CN107458231B - 驱动用于永磁同步马达的逆变电路的控制器和方法 - Google Patents

驱动用于永磁同步马达的逆变电路的控制器和方法 Download PDF

Info

Publication number
CN107458231B
CN107458231B CN201710409417.7A CN201710409417A CN107458231B CN 107458231 B CN107458231 B CN 107458231B CN 201710409417 A CN201710409417 A CN 201710409417A CN 107458231 B CN107458231 B CN 107458231B
Authority
CN
China
Prior art keywords
state
inverter circuit
controller
permanent magnet
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710409417.7A
Other languages
English (en)
Other versions
CN107458231A (zh
Inventor
H.巴布拉詹
T.尚穆加姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Bosch Global Software Technologies Pvt Ltd
Original Assignee
Robert Bosch GmbH
Robert Bosch Engineering and Business Solutions Pvt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Robert Bosch Engineering and Business Solutions Pvt Ltd filed Critical Robert Bosch GmbH
Publication of CN107458231A publication Critical patent/CN107458231A/zh
Application granted granted Critical
Publication of CN107458231B publication Critical patent/CN107458231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0805Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53846Control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及驱动用于永磁同步马达的逆变电路的控制器和方法,提供控制器(100),以驱动用于PMSM(104)的逆变电路(112)。逆变电路(112)通过DC侧电容器(202)连接到电池(114)且在故障条件期间以一种安全状态被驱动。控制器(100)用相应的阈值监测至少一个参数,从而以包括有源短路(SC)和续流(FW)的一种安全状态驱动逆变电路(112)。当处于FW状态时,如果至少一个参数高于相应的阈值,则控制器(100)从FW状态切换至SC状态。当处于SC状态时,控制器(100)控制发动机速度以当定子温度(312)高于阈值温度值(310)时使PMSM(104)达到预定速度。控制器(100)从SC状态切换至FW状态。

Description

驱动用于永磁同步马达的逆变电路的控制器和方法
技术领域
本公开涉及驱动用于车辆中的永磁同步马达(PMSM)的逆变电路的控制器,且具体地涉及用于在故障条件期间控制用于PMSM的逆变电路的操作的方法。
背景技术
在其中诸如永磁同步马达(PMSM)的电动机器总是连接到内燃发动机(IC发动机)的混合***的情形中,只要当IC发动机工作时,PMSM就势必旋转,即使当电动机器不旨在形成转矩时也是如此。如果在逆变器/电动机器或混合***的其他部件中识别出失效/故障,则逆变器必须在包括有源短路(active short circuit,SC)或续流(Freewheel,FW)状态的安全状态中操作。
当以SC状态驱动逆变电路时,PMSM中存在明确的量的空载损耗。但是另一方面,处于SC状态确保电池和逆变电路之间的电流隔离。在FW状态中,由于开关模块的反向并联二极管,逆变电路像三相整流器那样起作用。所以当来自逆变电路的整流电压大于电池电压时,电流从PMSM通过逆变电路流至电池。
然而,如果来自逆变电路的整流电压小于电池电压,则没有电流从PMSM流回电池。处于FW状态不必然保证电池和逆变电路之间的电气隔离。而且,如果在FW状态中,存在从逆变电路至电池的电流,则在PMSM中形成用于为电池充电的一定量的功率。如果来自逆变电路的整流电压小于电池电压,则没有电流从逆变电路流至电池,且因此逆变电路和电池之间存在电流隔离,且损耗最小。
作为安全措施,通常的做法是当识别到失效时使逆变器门驱动器状态成为SC,这是因为SC状态确保高压(HV)电池和逆变器之间的电气隔离的显而易见的原因。在具有高转矩要求的车辆的情形中(像卡车和其他商用车辆一样),由于转子磁通的更高的值,电动机器将具有高的空载损耗。需要形成高转矩的电动机器设计有高转子磁通值,以便形成更多转矩。转子磁通的更高的值引起高的空载损耗。空载损耗主要由铜损、涡流损耗和磁滞损耗构成。铁损(涡流和磁滞损耗)与转子磁通成比例。铜损(I2R)依赖于机器中的电流(在SC模式操作期间是高的)。
此外,商用车辆通常在不停车的情况下长途行驶。长时间使逆变电路处于SC状态引起电动机器变热,因为存在流动通过其绕组的高电流。温度的这种上升能够潜在地损坏定子中的某些部分,且最终导致电动机器自身的损坏。因为,电动机器直接联接到IC发动机(如在轻度混合的情形中那样),所以机器不能与轴分离,且因此其势必与现在形成转矩的IC发动机一起旋转。
因此,简而言之,只要当在混合***中遭遇失效时,就迫使逆变器在SC状态中操作,这增大了电动机器的空载损耗和温度。但是,长时间保持处于SC状态是不合适的,原因在于由于空载损耗,电动机器中将存在温度上升。在其中电动机器直接联接到IC发动机的车辆中,当***处于SC状态非常长的时间时,由于空载损耗,电动机器很可能被损坏。
专利文献DE102013226560公开了用于操作电动机器的装置和方法。本发明导致从电动机器的空转模式至有源短路模式的改善的切换。从空转模式至有源电气短路模式的切换被延迟,直到在电动机器的外部终端上已经达到预定的电压条件为止,或者直到电动机器的转子处于对应于所需的电压条件的预定位置为止。
需要提供一种有效的方法,以便在故障条件下要求逆变器处于安全状态中的情形中,决定逆变器应当在何种安全状态上操作。
此外,在电动机器中,需要使温度上升和负转矩最小化。
附图说明
参考以下附图描述本发明的实施例,
图1图示根据本公开的实施例的混合动力车辆的示意图;
图2图示根据本公开的实施例的用于永磁马达同步马达(PMSM)的逆变电路;
图3根据本公开的实施例通过波形图示逆变电路在SC状态和FW状态之间的切换,以及
图4图示根据本公开的实施例的用于控制PMSM的逆变电路的方法。
具体实施方式
图1图示根据本公开的实施例的混合动力车辆的示意图。混合动力车辆被示出为具有动力系拓扑结构(串联或并联),其中,电动机器总是连接到IC发动机102轴或与IC发动机102轴一起旋转。在本公开中,电动机器是永磁马达同步马达(PMSM)104。IC发动机102连接到PMSM 104。如在本领域中公知的那样,诸如离合器106的转矩传输装置通过差速齿轮108将变速器轴联接至车轮110。由于联接的类型,即使当PMSM 104或电动机器不旨在形成转矩时,PMSM 104也势必与IC发动机102一起旋转。
提供发动机/电子控制单元(ECU)(未示出)以控制IC发动机102的操作。同一ECU还配置成也驱动PMSM 104。替代地,提供与ECU分离/独立的控制器100以驱动PMSM 104,且通过有线或无线器件与ECU通信。考虑提供单个控制器100以便控制IC发动机102的操作和驱动逆变电路112。逆变电路112连接在PMSM 104和电池114之间。逆变电路112中的如图2中所示的半导体开关210-220由控制器100选择性地控制,以从电池114向PMSM 104供应动力。
图2图示根据本公开的实施例的用于永磁马达同步马达(PMSM)的逆变电路。针对三相电气***示出逆变电路112。在具有逆变电路112的元件/部件的必要和显而易见的改变的情况下,本公开可适用于多相电气***。逆变电路112被示出为连接到电池114的正端子和负端子。逆变电路112将来自电池114的DC输入转换成AC输出222。AC输出222连接和供应到PMSM 104。直流支撑电容器(DC link capacitor)202帮助对DC输入进行滤波。直流支撑电容器使直流支撑电压平滑,即,在没有直流支撑电容器的情况下,存在许多开关谐波(switching harmonic)。额外地,直流支撑电容器改善了电动机器的瞬态响应。逆变电路112针对三个相U 204、V 206和W 208包括六个二极管。在每个二极管上设置半导体开关210、212、214、216、218和220。半导体开关包括但不限于BJT、FET、IGBT、晶闸管等。
控制器100通过包括多个输入/输出(I/O)端口/插脚的I/O接口电气地连接到逆变电路112。控制器100还包括通过总线与I/O接口通信的存储器元件和处理器。控制器100的I/O端口连接到半导体开关210-220。控制器100还从测量温度、电池电压、直流支撑电容器202的电压、发动机速度、PMSM 104的速度等的各种传感器或其他电路接收输入。控制器100的存储器元件存储指令,以在车辆驾驶的各种阶段下按照要求控制或驱动逆变电路112。当不存在故障时,控制器100以适当的开关驱动逆变电路112。但是当检测到故障时,在安全状态中的一种中驱动逆变电路112。安全状态包括有源短路(SC)和续流(FW)。SC状态是用于混合动力***的安全状态中的一种,其中,逆变电路112的所有顶部开关210-214或者所有底部开关216-220被打开/关闭。在FW状态中,开关210-220中没有一个被给予选通脉冲,且因此,所有开关210-220均关闭。代替控制器100,也能够使用专用集成电路(ASIC)。
控制器100被配置成使得只要当检测到故障或异常或失效时,就基于至少一个参数的状态,在SC状态和FW状态中交替地驱动逆变电路112。控制器100还监测PMSM 104的温度,以决定在SC状态和FW状态之间切换,以及反之。
根据本公开的实施例,提供控制器100以驱动用于车辆中的永磁同步马达(PMSM)104的逆变电路112。逆变电路112通过直流支撑电容器202连接到电池114,且在故障条件期间以一种安全状态被驱动。安全状态包括有源短路(SC)状态和续流(FW)状态。控制器100适于用相应的阈值监测至少一个参数,以在安全状态中的一种中驱动逆变电路112。通过监测,控制器100连续地将在I/O端口处接收到的至少一个参数的值与存储在存储器元件中的阈值相比较。当逆变电路112在FW状态中操作时,控制器100连续地将至少一个参数与相应的阈值相比较,且如果至少一个参数高于相应的阈值,则从FW状态切换至SC状态。
但是当逆变电路112在SC状态中操作时,控制器100控制发动机速度,以在检测到定子温度(312)高于阈值温度值(310)时,使PMSM 104达到预定速度,且从所述SC状态切换至FW状态。参考图3,当以SC状态驱动逆变电路112时,控制器100用阈值温度值310监测定子温度312。当检测到定子温度312高于阈值温度值310时,控制器100然后控制发动机速度以使PMSM 104达到预定速度。控制器100从SC状态切换到FW状态,且以FW状态驱动逆变电路112。
该至少一个参数选自包括由于由PMSM 104生成的逆变电路112的整流输出产生的直流支撑电容器202的电压值308(在图3中示出)和PMSM 104的速度的组。根据本公开的实施例,在不使用相应的传感器或电路的情况下,估计该至少一个参数。
在不在逆变电路112中诱发瞬态的情况下,PMSM 104的预定速度对应于从SC状态切换至FW状态的安全速度。
基于所述至少一个参数,逆变电路112的操作从SC状态切换回FW状态。根据本公开的实施例,直流支撑电容器202在SC状态中放电。当逆变电路112被切换至FW状态时,直流支撑电容器202在SC状态中的放电减少直流支撑电压中观察到的瞬态。
图3根据本公开的实施例通过波形图示逆变电路在SC状态和FW状态之间的切换。图3包括三个波形/图表。图表336是电压相对时间。Y轴302指示在FW状态中由于逆变电路112的整流输出产生的直流支撑电容器202的电压。图表338是温度相对时间。Y轴302指示在SC状态中PMSM 104的定子温度312。图表340是切换信号相对时间。Y轴302代表切换,其包括在SC状态和FW状态之间的过渡。图表336、图表338和图表340的X轴对应于具有合适的单位的时间且分别由304标记。
在图表340中,直到时间320为止,在混合动力***中不存在故障,且由来自控制器100的脉冲宽度调制(PWM)信号314适当地驱动逆变电路112。PMSM 104的定子的温度也是正常的。在时间320处,在混合动力***中发生故障,且控制器100检测到该故障。替代性地,控制器100接收用于启用安全状态的请求。控制器100用相应的阈值306检查至少一个参数,即,测量直流支撑电容器202的电压和/或PMSM 104的速度,且与存储在控制器100的存储器元件中的相应阈值306相比较。直接使用PMSM 104的速度,或者指示PMSM 104的速度的电压被用作该参数。用参考电压/阈值电压306检查直流支撑电容器202的实时电压308。替代性地,如果PMSM 104的速度被用作参数,则使用阈值速度。因为电压值308低于阈值电压306,所以控制器100向半导体开关210-220发送控制/命令信号,并且以FW状态作为第一状态驱动逆变电路112。如果电压值308大于阈值电压306,那么控制器100用适当的切换信号以SC状态作为第一状态操作逆变电路112。
现在,控制器100以FW状态驱动/操作逆变电路112,直到至少一个参数超过/越过相应阈值为止。控制器100向逆变电路112发送信号316,以便过渡至FW状态。在时间322处,控制器100检测到直流支撑电容器202的实时电压值308,其由于逆变电路112的整流输出已经超过(或者将要超过)阈值电压值306。如由信号318所指示的那样,半导体开关210-220直接从FW状态切换至SC状态。控制器100向半导体开关210-220发送对应的切换信号,从而以SC状态驱动逆变电路112。
根据本公开的实施例,在SC状态期间使直流支撑电容器202放电。从电压值308在时间322和时间324之间变成零,放电是显而易见的。
控制器100继续以SC模式驱动逆变电路112,直到PMSM 104的温度或定子温度312超过相应的温度阈值为止。在时间326处,检测到定子温度312超过安全温度值或阈值温度值310。该检测触发了从SC状态过渡至FW状态的必要。控制器100开始准备从SC状态过渡至FW状态,因为该过渡必须在PMSM 104的预定速度下完成,以避免或防止在电气网络/连接中的任何瞬态。具体地,至FW状态的过渡必须不导致直流支撑电容器202的电压值308上升到阈值电压306以上。因此,通过控制发动机速度,控制器100降低了PMSM 104的速度。控制器100或者通过必要的燃料喷射和燃烧参数直接控制发动机速度,或者与车辆的ECU通信。在时间326和时间330之间示出过渡阶段。在时间330处,控制器100从SC状态切换至FW状态。一旦状态改变,定子温度312就开始下降,因此确保PMSM 104不被酷热损坏。附图标记334标记某一时间段的状态的连续性,且必须不以限制性的意义被理解。在此,逆变电路112在SC状态中等待,直到电动机器中的温度上升超出阈值为止。在点330处,由于电动机器温度超过安全值,所以使逆变电路112移动到FW状态。在FW状态中,逆变电路112像三相全桥整流器那样表现。由于速度减少到更低的值,因此直流支撑电容器202初始地被充电到小于阈值的值。只要当直流支撑电容器202处的电压小于来自逆变电路112的整流电压,就出现从电动机器至直流支撑电容器202的电流。如果直流支撑电压值308再次被检测为越过阈值电压306,则控制器100切换到SC状态并且该过程重复。
在本公开的实施例中,如果在估计或测量至少一个参数和/或定子温度312中存在误差,则控制器100默认以SC状态驱动逆变电路112。
图4根据本公开的实施例图示用于控制PMSM的逆变电路的方法。提供一种用于驱动用于车辆中的永磁同步马达(PMSM)104的逆变电路112的方法。逆变电路112通过直流支撑电容器202连接到电池114。在故障条件期间,以一种安全状态驱动逆变电路112。安全状态包括有源短路(SC)状态和续流(FW)状态。步骤402包括用相应的阈值监测至少一个参数,从而以安全状态中的一种驱动逆变电路112。在步骤404中做出决定,其关于逆变电路112必须初始地被驱动到哪一种安全状态。当以FW状态操作逆变电路112时,步骤406包括将至少一个参数与相应的阈值连续地相比较。步骤406继之以步骤410,其包括从FW状态切换至SC状态。步骤408包括检查条件,步骤410基于该条件执行,即,安全状态从FW状态切换至SC状态。条件包括至少一个参数是否高于相应阈值。如果不满足该条件,则重复步骤406,否则执行步骤410。
当以SC状态操作逆变电路112时,步骤412包括监测和检测定子温度312高于相应的阈值温度值310。如果步骤412的决定是“否”,则步骤412重复。如果是“是”,则下一个步骤414包括控制发动机速度,以当定子温度(312)被检测为高于所述阈值温度值(310)时,使PMSM 104达到预定速度。一旦达到预定速度,步骤416就包括从SC状态切换至FW状态。
该至少一个参数选自包括由于来自PMSM 104的整流输出产生的直流支撑电容器202的电压值308和PMSM 104的速度的组。使PMSM 104的速度降低至预定速度,以从SC状态安全地切换至FW状态。控制器100等待直到定子温度312达到阈值温度值310。阈值温度值310对应于安全值,所述安全值来自考虑温度上升的速率和最大温度(PMSM 104在不被损坏的情况下工作直到该最大温度)的测试。控制器100控制IC发动机102,使得PMSM 104的速度减少到低于速度阈值,在低于该速度阈值的情况下,在不在逆变电路112的直流支撑电容器202中引入严重的瞬态的情况下,过渡到FW状态是安全的。
在FW状态中,PMSM 104冷却,因为在PMSM 104的绕组内不存在电流。基于至少一个参数的监测执行从FW状态返回SC状态的切换。在FW状态至SC状态之间的切换(以及反之)继续防止对PMSM 104的损坏。
用于控制逆变电路112的方法还包括当以SC状态驱动逆变电路112时对直流支撑电容器202进行放电。基于IC发动机102的工作,直流支撑电压和PMSM 104的速度增大。
根据本公开的实施例,控制器100使作为安全状态的FW状态的使用最大化,使得避免了PMSM 104中的温度上升。此外,控制器100确保PMSM 104中的铜损最小,并且也防止由PMSM 104形成的负转矩。由于在没有定子电流的FW状态中,仅存在磁心损耗和摩擦损耗,因此由电动机器和转矩消耗的功率相比于SC状态(其中,由于电动机器中的高电流,发生更多损耗)更少。电池114是车辆的高压电池或外部电池。由控制器100避免在机器中发生不必要的加热和损耗。由于当相比于SC状态的转矩要求时,FW状态中的转矩要求是可忽略的,所以当以FW状态操作逆变电路112时,IC发动机102承担相对更少的负载。当逆变电路112处于FW状态时,避免了PMSM 104的潜在损坏,因为仅存在可忽略的温度上升。只要当PMSM 104处于安全状态时,控制器100就在车辆的轻度和其他混合动力***中防止PMSM 104的失效。
由于像卡车一样的商用车辆在公路上几乎以相同速度运动,因此对于加速的需要可能不会持续600秒,这提供了只要当在逆变器中识别到故障时,就推动施加在IC发动机上的速度极限的余地(scope)。这意味着,在不实现本公开的情况下,在逆变电路112的不重要的失效的情况下(诸如但是不限于通信失效、电流传感器失效等),车辆必须立即停止以便修理。但是在实现本公开的情况下,在不损坏电动机器或逆变电路112的情况下,车辆能够行驶/被驾驶至服务站或甚至数英里外的目的地。
应当理解的是,在上文的说明书中解释的实施例仅是说明性的且不限制本发明的范围。预见到了许多这种实施例和在说明书中所解释的实施例中的其他修改和改变。本发明的范围仅由权利要求的范围限制。

Claims (6)

1.一种用于驱动用于车辆中的永磁同步马达(PMSM)(104)的逆变电路(112)的方法,所述逆变电路(112)通过直流支撑电容器(202)连接到电池(114),且在故障条件期间以一种安全状态被驱动,所述安全状态包括有源短路(SC)状态和续流(FW)状态,其特征在于,所述方法包括如下步骤:
-用相应的阈值监测由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的电压,从而以所述安全状态中的一种驱动所述逆变电路(112),和
-当以所述续流状态操作所述逆变电路(112)时,连续地将由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的所述电压与相应的阈值相比较,并且如果由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的所述电压高于所述相应的阈值,则从所述续流状态切换至所述有源短路状态,
-当以所述有源短路状态操作所述逆变电路(112)时,控制发动机速度以当检测到定子温度(312)高于所述阈值温度值(310)时,使所述永磁同步马达(104)达到预定速度,且当达到所述预定速度时,从所述有源短路状态切换至所述续流状态。
2.根据权利要求1所述的方法,其特征在于,使所述永磁同步马达(104)的速度降低到预定速度,以从所述有源短路状态安全地切换至所述续流状态而不诱发瞬态。
3.根据权利要求1所述的方法,其特征在于,还包括当以所述有源短路状态驱动所述逆变电路(112)时,使所述直流支撑电容器(202)放电。
4.一种控制器(100),其用于驱动用于车辆中的永磁同步马达(PMSM)(104)的逆变电路(112),所述逆变电路(112)通过直流支撑电容器(202)连接到电池(114),且在故障条件期间以一种安全状态被驱动,所述安全状态包括有源短路(SC)状态和续流(FW)状态,
其特征在于:
所述控制器(100)适应于:
用相应的阈值(306)监测由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的电压,从而以所述安全状态中的一种驱动所述逆变电路(112),和
当以所述续流状态操作所述逆变电路(112)时,
连续地将由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的所述电压与相应的阈值相比较,和
如果由于来自所述永磁同步马达(104)的整流输出产生的直流支撑电容器(202)的所述电压高于所述相应的阈值,则从所述续流状态切换至所述有源短路状态,
当以所述有源短路状态操作所述逆变电路(112)时,
控制发动机速度,以当检测到定子温度(312)高于所述阈值温度值(310)时,使所述永磁同步马达(104)达到预定速度,和
当达到所述预定速度时,从所述有源短路状态切换至所述续流状态。
5.根据权利要求4所述的控制器(100),其特征在于,所述永磁同步马达(104)的预定速度对应于安全速度,以在不在所述逆变电路(112)中诱发瞬态的情况下从所述有源短路状态切换至所述续流状态。
6.根据权利要求4所述的控制器(100),其特征在于,在所述有源短路状态中使所述直流支撑电容器(202)放电。
CN201710409417.7A 2016-06-03 2017-06-02 驱动用于永磁同步马达的逆变电路的控制器和方法 Expired - Fee Related CN107458231B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201641019066 2016-06-03
IN201641019066 2016-06-03

Publications (2)

Publication Number Publication Date
CN107458231A CN107458231A (zh) 2017-12-12
CN107458231B true CN107458231B (zh) 2022-09-27

Family

ID=60327791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710409417.7A Expired - Fee Related CN107458231B (zh) 2016-06-03 2017-06-02 驱动用于永磁同步马达的逆变电路的控制器和方法

Country Status (3)

Country Link
US (1) US10110154B2 (zh)
CN (1) CN107458231B (zh)
DE (1) DE102017207886A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180085327A (ko) * 2017-01-18 2018-07-26 현대모비스 주식회사 3상 모터 구동 회로
CN108696226B (zh) * 2018-06-01 2020-07-07 阳光电源股份有限公司 一种电机控制器
CN108944571B (zh) * 2018-07-04 2020-07-24 北京新能源汽车股份有限公司 车载电机的安全控制方法、***及车辆
CN111619351B (zh) * 2019-02-28 2022-04-12 北京新能源汽车股份有限公司 一种安全状态控制方法、装置及汽车
US11128251B1 (en) 2020-04-29 2021-09-21 The Boeing Company Fault-tolerant power system architecture for aircraft electric propulsion
DE102020112940A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Synchronmaschine
JP7463213B2 (ja) 2020-06-29 2024-04-08 株式会社東芝 インバータ装置
CN112060914B (zh) * 2020-09-27 2022-07-26 苏州汇川联合动力***有限公司 驱动电机控制器状态切换电路、控制方法及电机控制器
DE102021204933A1 (de) * 2021-05-17 2022-11-17 Zf Friedrichshafen Ag Verfahren und Steuergerät zur Steuerung eines aktiven Kurzschlusses bei einer permanentmagneterregten Elektromaschine
DE102021208438A1 (de) * 2021-08-04 2023-02-09 Zf Friedrichshafen Ag Verfahren zur Steuerung des Betriebs einer elektrischen Maschine eines Kraftfahrzeugs
TWI800328B (zh) 2021-10-15 2023-04-21 台達電子工業股份有限公司 程式燒錄裝置及其電流保護檢測方法
DE102022201381A1 (de) 2022-02-10 2023-08-10 Zf Friedrichshafen Ag Sicherer Zustand eines Stromrichters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949906B2 (en) * 2001-05-17 2005-09-27 Stmicroelectronics S.R.L. Driving circuit and method for preventing voltage surges on supply lines while driving a DC motor
JP2007267544A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 電気車制御装置
JP2011201370A (ja) * 2010-03-25 2011-10-13 Aisin Aw Co Ltd ハイブリッド車輌の制御装置
CN102802997A (zh) * 2010-06-28 2012-11-28 株式会社东芝 车辆控制***
CN104024038A (zh) * 2011-11-10 2014-09-03 罗伯特·博世有限公司 用于触发电机的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003254A1 (de) * 2006-01-24 2007-07-26 Robert Bosch Gmbh Verfahren zum Abschalten einer elektrischen Maschine im Falle einer Störung
JP2007245966A (ja) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd 車両用駆動制御装置
DE102009055055A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zur Fehlererkennung bei einer durch einen Wechselrichter angesteuerten elektrischen Maschine in einem Kraftfahrzeug und Vorrichtung zur Überwachung eines Betriebs der elektrischen Maschine
DE102013213044A1 (de) * 2013-07-04 2015-01-08 Voith Patent Gmbh Permanentmagneterregte Elektromaschine
DE102013226564A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer elektrischen Maschine
DE102013226560A1 (de) 2013-12-19 2015-06-25 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer elektrischen Maschine
DE102014208747A1 (de) * 2014-05-09 2015-11-12 Robert Bosch Gmbh Verfahren zum Wechsel eines Betriebszustands einer elektrischen Maschine und Vorrichtung zum Betriebszustandswechsel einer elektrischen Maschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949906B2 (en) * 2001-05-17 2005-09-27 Stmicroelectronics S.R.L. Driving circuit and method for preventing voltage surges on supply lines while driving a DC motor
JP2007267544A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 電気車制御装置
JP2011201370A (ja) * 2010-03-25 2011-10-13 Aisin Aw Co Ltd ハイブリッド車輌の制御装置
CN102802997A (zh) * 2010-06-28 2012-11-28 株式会社东芝 车辆控制***
CN104024038A (zh) * 2011-11-10 2014-09-03 罗伯特·博世有限公司 用于触发电机的方法和装置

Also Published As

Publication number Publication date
CN107458231A (zh) 2017-12-12
US20170353140A1 (en) 2017-12-07
US10110154B2 (en) 2018-10-23
DE102017207886A1 (de) 2017-12-07

Similar Documents

Publication Publication Date Title
CN107458231B (zh) 驱动用于永磁同步马达的逆变电路的控制器和方法
US10505439B2 (en) Inverter for an electric automobile
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
US10351002B2 (en) Inverter control device and vehicle control device
JP5735782B2 (ja) ハイブリッド自動車の充電装置及び方法
CN111319467B (zh) 车辆的电源***
CN104426451B (zh) 用于电机的驱动电路
US20140049215A1 (en) Method for monitoring the charging mode of an energy store in a vechile and charging system for charging an energy store in a vechile
JP3724344B2 (ja) 電動機制御装置
US20190020263A1 (en) Power conversion device
CN111038261A (zh) 拖车保护方法
CN112715002B (zh) 用于逆变器的控制装置,用于异步电机的逆变器,用于操作逆变器的车辆及方法
CN112693314B (zh) 车辆的电源***
JP7326440B2 (ja) コンバータ装置、産業機械
EP3644485B1 (en) Control of an electrical power system responsive to sensing a ground fault
JP2008283840A (ja) 動力システムおよびその制御方法並びに車両
CN114389236A (zh) 功率转换装置
JP5861602B2 (ja) 電力変換システム
JP7201488B2 (ja) インバータ保護装置
CN112868155B (zh) 电源电路、包括该电源电路的马达驱动电路以及包括该电源电路或该马达驱动电路的冷冻装置
JP5269567B2 (ja) 電動機の制御装置及び車両
KR20210099653A (ko) 발전기로서 작동하는 전기 회전 머신을 제어하는 방법 및 컷오프 시 네트워크 전압을 감소시키기 위한 대응하는 제어 시스템
CN117155216A (zh) 用于运行尤其机动车辆中的电机的方法和机动车辆
JP2015128358A (ja) 電力変換装置、及びモータ駆動装置
CN116788047A (zh) 车辆的控制方法、装置、车辆和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220927