CN107453663A - A kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods - Google Patents

A kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods Download PDF

Info

Publication number
CN107453663A
CN107453663A CN201710671457.9A CN201710671457A CN107453663A CN 107453663 A CN107453663 A CN 107453663A CN 201710671457 A CN201710671457 A CN 201710671457A CN 107453663 A CN107453663 A CN 107453663A
Authority
CN
China
Prior art keywords
msub
mrow
mfrac
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710671457.9A
Other languages
Chinese (zh)
Other versions
CN107453663B (en
Inventor
郑晓明
米增强
余洋
马云凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201710671457.9A priority Critical patent/CN107453663B/en
Publication of CN107453663A publication Critical patent/CN107453663A/en
Application granted granted Critical
Publication of CN107453663B publication Critical patent/CN107453663B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The present invention relates to a kind of mechanical elastic energy storage PMSM parameter adaptive method for controlling speed regulation, establish the mathematical modeling for the mechanical elastic energy storage system being connected in sequence by mechanical elastic energy storage case, PMSM, inverter, using rotating speed, stator current as virtual controlling variable, i is pushed away with reference to counterd=0 vector controlled and torque, rotary inertia adaptive control laws, voltage controller is devised, obtains stator voltage equation under d, q coordinate system, the PMSM operations of control Driven by inverter, this control program can ensure that energy-storage system has preferably static and dynamic property, and have stronger antijamming capability.

Description

A kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods
Technical field
The present invention relates to PMSM parameter adaptive speed regulating methods, category are driven during a kind of mechanical elastic energy storage system stored energy In technical field of motors.
Background technology
Mechanical elastic energy storage system stored energy element is mechanical elastic energy storage case, torque and rotary inertia be present in thermal energy storage process Disturbance, causes drive device permagnetic synchronous motor PMSM's (Permanent Magnet Synchronous Motor, PMSM) There is certain fluctuation in rotating speed, can cause the efficiency and service life reduction of system.Existing control technology generally passes through identification algorithm Energy-storage box load real-time parameter is obtained, then carries out the control of next step.This way not only results in the increasing of control system amount of calculation Greatly, Identification Errors can also be introduced.Influence of the Identification Errors to control performance need to be suppressed by adaptive algorithm, amount of calculation will be entered One step increases, and control system is extremely complex.
The content of the invention
The purpose of the present invention is the characteristics of being directed to mechanical elastic energy storage system and the deficiency of existing speed regulating control technology, there is provided A kind of PMSM parameter adaptives speed regulating method, to ensure that system stored energy process is steadily efficient.
Problem of the present invention is achieved through the following technical solutions:
A kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods.Methods described is initially set up by mechanical elastic energy storage The mathematical modeling for the mechanical elastic energy storage system that case, PMSM, inverter are connected in sequence;Then in conjunction with adaptive control laws and It is counter to push away control algolithm, the voltage governing equation of PMSM driving inverters is obtained, Li Yapunuo is observed in the design of whole control algolithm Husband's stability criterion, system global convergence.
Above-mentioned PMSM parameter adaptives speed regulating method, the described method comprises the following steps:
A. according to each part characteristic of mechanical elastic energy storage system, mechanical elastic energy storage systematic mathematical mould is established Type:
TL=T0+kTωt
ψdf+Lid
ψq=Liq
Te=1.5npψfiq
Wherein, ud, uq, respectively stator d, q shaft voltages;id, iqRespectively stator d, q shaft current;R is stator resistance;L For stator inductance;npFor number of pole-pairs;ω is motor angular velocity of rotation;ψfFor rotor flux;ψd, ψqRespectively stator magnetic linkage is in d, q The component of axle;JeRotary inertia when being discharged completely for whirlpool spring, nsFor the total energy storage number of turns of whirlpool spring.TLFor energy-storage box torque;T0For Energy-storage box initial moment;TeFor electromagnetic torque;kTThe slope changed for energy-storage box torque with corner;J is rotary inertia;B is viscosity Coefficient of friction;Define ψsFor ψdAnd ψqQuadratic sum.
B. adaptive speed regulation algorithm:
udref=Rid+Lnpωiq-k3Led
Wherein, ωref、idref、iqrefIt is rotating speed, the reference value of d, q shaft current respectively;eω、ed、eqIt is rotating speed, d, q respectively The tracking error of electric current;udref、uqrefIt is inverter input d, q shaft voltage reference value respectively;J、TLFor nominal value,For Actual value, Δ J, Δ TLFor deviation, k1、k2、k3、r1、r2For positive control gain.
C is by control voltage udAnd uqReference value is input to PMSM mathematical modelings, realizes the adaptive speed regulation control to thermal energy storage process System.
The advantages of the present invention:
1st, the present invention has used for reference that traditional PMSM is counter to push away speed regulating control, introduces torque and the Self Adaptive Control of rotary inertia Rule, control system is succinctly efficient, can make a good job of the speed regulating control of energy-storage system.
2nd, speed regulating method of the present invention can effectively suppress influence of the load parameter disturbance to system rotating speed, while succinct high Effect, ensure that thermal energy storage process is steadily carried out under the low speed.
Brief description of the drawings
The invention will be further described below in conjunction with the accompanying drawings.
Fig. 1 is parameter adaptive governor system control block diagram;
Fig. 2 is PMSM rotating speeds;
Fig. 3 is PMSM stator q shaft currents;
Fig. 4 is PMSM stator d shaft currents;
Each symbol is in text:ud, uqRespectively stator d, q shaft voltage;id, iqRespectively stator d, q shaft current;R is stator Resistance;L is stator inductance;npFor number of pole-pairs;ω is motor angular velocity of rotation;ψfFor rotor flux;ψd, ψqRespectively stator magnet Chain is in d, the component of q axles;JeRotary inertia when being discharged completely for whirlpool spring, nsFor the total energy storage number of turns of whirlpool spring.TLTurn for energy-storage box Square;T0For energy-storage box initial moment;TeFor electromagnetic torque;kTThe slope changed for energy-storage box torque with corner;J is rotary inertia; B is viscosity friction coefficient;Define ψsFor ψdAnd ψqQuadratic sum;ωref、idref、iqrefIt is the reference of rotating speed, d, q shaft current respectively Value;eω、ed、eqIt is rotating speed, the tracking error of d, q electric current respectively;udref、uqrefIt is inverter input d, q shaft voltage reference respectively Value;J、TLFor nominal value,For actual value, Δ J, Δ TLFor deviation, k1、k2、k3、r1、r2For positive control gain.
Embodiment
The present invention is realized by following technical scheme:
1. mechanical elastic energy storage system mathematic model
Mechanical elastic energy storage system control block figure is as shown in figure 1, inverter under the method for controlling speed regulation of the present invention, drives The steady high-efficiency energy-storage that PMSM is realized.
Mathematical modelings of the PMSM under d, q axis coordinate system can be written as:
Stator current equation
Stator magnetic linkage equation
Equation of rotor motion
Electromagnetic torque equation
Te=1.5npψfiq (4)
In formula:ud, uq, respectively stator d, q shaft voltages;id, iqRespectively stator d, q shaft current;R is stator resistance;L For stator inductance;npFor number of pole-pairs;ω is motor angular velocity of rotation;ψfFor rotor flux;ψd, ψqRespectively stator magnetic linkage is in d, q The component of axle;TLFor energy-storage box torque;TeFor electromagnetic torque;J is rotary inertia;B is viscosity friction coefficient;Define ψsFor ψdAnd ψq Quadratic sum;
Mechanical elasticity case can pass through torque T as energy-storage units, its mathematical modelingLIt is described by with rotary inertia J, its In, torque TLAs shown in formula (5):
TL=T0+kTωt (5)
Wherein, T0For energy-storage box initial moment, ω is PMSM drive shaft speeds, kTIt it is one normal for energy-storage box moment coefficient Amount, is determined, t by the inherent characteristic (fixed elasticity of spring leaf modulus, width, thickness and length such as in energy-storage box) of energy-storage box For time, JeRotary inertia when being discharged completely for energy-storage box, nsFor the total energy storage number of turns of energy-storage box,For actual value, ΔJ、ΔTLFor deviation.
2. speed-adjusting and control system designs
To ensure the global asymptotic convergence of system rotating speed, it is first control object to select energy-storage box rotating speed, definition control first Error processed is:
Choose eωFor virtual controlling variable, subsystem is formed, it is assumed that ωrefFor constant, its derivation can be obtained:
In order to rotating speed can accurate trace command value, if iqFor virtual master function, following Lee is constructed for subsystem (9) Ya Punuofu functions
To its derivation, can obtain:
In order that formula (11) is negative, following virtual master function is selected
Wherein, k1> 0, to control gain.According to setting above:iq=iqref-eq,Brought into reference to (12) Formula (11) can obtain:
To realize that q shaft currents track, subsystem is defined as follows:
Following liapunov function is constructed for subsystem (14)
To formula (15) derivation, and bring intoIt can obtain
Actual control variable u is contained in formula (16)q, in order that formula (16) is negative, defining q shaft voltage reference values is
Wherein, k2> 0, to control gain.Bringing formula (17) into formula (16) can obtain:
To realize that d shaft currents track, subsystem is defined as follows:
Assuming that idref=0, construct following liapunov function for subsystem (19)
To formula (20) derivation
Actual control variable u is contained in formula (21)d, in order that formula (21) is negative, defining d shaft voltage reference values is
udref=Rid+Lnpωiq-k3Led (22)
Wherein, k3> 0, to control gain.Bringing formula (22) into formula (21) can obtain:
In order that formula (23) perseverance is negative, designs adaptive control laws and define liapunov function
Its derivation can be obtained
Adaptive control laws are ultimately set to
Wherein r1、r2For Self Adaptive Control coefficient, be on the occasion of.Bringing formula (26) into formula (25) can obtain:
Due to V boundeds, according to Barbalat theorems, can obtain:
Therefore, closed-loop system is asymptotically stability.
Examples of implementation
Software emulation analysis is controlled to the control method of proposition.PMSM parameter is:Stator phase resistance Rs=2.875 Ω;Stator inductance L=0.033H;Permanent magnet magnetic flux ψf=0.38Wb;Rotor number of pole-pairs np=3;Viscous damping coefficient Bm=0N/ rad/s.Controller parameter is chosen as follows:k1=100, k2=1000, k3=5, r1=0.005, r2=0.002 simulation step length is set For 0.0001min, run time 10min.
PMSM speed references are:0~4s is 2r/min, and 4~7s is 2.6r/min, and 7~10s is 1.9r/min according to being System and controller parameter, can be obtained:
udref=2.875id+0.099ωiq-1.65ed
The simulation experiment result is as shown in figs. 2 to 4.Fig. 2 is system speed curves, it can be seen that system rotating speed can be quick Reference rotation velocity is followed, the rise time is fast, non-overshoot.Fig. 3 is stator q shaft currents, with the progress of thermal energy storage process, stator current line Property increase, rotating speed mutation 4s and 7s, stator current has a mutation therewith, but can return to set-point.Fig. 4 is stator d Shaft current, stable control can also be then restored to steady-state value soon in 0 value, the 4s and 7s being mutated in rotating speed there is also a mutation.

Claims (2)

1. a kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods, are established by mechanical elastic energy storage case, PMSM, inverter The mathematical modeling for the mechanical elastic energy storage system being connected in sequence, it is characterised in that:Using rotating speed, stator current as virtual controlling Variable, i is pushed away with reference to counterd=0 vector controlled and torque, rotary inertia adaptive control laws, devise voltage controller, obtain d, Stator voltage equation under q coordinate systems, control Driven by inverter PMSM are run, and stator voltage equation is under described d, q coordinate system:
udref=Rid+Lnpωiq-k3Led
<mrow> <msub> <mi>u</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Ri</mi> <mi>q</mi> </msub> <mo>+</mo> <msub> <mi>Ln</mi> <mi>p</mi> </msub> <msub> <mi>&amp;omega;i</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> <mi>&amp;omega;</mi> <mo>+</mo> <mfrac> <mi>L</mi> <mover> <mi>J</mi> <mo>^</mo> </mover> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> </mrow> </mfrac> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>e</mi> <mi>q</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;Delta;</mi> <msub> <mover> <mi>T</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>L</mi> </msub> <mover> <mi>J</mi> <mo>^</mo> </mover> </mrow> <mrow> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>T</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>L</mi> </msub> <mo>=</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mi>&amp;omega;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>q</mi> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>J</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>e</mi> <mi>q</mi> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mi>&amp;Delta;</mi> <msub> <mover> <mi>T</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>L</mi> </msub> <mo>+</mo> <msub> <mover> <mi>i</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>q</mi> </msub> <msub> <mi>e</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mi>&amp;omega;</mi> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mi>&amp;omega;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>i</mi> <mi>d</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mi>q</mi> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mover> <mi>J</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>J</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>J</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mi>T</mi> <mi>L</mi> </msub> </mtd> </mtr> </mtable> </mfenced>
Wherein:ud, uqRespectively stator d, q shaft voltage;id, iqRespectively stator d, q shaft current;R is stator resistance;L is stator Inductance;npFor number of pole-pairs;ω is motor angular velocity of rotation;ψfFor rotor flux;ψd, ψqRespectively stator magnetic linkage is in d, point of q axles Amount;JeRotary inertia when being discharged completely for whirlpool spring, nsFor the total energy storage number of turns of whirlpool spring.TLFor energy-storage box torque;T0For energy-storage box Initial moment;TeFor electromagnetic torque;kTThe slope changed for energy-storage box torque with corner;J is rotary inertia;B is viscous friction system Number;Define ψsFor ψdAnd ψqQuadratic sum;ωref、idref、iqrefIt is rotating speed, the reference value of d, q shaft current respectively;eω、ed、eqPoint It is not rotating speed, the tracking error of d, q electric current;udref、uqrefIt is inverter input d, q shaft voltage reference value respectively;J、TLTo be nominal Value,For actual value, Δ J, Δ TLFor deviation, k1、k2、k3、r1、r2For positive control gain.
2. mechanical elastic energy storage PMSM parameter adaptive speed regulating methods according to claim 1, it is characterised in that:Mechanical elastic Property energy-storage system mathematical modeling:
TL=T0+kTωt
<mrow> <mi>J</mi> <mo>=</mo> <msub> <mi>J</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>&amp;omega;</mi> <mi>t</mi> </mrow> <msub> <mi>n</mi> <mi>s</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <mrow> <msub> <mi>di</mi> <mi>q</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;omega;i</mi> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> </mrow> <mi>L</mi> </mfrac> <mi>&amp;omega;</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <msub> <mi>u</mi> <mi>q</mi> </msub> </mrow>
<mrow> <mfrac> <mrow> <msub> <mi>di</mi> <mi>d</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> <msub> <mi>i</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>&amp;omega;i</mi> <mi>q</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow>
ψdf+Lid
ψq=Liq
Te=1.5npψfiq
<mrow> <mfrac> <mrow> <mi>d</mi> <mi>&amp;omega;</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>-</mo> <mi>B</mi> <mi>&amp;omega;</mi> </mrow> <mi>J</mi> </mfrac> </mrow>
<mrow> <msub> <mi>&amp;psi;</mi> <mi>s</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mn>2</mn> </msubsup> </mrow>
Wherein, ud, uq, respectively stator d, q shaft voltages;id, iqRespectively stator d, q shaft current;R is stator resistance;L is stator Inductance;npFor number of pole-pairs;ω is motor angular velocity of rotation;ψfFor rotor flux;ψd, ψqRespectively stator magnetic linkage is in d, point of q axles Amount;JeRotary inertia when being discharged completely for whirlpool spring, nsFor the total energy storage number of turns of whirlpool spring, TLFor energy-storage box torque;T0For energy-storage box Initial moment;TeFor electromagnetic torque;kTThe slope changed for energy-storage box torque with corner;J is rotary inertia;B is viscous friction system Number;Define ψsFor ψdAnd ψqQuadratic sum.
CN201710671457.9A 2017-08-08 2017-08-08 Mechanical elastic energy storage PMSM parameter self-adaptive speed regulation method Active CN107453663B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710671457.9A CN107453663B (en) 2017-08-08 2017-08-08 Mechanical elastic energy storage PMSM parameter self-adaptive speed regulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710671457.9A CN107453663B (en) 2017-08-08 2017-08-08 Mechanical elastic energy storage PMSM parameter self-adaptive speed regulation method

Publications (2)

Publication Number Publication Date
CN107453663A true CN107453663A (en) 2017-12-08
CN107453663B CN107453663B (en) 2020-04-03

Family

ID=60491184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710671457.9A Active CN107453663B (en) 2017-08-08 2017-08-08 Mechanical elastic energy storage PMSM parameter self-adaptive speed regulation method

Country Status (1)

Country Link
CN (1) CN107453663B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036496A (en) * 2012-12-12 2013-04-10 西安理工大学 Self-adaption reverse-pushing controlling permanent magnet synchronous motor direct torque control (DTC) system and control method thereof
KR20150045223A (en) * 2013-10-18 2015-04-28 한국전기연구원 Method and Apparatus for Controlling Doubly-fed Induction Generator using Adaptive Backstepping Control Scheme
CN105932922A (en) * 2016-06-20 2016-09-07 华北电力大学(保定) Control method for permanent magnet synchronous generator for mechanical elastic energy storage
CN106817054A (en) * 2016-07-12 2017-06-09 华北电力大学(保定) A kind of PMSG control methods of the mechanical elastic energy storage based on parameter identification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036496A (en) * 2012-12-12 2013-04-10 西安理工大学 Self-adaption reverse-pushing controlling permanent magnet synchronous motor direct torque control (DTC) system and control method thereof
KR20150045223A (en) * 2013-10-18 2015-04-28 한국전기연구원 Method and Apparatus for Controlling Doubly-fed Induction Generator using Adaptive Backstepping Control Scheme
CN105932922A (en) * 2016-06-20 2016-09-07 华北电力大学(保定) Control method for permanent magnet synchronous generator for mechanical elastic energy storage
CN106817054A (en) * 2016-07-12 2017-06-09 华北电力大学(保定) A kind of PMSG control methods of the mechanical elastic energy storage based on parameter identification

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG YU等: "Low speed control and implementation of permanent magnet synchronous motor for mechanical elastic energy storage device with simultaneous variations of inertia and torque", 《IET ELECTRIC POWER APPLICATIONS》 *
刘桂秋等: "基于改进型偏差耦合的PMSM自适应反推同步控制", 《微特电机》 *

Also Published As

Publication number Publication date
CN107453663B (en) 2020-04-03

Similar Documents

Publication Publication Date Title
CN103718451B (en) The control device of electric motor
JP5957704B2 (en) Electric motor control device
CN104682805B (en) Permagnetic synchronous motor full-order sliding mode structure changes position servo control method based on extended state observer
CN106655945A (en) Control method for maximum torque per ampere of PMSM (Permanent Magnet Synchronous Motor) with mechanical elastic energy storage device
CN104539208A (en) Reactive current control method and system within full-speed range of motor
CN105656382B (en) A kind of motor speed constant speed control method and device
CN105811837B (en) A kind of high-power surface permanent magnetic synchronous motor control method
Vittek et al. Energy near‐optimal control strategies for industrial and traction drives with ac motors
Matsuki et al. High‐Response Torque Control of IPMSM Based on a New Coordinate System Suitable for Voltage Amplitude and Phase Control
Xie et al. Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop
CN107104619A (en) The quadrature axis current method of adjustment and device of a kind of motor
CN107453663A (en) A kind of mechanical elastic energy storage PMSM parameter adaptive speed regulating methods
Dominic et al. Optimal flux and current trajectories for efficient operation of induction machines
Uddin et al. Adaptive-backstepping-based design of a nonlinear position controller for an IPMSM servo drive
Schoonhoven et al. Wide speed range operation of PMSM drives using nonlinear flux control techniques
CN107453660A (en) A kind of novel mechanical elastic energy storage system stored energy course location tracking and controlling method
CN105763126A (en) Induction motor feedback type indirect vector control system and control method thereof
CN105811842A (en) Feedforward type indirection vector control system and control method for induction motor
Meddouri et al. Performance analysis of an autonomous induction generator under different operating conditions using predictive control
Girovský Fuzzy control of synchronous motor with permanent magnet
Hu et al. Predictive control of permanent magnet synchronous motor based on Super‐Twisting sliding mode
Borisevich et al. Energy efficient control of an induction machine under load torque step change
Matic et al. Direct torque control of induction motor in field weakening without outer flux trajectory reference
Xiao et al. A novel deep flux weakening control strategy for IPMSM
Takami et al. Optimal-and-Robust Control Strategy Decoupling Torque and Magnetic-Flux for IM by IRM-ILQ Design Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant