CN107419294B - 一种CdS/MoS2/Mo双层核壳结构光电极 - Google Patents

一种CdS/MoS2/Mo双层核壳结构光电极 Download PDF

Info

Publication number
CN107419294B
CN107419294B CN201710595922.5A CN201710595922A CN107419294B CN 107419294 B CN107419294 B CN 107419294B CN 201710595922 A CN201710595922 A CN 201710595922A CN 107419294 B CN107419294 B CN 107419294B
Authority
CN
China
Prior art keywords
cds
shell structure
optoelectronic pole
mos
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710595922.5A
Other languages
English (en)
Other versions
CN107419294A (zh
Inventor
黄柏标
朱相林
王朋
王泽岩
张晓阳
秦晓燕
刘媛媛
张倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710595922.5A priority Critical patent/CN107419294B/zh
Publication of CN107419294A publication Critical patent/CN107419294A/zh
Application granted granted Critical
Publication of CN107419294B publication Critical patent/CN107419294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CdS/MoS2/Mo双层核壳结构光电极的制备方法,步骤如下:以钼网作为基底,以可溶性镉盐作为镉源,将金属镉沉积在钼网上,将沉积好的钼网置于硫化氢气氛中进行硫化,即得到CdS/MoS2/Mo双层核壳结构光电极。本发明制备的CdS/MoS2/Mo双层核壳结构光电极的光电转化效率高,有较大的应用前景。经实验研究发现CdS/MoS2/Mo双层核壳结构光电极光电化学产氢性能,在光电化学测试中光电流超过三毫安,在主要吸光区域光电转化效率接近20%,性能优于传统FTO玻璃上制备的硫化镉电极。

Description

一种CdS/MoS2/Mo双层核壳结构光电极
技术领域
本发明涉及光电化学技术领域,特别是涉及一种CdS/MoS2/Mo双层核壳结构光电极及其制备方法和应用。
背景技术
利用半导体光催化剂将难以收集的低密度的太阳能光能转化成高密度易利用的电能和化学能已成为近年国际上最活跃的研究领域之一。尤其是在光电化学产氢方面的独特优势引起世界各国科学家的广泛关注,因此对其进行广泛的理论以及实验研究将具有非常重要的战略和现实意义。
光解水产氢的基本原理是建立在半导体能带理论基础上,其整个过程可分为三个部分: (1)载流子的产生。当入射光光子能量大于半导体的带隙时,电子就会被激发,从价带跃迁到导带,同时在价带上留下一个带正电荷的空穴;(2)载流子的分离和迁移。上述光生电子和空穴从体相迁移至催化剂表面;(3)表面载流子同水的反应。当半导体的价带电势高于 VO2/H2O=1.23V(vs.NHE,pH=7)时水就会被空穴氧化,生成氧气。当导带的电势低于VH+/H2=0V(vs.NHE,pH=7)时,水就会被光生电子还原为氢气。光解水的量子效率主要制约于光催化剂的光吸收范围、载流子的有效分离和表面水的氧化还原反应等三个过程。
CdS是最为典型的可见光光解水催化剂,其禁带宽度为2.4eV,具有较好的可见光吸收性能。同时,CdS在可见光激发后产生的光生电子可转移到材料表面,具有较强的还原能力,能够顺利还原氢离子而产生氢气,因此,在解决能源问题上可以发挥良好的作用。但单组分 CdS的量子效率低,光生电子与空穴容易复合,大大降低了其光催化性能的效率。为了解决这些问题,许多研究集中在CdS材料的制备和改性上,包括不同形貌和晶型CdS的合成,材料的改性和光电催化电解水的***设计,以期提高光电催化活性。目前主要通过与其他助催化剂的复合对单组分CdS进行优化改性。过渡金属,特别是一些贵金属,常常被用作光催化材料的助催化剂。但是由于贵金属自然储量有限,价格昂贵,会增加光催化体系的合成成本;也有研究人员利用MoS2作为助剂,通过高温烧结技术制备了CdS/MoS2复合产氢光催化剂,但该制备方法温度较高,不利于催化剂的结构调控和其构性关系的深入研究。
综上,目前制约光催化技术实际应用的所有问题中,最重要的是提高光催化剂对光能的利用效率。其中如何提高光催化剂的载流子传输效率是一项研究重点,具有很重要的理论和实际意义。
发明内容
针对上述现有技术的不足,本发明的目的在于提供一种CdS/MoS2/Mo双层核壳结构光电极及其制备方法。本发明的光电极具有特殊的CdS/MoS2/Mo双层核壳结构,并有形成CdS/MoS2异质结,可用于用于高效的光电化学产氢。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种CdS/MoS2/Mo双层核壳结构光电极的制备方法,步骤如下:
以钼网作为基底,以可溶性镉盐作为镉源,将金属镉沉积在钼网上,将沉积好的钼网置于硫化氢气氛中进行硫化,即得到CdS/MoS2/Mo双层核壳结构光电极。
上述制备方法中,将钼网分别用浓盐酸和浓碱溶液超声清洗,然后再用去离子水,乙醇,丙酮超声清洗。
上述制备方法中,所述可溶性镉盐选自硝酸镉、氯化镉或乙酸镉。
上述制备方法中,通过控制沉积电压和沉积时间的方式将金属镉沉积在钼网上。
上述制备方法中,优选的,所述沉积电压为-1.5至-2.0V,沉积时间为600-1200s。
上述制备方法中,硫化的温度为300℃-600℃。
本发明的第二方面,提供上述CdS/MoS2/Mo双层核壳结构光电极在光水解制氢中的应用。
本发明的第三方面,提供一种光水解制氢体系,所述光水解制氢体系是以上述的CdS/MoS2/Mo双层核壳结构光电极作为工作电极,铂电极作为对电极,饱和银/氯化银电极作为参比电极。
进一步的,所述光水解制氢体系中还包含:电解质溶液;所述电解质溶液优选为:0.25 摩尔/升硫化钠,0.35摩尔/升亚硫酸钠。
本发明的有益效果:
(1)本发明的CdS/MoS2/Mo双层核壳结构光电极的制备方法简单,以钼网作为基底,通过控制沉积电压和沉积时间参数,在钼网上沉积形成金属镉层;然后在硫化氢气氛中进行硫化,在CdS生成的同时,金属Mo被部分硫化成MoS2,最终形成CdS/MoS2/Mo双层核壳结构光电极,制备过程无需高温烧结反应。
(2)本发明制备的CdS/MoS2/Mo双层核壳结构光电极具有特殊的CdS/MoS2/Mo双层核壳结构,并形成CdS/MoS2异质结促进载流子分离。
(3)本发明制备的CdS/MoS2/Mo双层核壳结构光电极的光电转化效率高,有较大的应用前景。经实验研究发现CdS/MoS2/Mo双层核壳结构光电极光电化学产氢性能,在光电化学测试中光电流超过三毫安,在主要吸光区域光电转化效率接近20%,性能优于传统FTO玻璃上制备的硫化镉电极。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明光电极的X射线图;
图2为本发明光电极的SEM图;
图3为本发明光电极的XPS图;图中,A为未经盐酸处理表面的XPS,B为盐酸处理溶掉CdS后的XPS;
图4为本发明光电流对比图;
图5为本发明光光电转换效率对比图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,目前制约光催化技术实际应用的所有问题中,最重要的是提高光催化剂对光能的利用效率。基于此,本发明提出了一种CdS/MoS2/Mo双层核壳结构光电极及其制备方法。
在本申请的一种实施方案中,提供了一种CdS/MoS2/Mo双层核壳结构光电极的制备方法,步骤如下:
(1)将钼网分别用浓盐酸和浓碱溶液超声清洗10小时,然后用去离子水,乙醇,丙酮超声清洗之表面光亮;
(2)可溶性镉盐溶解于去离子水中;
(3)通过控制沉积电压和沉积时间的方式将金属镉沉积在钼网上;
(4)将沉积好的钼网置于硫化氢气氛中在300℃-600℃硫化即可得到所要的光电极。
作为优选的方案,所述可溶性镉盐为硝酸镉,氯化镉或乙酸镉。
作为优选的方案,所述沉积电压为-1.5至-2.0V,沉积时间为600-1200s。沉积电压和沉积时间等参数会影响金属镉在钼网上的沉积效果,从而影响生成的硫化镉的性能,经试验优化发现,采用本申请的沉积电压和沉积时间可在钼网上制备高度有序、结构致密的硫化镉层。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1:CdS/MoS2/Mo双层核壳结构光电极的制备
(1)将钼网分别用浓盐酸和浓碱溶液超声清洗10小时,然后用去离子水,乙醇,丙酮超声清洗之表面光亮;
(2)可溶性镉盐溶解于去离子水中;
(3)通过控制沉积电压和沉积时间的方式将金属镉沉积在钼网上,沉积电压为-1.8V,沉积时间为1200s;
(4)将沉积好的钼网置于硫化氢气氛中在300℃-600℃硫化即可得到所要的光电极。
对本实施例制备的光电极进行结构分析,结果分别如图1-3所示,其中,图1为本实施例所得光电极的X射线衍射图,由图可知,生成的硫化镉具有良好的结晶性并未出现MoS2和其他明显的杂峰。图2为本实施例所得光电极的SEM图,由图可知,电极表面由片状CdS 组装包裹形。图3为本实施例所得光电极XPS图,图3A为未经盐酸处理表面的XPS,图3B 为盐酸处理溶掉CdS后的XPS。由XPS结果可知处理前电极表面只有CdS层,没有Mo基底暴露。盐酸处理后处理后CdS被完全溶解掉,表面为MoS2,仍然没有Mo基底暴露。结合 SEM和XPS可断定电极具有CdS/MoS2/Mo双层核壳结构。
应用例1:光电活性测试:
以实施例1制备的光电极作为工作电极,铂电极作为对电极,饱和银/氯化银电极作为参比电极,0.25摩尔/升硫化钠,0.35摩尔/升亚硫酸钠作为电解质溶液,光源为300W氙灯。光电活性通过三电极电化学工作站记录。结果如图4和图5所示。
光电活性测试表明相对有FTO玻璃上制备的CdS光电极,本发明制备的光电极具有更高的光电转换效率。
以上的检测和分析综合的证明了本实施例得到的光电极是具有高效的光电转换效率。并在光电化学产氢方面具有应用价值。
对比例1:
聚四氟乙烯反应釜中加入50毫升去离子水、1毫摩尔硝酸镉、1毫摩尔硫脲和0.5毫摩尔谷胱甘肽,将洗净的FTO玻璃导电面朝下放入然后180摄氏度下反应10小时得到CdS/FTO 光电极。
考察本发明实施例1和对比例1制备的光电极的材料的光电转化效率,结果表明,本发明的CdS/MoS2/Mo双层核壳结构光电极的光电转化效率明显高于对比文件1制备的CdS/FTO 光电极。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

1.一种CdS/MoS2/Mo双层核壳结构光电极的制备方法,其特征在于,步骤如下:以钼网作为基底,以可溶性镉盐作为镉源,将金属镉沉积在钼网上,将沉积好的钼网置于硫化氢气氛中进行硫化,即得到CdS/MoS2/Mo双层核壳结构光电极。
2.根据权利要求1所述的制备方法,其特征在于,所述可溶性镉盐选自硝酸镉、氯化镉或乙酸镉。
3.根据权利要求1所述的制备方法,其特征在于,通过控制沉积电压和沉积时间的方式将金属镉沉积在钼网上。
4.根据权利要求3所述的制备方法,其特征在于,所述沉积电压为-1.5至-2.0V,沉积时间为600-1200s。
5.根据权利要求1所述的制备方法,其特征在于,硫化的温度为300℃-600℃。
6.权利要求1-5任一项所述的方法制备得到的CdS/MoS2/Mo双层核壳结构光电极。
7.权利要求6所述的CdS/MoS2/Mo双层核壳结构光电极在光水解制氢中的应用。
8.一种光水解制氢体系,其特征在于,所述光水解制氢体系是以权利要求7所述的CdS/MoS2/Mo双层核壳结构光电极作为工作电极,铂电极作为对电极,饱和银/氯化银电极作为参比电极。
9.如权利要求8所述的光水解制氢体系,其特征在于,所述光水解制氢体系中还包含:电解质溶液;所述电解质溶液为:0.25摩尔/升硫化钠,0.35摩尔/升亚硫酸钠。
CN201710595922.5A 2017-07-20 2017-07-20 一种CdS/MoS2/Mo双层核壳结构光电极 Active CN107419294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710595922.5A CN107419294B (zh) 2017-07-20 2017-07-20 一种CdS/MoS2/Mo双层核壳结构光电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710595922.5A CN107419294B (zh) 2017-07-20 2017-07-20 一种CdS/MoS2/Mo双层核壳结构光电极

Publications (2)

Publication Number Publication Date
CN107419294A CN107419294A (zh) 2017-12-01
CN107419294B true CN107419294B (zh) 2019-02-19

Family

ID=60429854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710595922.5A Active CN107419294B (zh) 2017-07-20 2017-07-20 一种CdS/MoS2/Mo双层核壳结构光电极

Country Status (1)

Country Link
CN (1) CN107419294B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906080B (zh) * 2018-07-11 2020-05-01 中国科学技术大学 一种CdS/Cu2S/Co基光电催化材料及其制备方法
CN112221518B (zh) * 2020-10-21 2021-12-24 广东工业大学 一种CdS/MoSx复合材料及其一步电化学沉积制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044180A (zh) * 2015-06-29 2015-11-11 江苏大学 一种异质结光电极的制备方法和用途
CN105664977A (zh) * 2016-02-03 2016-06-15 中国科学院化学研究所 二硫化钼-硫化镉纳米复合材料及其制备方法和应用
CN105688945A (zh) * 2016-03-22 2016-06-22 福州大学 MoS2纳米片/CdS纳米线核壳结构复合光催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871560B2 (en) * 2012-08-09 2014-10-28 International Business Machines Corporation Plasma annealing of thin film solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044180A (zh) * 2015-06-29 2015-11-11 江苏大学 一种异质结光电极的制备方法和用途
CN105664977A (zh) * 2016-02-03 2016-06-15 中国科学院化学研究所 二硫化钼-硫化镉纳米复合材料及其制备方法和应用
CN105688945A (zh) * 2016-03-22 2016-06-22 福州大学 MoS2纳米片/CdS纳米线核壳结构复合光催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and investigation of the optoelectrical properties of MoS2/CdS heterojunction solar cells;Weixia Gu 等;《Nanoscale research letters》;20141231;第662页
Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation;Xu Zong 等;《J. Phys. Chem. C》;20101231;第1963-1968页

Also Published As

Publication number Publication date
CN107419294A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Saraswat et al. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light
Wang et al. Heterogeneous p–n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution
Alfaifi et al. Photoelectrochemical solar water splitting: From basic principles to advanced devices
Toe et al. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis
Li et al. State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance
Sun et al. Enabling silicon for solar-fuel production
CN106498372B (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
CN102352524B (zh) 一种金属氧化物修饰TiO2纳米管阵列电极及其制备方法
Mor et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
CN104711627B (zh) 一种光阳极‑光伏电池耦合的双光照完全光驱动分解水制氢方法
CN104988533B (zh) TiO2/BiVO4光阳极材料及其制备方法
CN101871117B (zh) 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列制备方法
CN109440130A (zh) 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
CN106894024B (zh) 储能型三氧化钨/钛酸锶/二氧化钛纳米复合膜光阳极的制备方法
CN103361689A (zh) 二氧化钛纳米管阵列光电极的制备方法
Minggu et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction
CN108806989A (zh) 带有过渡层的核壳结构量子点、制备方法和应用及光阳极、太阳能光电化学器件和应用
Wang et al. Visible light responsive metal oxide photoanodes for photoelectrochemical water splitting: a comprehensive review on rational materials design
CN111359609A (zh) 可见光响应的氧化铁/氧化亚铜光催化薄膜及其制备方法
CN106384669A (zh) 一种光电响应型碳量子点修饰氧化锌光阳极的制备方法
CN107419294B (zh) 一种CdS/MoS2/Mo双层核壳结构光电极
Dubey et al. Synthesis of self-aligned and vertically oriented carbon incorporated titania nanotube for improved photoelectrochemical hydrogen generation
CN109308982A (zh) 一种共修饰铋酸铜纳米棒光电阴极制备方法
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
JP2008287900A (ja) 光電変換素子及びその製造方法、並びにその素子を用いた太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant