CN107480406A - 一种双馈风电机组短路电流计算的动态向量模型建立方法 - Google Patents

一种双馈风电机组短路电流计算的动态向量模型建立方法 Download PDF

Info

Publication number
CN107480406A
CN107480406A CN201710846312.8A CN201710846312A CN107480406A CN 107480406 A CN107480406 A CN 107480406A CN 201710846312 A CN201710846312 A CN 201710846312A CN 107480406 A CN107480406 A CN 107480406A
Authority
CN
China
Prior art keywords
short
component
vector model
current
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710846312.8A
Other languages
English (en)
Other versions
CN107480406B (zh
Inventor
尹俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Publication of CN107480406A publication Critical patent/CN107480406A/zh
Application granted granted Critical
Publication of CN107480406B publication Critical patent/CN107480406B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Peptides Or Proteins (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种双馈风电机组短路电流计算的动态向量模型建立方法,所述方法具体为:以时变傅里叶级数组成的平均系数为向量系数建立实系数周期函数的动态向量模型;将传统dq坐标系的下双馈风电机组数学模型转换为采用平均系数的动态向量模型;通过对发生对称、不对称短路时双馈风电机组正序、负序短路电流分量的特性分析;对发生次同步震荡时短路电流中次同步分量的特性分析,提出了双馈风电机组动态向量模型中系数的选取方法;通过选取后的系数建立双馈风电机组各种故障类型的向量模型,精确计算各种故障类型下双馈风电机组的短路电流,并精确计算短路电流中的次同步分量;不仅能反映短路电流中50Hz的基频分量的特性,还能反映其它频率分量的特性。

Description

一种双馈风电机组短路电流计算的动态向量模型建立方法
技术领域
本发明涉及风力发电继电保护***领域,尤其涉及一种双馈型风电机组的短 路电流计算向量模型建立方法。
背景技术
随着我国风电机组并网容量的不断增大,双馈风力发电机组作为使用最广泛 的风电机组类型在我国风力发电场中得到了大量使用。但随着其并网容量的不断 增加,给传统电力***继电保护也带来了巨大的挑战。不考虑双馈风电机组短路 电流对电力***暂态特性的影响可能造成保护装置整定配置失效甚至造成保护 装置拒动、误动等严重事故。提出其短路电流的计算模型对正确进行双馈风电机 组接入电网后的继电保护整定和保护装置配置越来越重要。
然而双馈风电机组的短路电流特性会受到风电场送出线路上串联补偿电容 的影响,使其短路电流产生次同步震荡频率分量。例如美国学者Irwin等,通过 大量仿真及实验验证通过论文指出,当双馈风电机组通过较长的串联补偿电容线 路与***相连时,将使短路电流中产生次同步频率震荡分量。北美电力公司也在 2009年德克萨斯大停电事故的分析报告中指出,风电场送出线由于串联补偿电容 所引起的次同步震荡现象可能导致严重的过电压和电流震荡,进一步可能引起风 力发电场控制器件损坏等重大事故。
针对这一问题现有的双馈风电短路电流计算模型研究还较少,现有计算模型 中只考虑了双馈风电机组短路电流的基频特性,不能准确的计算线路串联补偿电 容使短路电流产生的次同步震荡频率分量。建立详细的双馈风电机组电磁暂态仿 真模型虽然可以正确的仿真短路电流的次同步震荡频率分量,但电磁暂态模型需 要的计算量大,仿真时间长,且不适用于实际工程中的短路电流计算的应用。
发明内容
本发明的目的是要解决上述的技术问题,提供一种计算量小、能反映多种 频率的基频分量的特性且准确计算线路串联补偿电容使短路电流产生的次同步 震荡频率分量,适用于实际工程中的短路电流的计算。
本发明的目的是以下述方式实现的:
一种双馈风电机组短路电流计算的动态向量模型建立方法,所述方法具体 为:
步骤一:以时变傅里叶级数组成的平均系数为向量系数建立实系数周期函 数的动态向量模型;
步骤二:将传统dq坐标系的下双馈风电机组数学模型转换为采用平均系数 的动态向量模型;
步骤三:通过对发生对称、不对称短路时双馈风电机组正序、负序短路电 流分量的特性分析;对发生次同步震荡时短路电流中次同步分量的特性分析,提 出了双馈风电机组动态向量模型中系数的选取方法。
步骤四:通过选取后的系数建立双馈风电机组对称短路时的向量模型,不 对称短路时的向量模型,发生次同步震荡时的向量模型,精确计算各种故障类型 下双馈风电机组的短路电流,并精确计算短路电流中的次同步分量。
其中,所述的步骤一的具体步骤为:当τ∈(t-T,t]范围内时,一个频率为kωs的实系数周期函数x(τ)可采用平均向量算法通过傅里叶分解得到一个近似 相等的动态向量模型:
当ωs=2π/T时,xk(t)是k阶傅里叶分量的平均系数,由傅里叶分解原理可 知平均系数xk(t)等于:
所述的步骤二具体步骤为:定子磁链方程转换为:
其中为定子磁链ψs,dq的k阶傅里叶分量, 分别为定子电流is,dq、转子电流ir,dq的k阶傅里叶分量。Ls、Lm分别 为定子电抗、互感电抗;
定子电压方程转换为:
其中为定子电压Vs,dq的k阶傅里叶分量,Rs为定子电阻,J为d、 q轴方程对应系数;
转子磁链方程转换为:
其中为转子磁链ψr,dq的k阶傅里叶分量,Lr、Lm分别为转子电 抗、互感电抗;
转子电压方程转换为:
其中为转子电压Vr,dq的k阶傅里叶分量,Rr为转子电阻,s为定 转子转差率;
直流母线平衡方程转换为:
其中为直流母线电压Vdc的k阶傅里叶分量;mr,d、mr,q为转子变 流器的d、q轴控制回路调制比;mg,d、mg,q分别为为网侧流器的d、q轴控制回路 调制比;ig,q、ig,q为网侧电流的d、q轴分量,C为直流母线电容的大小;
转子侧变流器的电流PI控制环节方程转换为:
其中为转子d轴电流PI控制环节中间量xr,d的k阶傅里叶分量,为转子q轴电流PI控制环节中间量xr,q的k阶傅里叶分量;是有功功 率的参考值,Ps是有功功率的实际值;对应的表示无功功率参考值,Qs表示 无功功率实际值;表示PI环节中有功外环的积分系数,表示PI环节中无 功外环的积分系数;表示PI环节中有功外环的比例系数,表示PI环节 中无功外环的比例系数;
网侧变流器的电流PI控制环节方程转换为:
其中为网侧d轴电流PI控制环节中间量xg,d的k阶傅里叶分量,为网侧q轴电流PI控制环节中间量xg,q的k阶傅里叶分量;表示直流 母线电压参考值,Vdc表示直流母线电压实际值;表示网侧电流参考值,ig,q表 示网侧电流实际值;表示PI环节中直流母线电压外环的积分系数,表 示PI环节中网侧电流外环的积分系数;表示PI环节中直流母线电压外环的 比例系数,表示PI环节中网侧电流外环的比例系数;
送出线路的动态向量模型为:
其中Lline、Rline、Cline分别为送出线的电抗、电阻、串补电容,vs,d、vs,q为 送出线始端电压的d、q轴分量,vc,d、vc,q为串补电容上电压的d、q轴分量,vb,d、 vb,q为送出线末端电压的d、q轴分量,id、iq为送出线电流的d、q轴分量;
将上述dq坐标系下双馈风电机组各环节的数学模型,转换为动态向量模型, 进而得到整体双馈风电机组的动态向量模型。
步骤三中具体步骤为:
在传统dq0坐标系下,正序电流分量在d轴q轴上表现为直流分量,因此正序 分量在所建的动态向量模型中对应k=0的分量;
在传统dq0坐标系下,负序电流分量在d轴q轴上表现为2倍ωs频率分量,因此 负序分量在所建的动态向量模型中对应k=2的分量;
而短路电流中次同步分量在dq0坐标系下表现为频率为的分量,其中C为线路串补电容的大小,Ti为转子侧变流器电流PI环节的等效时 间常数;因此次同步分量在所建的动态向量模型中对应的分量;
双馈风电机组动态向量模型中系数的选取如下表1所示:
表1
所述的步骤四中具体步骤为:
选取0阶向量模型分量和对应的步骤三中的0阶向量系建立双馈风电机组对称短路时的向量模型,计算对称短路时双馈风电机组的短路 电流;
选取0阶向量模型分量以及其对应的步骤三中的0阶向量系数 和选取2阶向量模型分量及其对应的步骤三中的2阶向量系数 建立双馈风电机组不对称短路时的向量模型,计算不对称短路时双馈风电 机组短路电流中的正、负序分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数 和选取阶向量模型分量及其对应的步骤三中的阶向 量系数建立双馈风电机组对称短路且发生次同步震荡时的向量模型,计 算双馈风电机组短路电流中的正序分量和次同步分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数 选取2阶向量模型分量及其对应的步骤三中的2阶向量系数 选取阶向量模型分量及其对应的步骤三中的阶向 量系数建立双馈风电机组不对称短路且发生次同步震荡时的向量模型, 计算双馈风电机组短路电流的正序分量、负序分量和次同步分量。
相对于现有技术,本发明实施例提供了一种适用于双馈风电机组短路电流计 算向量模型。该模型中向量系数参数采用了时变傅里叶级数表示的平均系数。所 提模型相较传统模型不仅能反映短路电流中50Hz的基频分量的特性,还能反映 其它频率分量的特性,例如所提模型可以准确地计算短路电流中30Hz等次同步 频率分量。它可以有效的应用于风电机组接入电网后的继电保护装置整定配置, 还可以有效的进行风电机组接入电网后的次同步振荡特性分析。
附图说明
图1为本发明所提供的双馈风电机组短路电流计算动态向量模型建模的流程 示意图。
图2为本发明所举实例中验证所建向量模型计算结果的仿真电路结构图。
图3为本发明发生三相短路时所建向量模型计算结果与仿真结果对比图。
图4为本发明发生三相短路仿真得到短路电流分量的幅值变化图。
图5为本发明发生单相短路时所建向量模型计算结果与仿真结果对比图。
图6为本发明发生A相不对称称短路时仿真得到的短路电流各分量的幅值变 化图。
图7为本发明发生三相短路且存在次同步振荡时所建向量模型计算结果与仿 真结果对比图。
图8为本发明发生对称故障且发生次同步振荡时RTDS仿真得到的短路电流各 分量的幅值变化图。
具体实施方式
一种双馈风电机组短路电流计算的动态向量模型建立方法,所述方法具体 为:
步骤一:以时变傅里叶级数组成的平均系数为向量系数建立实系数周期函 数的动态向量模型;
步骤二:将传统dq坐标系的下双馈风电机组数学模型转换为采用平均系数 的动态向量模型;
步骤三:通过对发生对称、不对称短路时双馈风电机组正序、负序短路电 流分量的特性分析;对发生次同步震荡时短路电流中次同步分量的特性分析,提 出了双馈风电机组动态向量模型中系数的选取方法。
步骤四:通过选取后的系数建立双馈风电机组对称短路时的向量模型,不 对称短路时的向量模型,发生次同步震荡时的向量模型,精确计算各种故障类型 下双馈风电机组的短路电流,并精确计算短路电流中的次同步分量。
其中,所述的步骤一的具体步骤为:当τ∈(t-T,t]范围内时,一个频率为kωs
的实系数周期函数x(τ)可采用平均向量算法通过傅里叶分解得到一个近似
相等的动态向量模型:
当ωs=2π/T时,xk(t)是k阶傅里叶分量的平均系数,由傅里叶分解原理可 知平均系数xk(t)等于:
所述的步骤二具体步骤为:定子磁链方程转换为:
其中为定子磁链ψs,dq的k阶傅里叶分量, 分别为定子电流is,dq、转子电流ir,dq的k阶傅里叶分量。Ls、Lm分别 为定子电抗、互感电抗;
定子电压方程转换为:
其中为定子电压Vs,dq的k阶傅里叶分量,Rs为定子电阻,J为d、 q轴方程对应系数;
转子磁链方程转换为:
其中为转子磁链ψr,dq的k阶傅里叶分量,Lr、Lm分别为转子电 抗、互感电抗;
转子电压方程转换为:
其中为转子电压Vr,dq的k阶傅里叶分量,Rr为转子电阻,s为定 转子转差率;
直流母线平衡方程转换为:
其中为直流母线电压Vdc的k阶傅里叶分量;mr,d、mr,q为转子变 流器的d、q轴控制回路调制比;mg,d、mg,q分别为为网侧流器的d、q轴控制回路 调制比;ig,q、ig,q为网侧电流的d、q轴分量,C为直流母线电容的大小;
转子侧变流器的电流PI控制环节方程转换为:
其中为转子d轴电流PI控制环节中间量xr,d的k阶傅里叶分量,为转子q轴电流PI控制环节中间量xr,q的k阶傅里叶分量;是有功功 率的参考值,Ps是有功功率的实际值;对应的表示无功功率参考值,Qs表示 无功功率实际值;表示PI环节中有功外环的积分系数,表示PI环节中无 功外环的积分系数;表示PI环节中有功外环的比例系数,表示PI环节 中无功外环的比例系数;
网侧变流器的电流PI控制环节方程转换为:
其中为网侧d轴电流PI控制环节中间量xg,d的k阶傅里叶分量,为网侧q轴电流PI控制环节中间量xg,q的k阶傅里叶分量;表示直流 母线电压参考值,Vdc表示直流母线电压实际值;表示网侧电流参考值,ig,q表 示网侧电流实际值;表示PI环节中直流母线电压外环的积分系数,表 示PI环节中网侧电流外环的积分系数;表示PI环节中直流母线电压外环的 比例系数,表示PI环节中网侧电流外环的比例系数;
送出线路的动态向量模型为:
其中Lline、Rline、Cline分别为送出线的电抗、电阻、串补电容,vs,d、vs,q为 送出线始端电压的d、q轴分量,vc,d、vc,q为串补电容上电压的d、q轴分量,vb,d、 vb,q为送出线末端电压的d、q轴分量,id、iq为送出线电流的d、q轴分量;
将上述dq坐标系下双馈风电机组各环节的数学模型,转换为动态向量模型, 进而得到整体双馈风电机组的动态向量模型。
步骤三中具体步骤为:
在传统dq0坐标系下,正序电流分量在d轴q轴上表现为直流分量,因此正序 分量在所建的动态向量模型中对应k=0的分量;
在传统dq0坐标系下,负序电流分量在d轴q轴上表现为2倍ωs频率分量,因此 负序分量在所建的动态向量模型中对应k=2的分量;
而短路电流中次同步分量在dq0坐标系下表现为频率为的分量,其中C为线路串补电容的大小,Ti为转子侧变流器电流PI环节的等效时 间常数。因此次同步分量在所建的动态向量模型中对应的分量;
双馈风电机组动态向量模型中系数的选取如下表1所示:
表1
具体为:短路电流is,dq的动态向量模型为
其中正序电流分量,在d轴q轴上表现为直流分量,直流分量对应k=0时的傅 里叶分量, K=0时,is,dq(t)·e0(t)·1=为直流, 因此正序电流分量对应动态向量模型中k=0的分量
其对应的动态向量模型系数为:
其中负序电流分量,在d轴q轴上表现为2倍ωs频率电流分量,负序分量对应 k=2时的傅里叶分量,
K=2时,为2倍ωs频率电流分量,
因此负序电流分量对应动态向量模型中k=2的分量
其对应的动态向量模型系数为:
所述的步骤四中具体步骤为:
选取0阶向量模型分量和对应的步骤三中的0阶向量系数建立双馈风电机组对称短路时的向量模型,计算对称短路时双馈风电机组的短路 电流;
选取0阶向量模型分量以及其对应的步骤三中的0阶向量系数 和选取2阶向量模型分量及其对应的步骤三中的2阶向量系数 建立双馈风电机组不对称短路时的向量模型,计算不对称短路时双馈风电 机组短路电流中的正、负序分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数 is, dq0和选取阶向量模型分量及其对应的步骤三中的阶向 量系数建立双馈风电机组对称短路且发生次同步震荡时的向量模型,计 算双馈风电机组短路电流中的正序分量和次同步分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数 选取2阶向量模型分量及其对应的步骤三中的2阶向量系数 选取阶向量模型分量及其对应的步骤三中的阶向 量系数建立双馈风电机组不对称短路且发生次同步震荡时的向量模型, 计算双馈风电机组短路电流的正序分量、负序分量和次同步分量。
下面以具体实例对上述所提适用于短路电流计算的双馈风电机组动态向量 模型进行验证。
利用电力***实时数字仿真器RTDS,搭建如图2所示的双馈风电机组接入 电网仿真电路验证所提动态向量模型的计算结果。对在图2所示电网的B母线处发 生对称短路、不对称短路和发生短路且有次同步震荡发生时的短路电流计算结果 进行验证。
假设故障前双馈风力发电机组工作于额定状态,8s时在图2所示电网B母线发 生ABC三相对称短路并持续200ms。图3中分别标识出RTDS仿真得到的双馈风电机 组短路电流、本发明所提向量模型所计算得到的短路电流。对比仿真结果和所提 模型的计算结果,可知所提模型计算结果与仿真结果非常近似。本发明所提向量 模型不仅能够精确计算故障发生后短路电流的大小,并且能准确描述故障期间双 馈风电机组短路电流的动态特性。
图4为发生ABC三相对称短路时,仿真得到短路电流分量的幅值变化图。由图 4可知对称故障发生时正序电流分量是短路电流的主要频率分量,选择正序电流 分量对应的k=0的向量分量系数可以准确的计算双馈风电机组在对称故障时的短 路电流。这和所提向量模型表1中的分析结果一致。
假设故障前双馈风力发电机组工作于额定状态,8s时在图2所示电网B母线处 发生A相不对称短路故障持续200ms。图5中分别标识出RTDS仿真得到的双馈风电 机组短路电流、本发明所提向量模型所计算得到的短路电流。对比所得仿真和计 算所得结果,可知在发生不对称短路时本发明所提向量模型也能够准确地计算故 障发生后的双馈风电机组短路电流,并且能准确分析故障后短路电流的变化特 性。
图6为发生A相不对称称短路时,仿真得到的短路电流各分量的幅值变化图。 由图6可知当发生A相不对称故障时,双馈风电机组短路电流主要包含正序、负序 分量。由于双馈风电机组的机端变压器高压侧为三角形接线,使故障点到双馈风 电机组间没有零序回路,所以短路电流没有零序分量。这与所提向量模型表1中 的分析结果也一致,选择正序、负序电流分量对应的k=0、k=1的向量分量系数就 可以准确的计算双馈风电机组在不对称故障时的短路电流。
图7为发生ABC三相对称故障且发生次同步振荡时,RTDS仿真结果与向量模型 计算结果的对比。对比RTDS仿真结果和本文所提向量模型计算结果可以看出,在 故障发生后所提向量模型可以准确的计算双馈风电机组输出的短路电流大小,并 且能够精确的分析短路电流的变化特性。
图8为发生对称故障且发生次同步振荡时,RTDS仿真得到的短路电流各分量 的幅值变化图。当发生对称故障且有次同步振荡时,短路电流主要包含正序分量 和次同步分量。这与所提向量模型表1中的分析结果也一致,选择正序、次同步 电流分量对应的k=0、的向量分量系数就可以准确的计算双馈风电机组在 发生对称故障且有次同步振荡时的短路电流。
由上述算例和实施例可知:本发明实施例所述适用于短路电流计算的双馈风 电机组动态向量模型,可用于双馈风电机组接入电网后的短路电流计算,该模型 不仅可以正确的分析短路电流的基频分量还可以准确的计算短路电流中的次同 步频率分量,可有效的应用于风电机组接入电网后的继电保护装置整定配置,还 可以有效的进行风电机组接入电网后的次同步振荡特性分析。为分析双馈风电机 组接入电网后的次同步振荡现象提供了有效的分析工具,具备重要的工程实用价 值。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的技术人 员来说,在不脱离本发明整体构思前提下,还可以作出若干改变和改进,这些也 应该视为本发明的保护范围。

Claims (5)

1.一种双馈风电机组短路电流计算的动态向量模型建立方法,其特征在于:所述方法具体为:
步骤一:以时变傅里叶级数组成的平均系数为向量系数建立实系数周期函数的动态向量模型;
步骤二:将传统dq坐标系的下双馈风电机组数学模型转换为采用平均系数的动态向量模型;
步骤三:通过对发生对称、不对称短路时双馈风电机组正序、负序短路电流分量的特性分析;对发生次同步震荡时短路电流中次同步分量的特性分析,提出了双馈风电机组动态向量模型中系数的选取方法;
步骤四:通过选取后的系数建立双馈风电机组对称短路时的向量模型,不对称短路时的向量模型,发生次同步震荡时的向量模型,精确计算各种故障类型下双馈风电机组的短路电流,并精确计算短路电流中的次同步分量。
2.如权利要求1所述的一种双馈风电机组短路电流计算的动态向量模型建立方法,其特征在于:所述的步骤一的具体步骤为:当τ∈(t-T,t]范围内时,一个频率为kωs的实系数周期函数x(τ)可采用平均向量算法通过傅里叶分解得到一个近似相等的动态向量模型:
<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&lt;</mo> <mi>x</mi> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
当ωs=2π/T时,<x>k(t)是k阶傅里叶分量的平均系数,由傅里叶分解原理可知平均系数<x>k(t)等于:
<mrow> <mo>&lt;</mo> <mi>x</mi> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>T</mi> </mrow> <mi>t</mi> </munderover> <mi>x</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mi>d</mi> <mi>&amp;tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3.如权利要求1所述的一种双馈风电机组短路电流计算的动态向量模型建立方法,其特征在于:所述的步骤二具体步骤为:定子磁链方程转换为:
<mrow> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow>
其中为定子磁链ψs,dq的k阶傅里叶分量, 分别为定子电流is,dq、转子电流ir,dq的k阶傅里叶分量。Ls、Lm分别为定子电抗、互感电抗;
定子电压方程转换为:
<mrow> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>J&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow>
其中为定子电压Vs,dq的k阶傅里叶分量,Rs为定子电阻,J为d、q轴方程对应系数;
转子磁链方程转换为:
<mrow> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow>
其中为转子磁链ψr,dq的k阶傅里叶分量,Lr、Lm分别为转子电抗、互感电抗;
转子电压方程转换为:
<mrow> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>R</mi> <mi>r</mi> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <mi>J</mi> <mo>&lt;</mo> <mi>s</mi> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow>
其中为转子电压Vr,dq的k阶傅里叶分量,Rr为转子电阻,s为定转子转差率;
直流母线平衡方程转换为:
<mrow> <mi>C</mi> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mi>j</mi> <mi>k</mi> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow>
其中为直流母线电压Vdc的k阶傅里叶分量;mr,d、mr,q为转子变流器的d、q轴控制回路调制比;mg,d、mg,q分别为为网侧流器的d、q轴控制回路调制比;ig,q、ig,q为网侧电流的d、q轴分量,C为直流母线电容的大小;
转子侧变流器的电流PI控制环节方程转换为:
<mrow> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mo>,</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
<mrow> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>P</mi> <mo>,</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mo>,</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
<mrow> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>P</mi> <mo>,</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
其中为转子d轴电流PI控制环节中间量xr,d的k阶傅里叶分量,为转子q轴电流PI控制环节中间量xr,q的k阶傅里叶分量;是有功功率的参考值,Ps是有功功率的实际值;对应的表示无功功率参考值,Qs表示无功功率实际值;表示PI环节中有功外环的积分系数,表示PI环节中无功外环的积分系数;表示PI环节中有功外环的比例系数,表示PI环节中无功外环的比例系数;
网侧变流器的电流PI控制环节方程转换为:
<mrow> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mo>,</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
<mrow> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>P</mi> <mo>,</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <mi>d</mi> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mo>,</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
<mrow> <mo>&lt;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>P</mi> <mo>,</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msubsup> <mo>&gt;</mo> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
其中为网侧d轴电流PI控制环节中间量xg,d的k阶傅里叶分量,为网侧q轴电流PI控制环节中间量xg,q的k阶傅里叶分量;表示直流母线电压参考值,Vdc表示直流母线电压实际值;表示网侧电流参考值,ig,q表示网侧电流实际值;表示PI环节中直流母线电压外环的积分系数,表示PI环节中网侧电流外环的积分系数;表示PI环节中直流母线电压外环的比例系数,表示PI环节中网侧电流外环的比例系数;
送出线路的动态向量模型为:
<mrow> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mfrac> <mrow> <mo>&lt;</mo> <msub> <mi>di</mi> <mi>d</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>d</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>b</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mfrac> <mrow> <mo>&lt;</mo> <msub> <mi>di</mi> <mi>q</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>d</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>b</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mfrac> <mrow> <mo>&lt;</mo> <msub> <mi>dv</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>d</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
<mrow> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mfrac> <mrow> <mo>&lt;</mo> <msub> <mi>dv</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> <msub> <mo>&gt;</mo> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>jk&amp;omega;</mi> <mi>s</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mo>,</mo> </mrow>
其中Lline、Rline、Cline分别为送出线的电抗、电阻、串补电容,vs,d、vs,q为送出线始端电压的d、q轴分量,vc,d、vc,q为串补电容上电压的d、q轴分量,vb,d、vb,q为送出线末端电压的d、q轴分量,id、iq为送出线电流的d、q轴分量;
将上述dq坐标系下双馈风电机组各环节的数学模型,转换为动态向量模型,进而得到整体双馈风电机组的动态向量模型。
4.如权利要求1所述的一种双馈风电机组短路电流计算的动态向量模型建立方法,其特征在于:步骤三中具体步骤为:
在传统dq0坐标系下,正序电流分量在d轴q轴上表现为直流分量,因此正序分量在所建的动态向量模型中对应k=0的分量;
在传统dq0坐标系下,负序电流分量在d轴q轴上表现为2倍ωs频率分量,因此负序分量在所建的动态向量模型中对应k=2的分量;
而短路电流中次同步分量在dq0坐标系下表现为频率为的分量,其中C为线路串补电容的大小,Ti为转子侧变流器电流PI环节的等效时间常数。因此次同步分量在所建的动态向量模型中对应的分量;双馈风电机组动态向量模型中系数的选取如下表1所示:
表1
5.如权利要求4所述的一种双馈风电机组短路电流计算的动态向量模型建立方法,其特征在于:所述的步骤四中具体步骤为:
选取0阶向量模型分量和对应的步骤三中的0阶向量系数<is,dq>0建立双馈风电机组对称短路时的向量模型,计算对称短路时双馈风电机组的短路电流;
选取0阶向量模型分量以及其对应的步骤三中的0阶向量系数<is,dq>0和选取2阶向量模型分量及其对应的步骤三中的2阶向量系数<is,dq>2建立双馈风电机组不对称短路时的向量模型,计算不对称短路时双馈风电机组短路电流中的正、负序分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数<is,dq>0和选取阶向量模型分量及其对应的步骤三中的阶向量系数建立双馈风电机组对称短路且发生次同步震荡时的向量模型,计算双馈风电机组短路电流中的正序分量和次同步分量;
选取0阶向量模型分量及其对应的步骤三中的0阶向量系数<is,dq>0、选取2阶向量模型分量及其对应的步骤三中的2阶向量系数<is,dq>2,选取阶向量模型分量及其对应的步骤三中的阶向量系数建立双馈风电机组不对称短路且发生次同步震荡时的向量模型,计算双馈风电机组短路电流的正序分量、负序分量和次同步分量。
CN201710846312.8A 2017-08-02 2017-09-19 一种双馈风电机组短路电流计算的动态向量模型建立方法 Expired - Fee Related CN107480406B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017106554029 2017-08-02
CN201710655402 2017-08-02

Publications (2)

Publication Number Publication Date
CN107480406A true CN107480406A (zh) 2017-12-15
CN107480406B CN107480406B (zh) 2020-09-08

Family

ID=60585499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710846312.8A Expired - Fee Related CN107480406B (zh) 2017-08-02 2017-09-19 一种双馈风电机组短路电流计算的动态向量模型建立方法

Country Status (1)

Country Link
CN (1) CN107480406B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033660A (zh) * 2018-08-06 2018-12-18 清华四川能源互联网研究院 不对称故障分析方法及装置
CN111953259A (zh) * 2020-08-13 2020-11-17 成都卡诺普自动化控制技术有限公司 一种应用于机器人的驱控一体机的动态母线欠压保护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867085A (zh) * 2012-09-04 2013-01-09 山东大学 含双馈风电机组的电力***短路电流计算方法
US20140254216A1 (en) * 2011-10-20 2014-09-11 Wobben Properties Gmbh Method and apparatus for feeding electrical current into an electrical power supply system
CN105701265A (zh) * 2014-11-28 2016-06-22 国家电网公司 一种双馈风电机组建模方法及装置
CN107069802A (zh) * 2017-03-13 2017-08-18 华北电力大学 机端对称故障下双馈风电机组网侧变流器电流计算方法
CN107147132A (zh) * 2017-05-02 2017-09-08 国网四川省电力公司技能培训中心 一种抑制双馈风电机组次同步谐振的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254216A1 (en) * 2011-10-20 2014-09-11 Wobben Properties Gmbh Method and apparatus for feeding electrical current into an electrical power supply system
CN102867085A (zh) * 2012-09-04 2013-01-09 山东大学 含双馈风电机组的电力***短路电流计算方法
CN105701265A (zh) * 2014-11-28 2016-06-22 国家电网公司 一种双馈风电机组建模方法及装置
CN107069802A (zh) * 2017-03-13 2017-08-18 华北电力大学 机端对称故障下双馈风电机组网侧变流器电流计算方法
CN107147132A (zh) * 2017-05-02 2017-09-08 国网四川省电力公司技能培训中心 一种抑制双馈风电机组次同步谐振的控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
尹俊 等: "《双馈风电机组群短路电流计算与故障分析方法》", 《电力自动化设备》 *
尹俊 等: "《持续励磁情况下双馈风电机组电流计算方法研究》", 《华北电力大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033660A (zh) * 2018-08-06 2018-12-18 清华四川能源互联网研究院 不对称故障分析方法及装置
CN109033660B (zh) * 2018-08-06 2020-10-09 清华四川能源互联网研究院 不对称故障分析方法及装置
CN111953259A (zh) * 2020-08-13 2020-11-17 成都卡诺普自动化控制技术有限公司 一种应用于机器人的驱控一体机的动态母线欠压保护方法
CN111953259B (zh) * 2020-08-13 2021-06-01 成都卡诺普自动化控制技术有限公司 一种应用于机器人的驱控一体机的动态母线欠压保护方法

Also Published As

Publication number Publication date
CN107480406B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Song et al. Analysis of middle frequency resonance in DFIG system considering phase-locked loop
CN104485684B (zh) 一种含双馈风电机组的电力***故障电流计算方法
CN105375532B (zh) 一种适用于双馈风电场联络线的故障选相方法
Chandrasekar et al. Dynamic phasor modeling of type 3 DFIG wind generators (including SSCI phenomenon) for short-circuit calculations
Zhou et al. Effect of reactive power characteristic of offshore wind power plant on low-frequency stability
Sunil et al. Power quality improvement of a grid-connected wind energy conversion system with harmonics reduction using FACTS device
Rafiee et al. Enhancement of the LVRT capability for DFIG-based wind farms based on short-circuit capacity
Farantatos et al. Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection
Shewarega et al. Impact of large offshore wind farms on power system transient stability
Fereidouni et al. Performance of LR-type solid-state fault current limiter in improving power quality and transient stability of power network with wind turbine generators
Yao et al. Coordinated control of a hybrid wind farm with DFIG-based and PMSG-based wind power generation systems under asymmetrical grid faults
CN107480406B (zh) 一种双馈风电机组短路电流计算的动态向量模型建立方法
Salem et al. New analysis framework of Lyapunov-based stability for hybrid wind farm equipped with FRT: A case study of Egyptian grid code
CN104865523A (zh) 双馈发电机仿真***及方法
Arulampalam et al. Simulated onshore-fault ride through of offshore wind farms connected through VSC HVDC
Loulijat et al. Kalman Observer Contribution to a Second Order Sliding Mode Control for Wind Turbine Based on DFIG During the Network Voltage Dip.
Vajpayee et al. Crowbar protection of grid connected double fed induction generator with variable speed wind turbine
Mahvash et al. A look-up table based approach for fault ride-through capability enhancement of a grid connected DFIG wind turbine
Park et al. Voltage transient analysis of a PMSG wind power system using controller-hardware-in-the loops
CN109740906A (zh) 一种含双馈风力发电机的配电网短路电流计算方法
Rajapakse et al. Modification of commercial fault calculation programs for wind turbine generators
Kauffmann Modeling of wind parks for steady state short circuit studies
de Toledo et al. TOPIC 7: Wind Farm In Weak Grids Compensated With Statcom
Mahvash et al. Performance improvement of type 4 wind turbine synchronous generator using fractional‐order PI (FOPI) and PI controllers designed by the analytical approach
Trevisan et al. Analysis of low frequency interactions between DFIG wind turbines and series compensated systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200908

Termination date: 20210919

CF01 Termination of patent right due to non-payment of annual fee