170A (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
CN111517637B (zh) 掺稀土多芯光纤、光纤预制棒及其制备方法和应用
CN107500524B (zh) 一种稀土掺杂光纤预制棒及其制备方法
JP5384679B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
CN104316993B (zh) 一种大芯径传能光纤
EP4400877A1 (en) Energy delivery fiber and preparation method therefor, and fiber laser
CN102819062B (zh) 一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤
CN114573226B (zh) 一种有源光纤及其制备方法
CN214735394U (zh) 一种多玻璃包层光纤的制备装置
CN112390524A (zh) 光纤预制棒制备方法、光纤制备方法和光纤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant