CN107396484B - 多相转换器拓扑的方法及装置 - Google Patents

多相转换器拓扑的方法及装置 Download PDF

Info

Publication number
CN107396484B
CN107396484B CN201710277487.1A CN201710277487A CN107396484B CN 107396484 B CN107396484 B CN 107396484B CN 201710277487 A CN201710277487 A CN 201710277487A CN 107396484 B CN107396484 B CN 107396484B
Authority
CN
China
Prior art keywords
inductance
current
constituted
feedback loop
flyback diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710277487.1A
Other languages
English (en)
Other versions
CN107396484A (zh
Inventor
陈永志
吕小康
伍晟
廖翰湘
刘夏聪
劳树根
高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINGMEN SCIENCE AND TECHNOLOGY Co Ltd
Original Assignee
JINGMEN SCIENCE AND TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINGMEN SCIENCE AND TECHNOLOGY Co Ltd filed Critical JINGMEN SCIENCE AND TECHNOLOGY Co Ltd
Publication of CN107396484A publication Critical patent/CN107396484A/zh
Application granted granted Critical
Publication of CN107396484B publication Critical patent/CN107396484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electroluminescent Light Sources (AREA)
  • Dc-Dc Converters (AREA)

Abstract

基于多相降压转换器技术,提供轻薄及具有成本效益的电压模块方案,解决电感器厚度及使用过多磁性材料的技术问题。该电压模块方案利用多相恒流拓扑及相应的电子控制器以为不同的OLED照明应用提供恒流源。该多相恒流拓扑包括两个或两个以上电感和反激式二极管所构成的反馈回路,其中通过电流控制器可不同步地触发各电感和反激式二极管所构成的反馈回路的导通与截止,感测与估计提供至负载的平均电流,通过控制电感和反激式二极管所构成的反馈回路的导通时间来调整提供至所述负载的平均电流。

Description

多相转换器拓扑的方法及装置
相关专利申请的交叉引用
本申请根据“巴黎公约”要求享有2016年4月26日提交的美国临时专利申请第62,327,999号的优先权。
技术领域
本发明涉及可适用于驱动发光装置的电流调节方法及装置;更加具体地,本发明涉及具有多相拓扑的电流调节方法及装置,适用于驱动发光二极管(LEDs),包括有机发光二极管(OLEDs)。
背景技术
与钨丝灯泡、荧光管及LEDs等传统的照明技术相比,OLED具有体积纤薄、颜色多样及物理可弯曲等优点。这些特点使得OLED这项技术具有许多新的应用,例如用于装饰效果灯,这在过去是不可能实现的。例如,不带有电压转换器及机械支撑结构的OLED照明模块的厚度可小于1mm。然而,目前OLED相对高昂的价格限制了其在实现普遍照明作用中的应用。
与钨丝灯泡及荧光管不同的是,OLED类似于LED,需要通过电流驱动来进行亮度控制及电源开关。因此,需要电压转换器来提供可控制的电流。在装饰性的OLED照明应用中,电源通常为12-48V的直流电压源。电压转换器用于将恒压转换成可控制的恒流。传统电压转换器采用如图1所示的单相降压电流转换器,通过其将直流(DC)电压转换成可控制的恒流。
为了保持OLED照明面板的轻薄度及可弯曲性(例如,在具有机械支撑结构的基础上,厚度在1.5mm以内),电压转换器也必须做到轻薄。否则电压模块无法整合到OLED面板中,需要单独安装并通过长电线连接到OLED面板。由于在传输过程中会有大量的能量损耗,通过长电线来传输电流并不可取。更重要的是,每个面板的电线都需要基于其恒流的性质进行分隔,无法整合以节省空间和成本。
为了构建厚度为1.5mm的电压模块,由于有0.5mm的厚度通常是预留给印刷电路板(PCB)及机械装嵌,所有元件的厚度都需要等于或小于1mm。在电压模块的这些部件中,纤薄外型的电感器是最难取得的元件。例如,电感量为15uH,额定电流为0.6A的表面贴装电感器的厚度已经达到1mm。又例如,具纤薄外型的电感量为60μH,额定电流为1.2A的电感器的厚度为5mm,而相同属性的具普通外型的电感器则更厚。
另一方面,OLED照明面板的面积通常较大(例如,常见的100mm*100mm规格,以及后续开发的300mm*100mm的规格)以致很容易遮盖隐藏其后的电源模块。这意味着在长度和宽度上有较多的空间可用于安装电源模块,而在高度上的空间则非常有限。因此,电感器的厚度是其中的关键因素;受普通电感器的厚度这一关键因素所制约,目前在本领域中并没有实际可行的方案实现用于OLED照明的轻薄电源模块。
一个可行但不可取的方案是将多个更小更薄的电感器来替换所用的单个厚的电感器,从而可在增加长度及宽度上的占用面积的代价上,减少电压转换器的厚度。例如,如图2所示,将电感量为60μH,额定电流为1.2A的单个电感器替换为16个电感量为15μH,额定电流为0.6A的电感器。由于每个电感量为15μH,额定电流为0.6A的电感器的高度仅有1.0mm,具有替换后的电感器的电压转换器的厚度可达到要求。但是,相比起只采用单个电感量为60μH,额定电流为1.2A的电感器而言,该电压转换器所用到的磁性材料就加倍了。并且,这大幅增加的部件总数导致材料成本及组装成本的明显增加。所使用的磁性材料的数量是影响这些电感器体积的主要因素。
发明内容
多相降压转换器是目前可行的电压转换技术,实现恒压输出的传送。这样的技术已有效利用在商业上超过15年。例如,在现代化个人电脑中,多相电压转换器被有效利用以在尺寸及重量减少的电压模块中提供低电压高电流功率。图3为示例性的4相降压转换器。与上述采用16个电感器的方案相比,4相降压转换器方案的一个优点在于其以更少的磁性材料来传送同样的功率。在这种情况下,4相降压转换器仅需要4个电感量为15μH,额定电流为0.6A的电感器;与上述那些不可取的方案或者采用单个电感器的方案相比,4相降压转换器仅使用了其1/4或1/2的磁性材料。图4示出了这些方案之间的对比。
本发明的目的之一是基于多相降压转换器技术提供解决上述问题的轻薄及具有成本效益的电压模块方案。该电压模块方案利用多相恒流拓扑及相应的电子控制器以为不同的OLED照明应用提供恒流源。
本发明的另一目的是为不同的OLED照明应用提供可编程的恒流源。
附图说明
本发明的实施例将在以下结合附图做更详细的说明,其中:
图1为传统单相降压电流转换器的电路图;
图2为采用16个更小的电感器替换一个大电感器后的传统单相降压电流转换器的电路图;
图3为4相降压电压转换器的电路图;
图4为转换器及电感器的不同组合中用到的磁性材料量的对比表格;
图5为本发明一实施例的多相恒流拓扑的电路图;
图6为本发明一实施例的用于OLED照明的多相转换器拓扑的***电路图;
图7为图6所示的多相转换器拓扑所用的平均电流估计器的电路图;
图8为图6所示的多相转换器拓扑在具有完全相符的电感器的情况下的总电流随时间变化仿真图;
图9为图6所示的多相转换器拓扑在具有偏差的电感器的情况下的总电流随时间变化仿真图;
图10为图6所示的多相转换器拓扑中所用的脉冲宽度控制单元及开关驱动电路的电路图;
图11为图6所示的多相转换器拓扑所用的脉冲控制单元的信号时序图;
图12为图6所示的多相转换器拓扑所用的斜坡发生器的电路图;以及,
图13列出了各部件的参数并示出了图6所示的多相转换器拓扑在启动阶段的电流随时间变化仿真图,其中启动阶段提供给OLED负载的平均电流从0A变化至最终的大约0.8A。
具体实施方式
以下描述中,电流调节及类似的方法及装置以优选实施例的方式进行展示。对于本领域的技术人员来说可在不脱离本发明的保护范围及精神下做出等效改变,包括增加和/或替换。具体的细节可省略以免使本发明晦涩难懂;然而,本申请的目的在于使本领域的技术人员无需过度试验便可实践本申请的教导。
四相恒流拓扑电路图用于更加清楚地说明本发明。本领域的技术人员可以理解,在无需过度试验的情况下,可基于四相恒流拓扑相同的概念实现两相、三相、五相、六相或其他合理数量相数的多相恒流拓扑。本发明的各种实施例均是基于多相恒流拓扑具有形成完整稳定的反馈回路的控制电路来实现的。参考图5,图5所示的简化的四相恒流拓扑包括四个电感器502,每个电感器502连接至串联的一个或多个OLED负载501的阴极,并且每个电感器502都串联连接至四个反激式二极管503中的一个,形成连接至串联的一个或多个OLED负载501的阳极的反馈回路。四个电感和反激式二极管所构成的反馈回路之间相互并联,并且可通过开关504中的一个导通或截止每个反馈回路。
参考图6,其为完整的四相转换器拓扑电路图,其具有相应的控制电子器件以实现用于OLED照明的可控制反馈回路的稳定操作。在一实施例中,该具有相应控制电子器件的完整的四相转换器拓扑包括电流控制器601,电流控制器601连接至电感和反激式二极管所构成的反馈回路。电流控制器601至少包括以下部件:与电流感测电阻R1 505并联的平均电流估计器602,其中电流感测电阻R1 505串联连接至串联的一个或多个OLED负载501的阳极;开关模式控制单元603;脉冲宽度控制单元604;四个开关(在本实施例中通过功率场效应管(FET)T1、T2、T3、T4 606实现)以及这些开关对应的驱动电路,其中每个驱动电路连接至四个电感和反激式二极管所构成的反馈回路中的其中一个;以及,通信接口605。
平均电流估计器
提供至串联的一个或多个OLED负载的电流由两路电流所组成:
(1)当电感和反激式二极管所构成的反馈回路截止时,来自Vin 506的电流在流经串联的一个或多个OLED负载501和相应的电感器502之后,最终通过开关606流向地;在这期间,电感器502形成了围绕其磁芯分布的磁场(即是,存储能量);以及,
(2)当电感和反激式二极管所构成的反馈回路导通时,来自充电的电感器502的电流以闭环的形式在流经相应的反激式二极管503和串联的一个或多个OLED负载501之后流回相应的电感器502;在这期间,电感器502的磁场围绕其磁芯坍缩(即是,释放能量)。
上述能量的存储和释放的过程在不同的时间(不同步)发生于每个电感和反激式二极管所构成的反馈回路中。因此,提供至串联的一个或多个OLED负载501的总电流为具有振幅纹波的恒定直流电流。
在实际中,完全相符的电感器在制造工艺上是很难实现的(例如,质量好的电感器也可能具有正负10%的差异)。因此,在相同额定电感器中是存在着误差范围内的轻微的差异的,这些电感的差异进一步加剧了提供至串联的一个或多个OLED负载501的总电流的纹波。另一方面,由于各电感和反激式二极管所构成的反馈回路之间的导通与截止并不同步,这又往往可以平整所述振幅纹波。总体而言,相数越少的拓扑(例如,三相)的纹波越大,而相数越多的拓扑(例如,六相)的纹波越小。对于一个四相恒流拓扑,可通过采用中等档次的电感器将纹波控制在最大总电流幅值的10%以内。平均电流估计器602测量并估计恒流源提供至OLED负载的平均电流输出,以及相应的,提供至串联的一个或多个OLED负载501的总电流的平均值。这些信息进一步被传送至开关模式控制单元以进一步分析。
参照图7,在本发明一实施例中,平均电流估计器602首先在低欧姆电流感应电阻R1505上进行压降测量(例如,0.2ohm且额定电流容量为1.2A)。压降测量进一步通过低通滤波器以提供平均压降测量,该低通滤波器是由电容器C2701和两个电阻R2702及R3703串联连接组成;该平均压降测量与提供至串联的一个或多个OLED负载501-的平均总电流成正比。该平均压降测量最后被送到高侧放大器U1704。通过选定电容器C2701及电阻R2702、R3703,低通滤波器的带宽可以设置于开关T1、T2、T3及T4 606的开关频率的5-10%,以便更好地估计提供至串联的一个或多个OLED负载501的平均总电流。高侧放大器U1 704对平均压降测量进行缓冲、放大及电平转换以获得提供至串联的一个或多个OLED负载501的平均总电流的估计值。模拟的平均总电流估计值随后进入模数转换器(ADC)705以转换成数字信息,该数字信息进一步传送到开关模式控制单元603进行分析。
图8为图6所示的完整的四相转换器拓扑中提供至串联的一个或多个OLED负载501的总电流随着时间变化的仿真图,其中该四相转换器拓扑具有额定电感值为8μH的完全相符的电感器502。图9为图6所示的完整的四相转换器拓扑中提供至串联的一个或多个OLED负载501的总电流随着时间变化的仿真图,其中电感器502的额定电感值分别为8μH,9.5μH,8μH及6.5μH。从这些仿真图中可以看出电感器的变化导致总电流中出现了较大的纹波。
脉冲宽度控制单元
参考图10,其为完整的四相转换器拓扑中所用的脉冲宽度控制单元及开关驱动电路的电路示意图。脉冲宽度控制单元604设定各电感和反激式二极管所构成的反馈回路(通道)的导通时间。开关模式控制单元603触发导通时间的启动。在本实施例中,开关模式控制单元603被编程以每90度(即是,在1MHZ的切换周期中的0.25us)触发一次各通道的导通时间。开关模式控制单元603通过发送逻辑高电平脉冲(设定脉冲信号)至相应的SR锁存器1001的S输入端触发通道的导通时间。相应的SR锁存器1001的Q输出端随后输出逻辑高电平信号,相应的开关(功率场效应管(FETs)T1,T2,T3或T4 606)导通。同时,相应的SR锁存器1001的Q-bar输出端输出逻辑低电平信号以激活相应的斜坡发生器1002,使得斜坡发生器1002产生斜坡电压信号至相应的比较器1003的差分输入端。输入至相应的比较器1003的差分输入端的是上述斜坡电压信号以及数字模拟转换器(DAC)1004的输出DC电压信号,其可作为开关模式控制单元603的数字信号输入。随着时间推移,当相应的比较器1003感测到斜坡电压上升至高于DAC电平时,比较器1003在相应的SR锁存器1001的R输入端处将其输出从逻辑低电平切换至逻辑高电平(重置脉冲信号),重置SR锁存器1001并截止相应的开关(功率场效应管T1、T2、T3或T4 606)。图11为脉冲宽度控制单元603的信号时序图。
通道的导通时间与DAC 1004的输出DC电压信号相关,其通过开关模式控制单元603提供DC电压电平值来控制(导通期间长度数据值)。DAC 1004的输出电压信号的DC电压电平值越高,导通时间(或脉冲宽度)越长。开关模式控制单元603根据提供至串联的一个或多个OLED负载501的平均总电流来设定DC电压电平值(导通期间长度数据值),其中该平均总电流信息通过上述平均电流估计器602来提供。
图12为斜坡发生器1002的电路图。斜坡电压信号通过恒流源1201对内部电容1202进行充电而产生。当开关模式控制单元603指令导通通道时,相应的SR锁存器1001的Q-bar输出端输出逻辑低电平,相应的斜坡发生器1002的nMOS开关1203截止,导致恒流源1201开始对内部电容1202进行充电,产生斜坡电压信号输出至相应的比较器1003。
超时停止控制
再次参考图10。在开关驱动电路中,可通过两个信号截止图10所示的各开关(功率场效应管T1,T2,T3及T4 606)。各SR锁存器1001的R输入端为或门1005。以下两个信号输入至各个或门1005:第一个信号来自于相应的比较器1003,其在相应的通道导通期间结束时将比较器1003的输出从逻辑低电平切换到逻辑高电平(重置脉冲信号);第二个信号来自于开关模式控制单元603,该信号称为超时停止控制信号。基于安全考虑,开关模式控制单元603向各个通道输出超时停止控制信号。开关模式控制单元603在检测到电感和反激式二极管所构成的反馈回路不在正常的反馈可控制范围内并且需要保护OLED照明模块不被烧坏时,输出该超时停止控制信号。在照明模块及转换器模块设计阶段,当无法确定最优的电感器尺寸时,超时停止控制信号尤其有用;在该阶段,不管是输入源电压、OLED电压降、功率FET开关频率以及所需的操作电流中的任何一者或全部都可能影响电感器尺寸的选择。
开关模式控制单元
开关模式控制单元603包括至少一个逻辑电路,用于从平均电流估计器602及通信接口605获取输入数据信号,产生输出信号以控制各通道的导通期间的时序及长度(设定脉冲信号及导通期间长度数据值),并生成各通道的安全超时停止控制信号。
通信接口及伽玛对应
通信接口605接收外部数据输入并向开关模式控制单元603提供目标亮度值。开关模式控制单元603在换算该目标亮度值后,将换算后的目标亮度值与来自于平均电流估计器602的信息(ADC输出)进行比较。由于提供至串联的一个或多个OLED负载501的平均电流与OLED的亮度直接相关,也即是,平均电流越高则意味着OLED亮度越高,开关模式控制单元603通过增加或降低提供至串联的一个或多个OLED负载的平均电流实现调整串联的一个或多个OLED负载的亮度。如果亮度需要降低,开关模式控制单元603提供降低的平均电流值给DAC 1004以缩短各通道的导通时间(即是,脉冲宽度控制信号的较短脉冲宽度)。相反,如果亮度需要增加,开关模式控制单元603则提供较高的平均电流值给DAC 1004以延长各通道的导通时间(即是,脉冲宽度控制信号的更长的脉冲宽度)。
伽玛对应在接收到来自通信接口605的目标亮度值后进行。伽玛对应(也称为伽玛校正)为将目标亮度值转换为提供给串联的一个或多个OLED负载501的目标平均电流值的非线性过程。由于人类视觉对亮度的感知是非线性的(例如,对低亮度的敏感性较高,对高亮度的敏感性较低),伽玛对应用于“抵消”人类视觉对亮度的感知。伽玛对应通过采用数字逻辑电路或存储在非易失性存储器中的查找表来实现。
虽然上述实施例的多相恒流源拓扑应用于OLED照明中,本领域的普通技术人员可理解相同的发明构思也可应用于其他照明装置中,例如LEDs照明装置。
本申请公开的实施例可使用通用或专用计算设备,计算机处理器或电子电路来实现,包括但不限于数字信号处理器(DSP),专用集成电路(ASIC),现场可编程门阵列(FPGA)和根据本公开的教导配置或编程的其他可编程逻辑器件。基于本申请的教导,软件或电子技术领域的技术人员可容易想到在通用或专用计算机设备、计算机处理器或可编程逻辑器件中准备计算机指令或软件代码。
在一些实施例中,本发明包括具有存储在其中的计算机指令或软件代码的计算机存储介质,其可用于对计算机或微处理器进行编程以执行本发明的任何过程。存储介质可以包括但不限于ROM、RAM、闪存设备或适合于存储指令、代码和/或数据的任何类型的介质或设备。
本发明的前述描述是为了说明和描述的目的而提供。它不是穷举的或将本发明限制于所公开的精确形式。对于本领域技术人员来说,许多修改和变化将是显而易见的。
为更好地解释本发明的原理和其实际用途而选择和描述上述实施例,从而使得本领域技术人员能够理解本发明的各种实施例以及适用于所考虑的具体用途的各种修改。意图是本发明的范围由所附权利要求及其等同物来定义。

Claims (10)

1.一种用于提供恒流的多相电路拓扑,包括:
围绕负载的两个或两个以上电感和反激式二极管所构成的反馈回路,其中各电感和反激式二极管所构成的反馈回路包括与电感器串联的反激式二极管,所述二极管用于将来自电感器的电流引导至所述负载;
连接至所述两个或两个以上电感和反激式二极管所构成的反馈回路的电流控制器,该电流控制器用于:
估计提供至所述负载的总电流的平均值;
触发各所述两个或两个以上电感和反激式二极管所构成的反馈回路的导通时间;以及,
控制各所述两个或两个以上电感和反激式二极管所构成的反馈回路的所述导通期间的长度;
其中,各所述两个或两个以上电感和反激式二极管所构成的反馈回路的导通与截止互不同步以产生以恒定直流电流形式提供至所述负载的总电流。
2.如权利要求1所述的用于提供恒流的多相电路拓扑,进一步包括:
与所述负载串联的电流感测电阻;
其中,对所述提供至所述负载的总电流的平均估计包括所述电流感测电阻上的压降测量。
3.如权利要求2所述的用于提供恒流的多相电路拓扑,其中,所述电流控制器包括用于估计提供至所述负载的总电流的平均值的平均电流估计器;
其中,所述平均电流估计器包括:
低通滤波器,其带宽大大低于所述电感和反激式二极管所构成的反馈回路的导通和截止切换频率,以对所述电流感测电阻上的所述压降测量进行低通滤波;
高侧放大器,用于对所述压降测量进行缓冲、放大以及电平切换,以产生提供至所述负载的平均总电流的估计值。
4.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电流控制器包括:
脉冲宽度控制单元,用于产生驱动信号给连接至所述电感和反激式二极管所构成的反馈回路的开关以导通和截止所述开关,提供所述电感和反激式二极管所构成的反馈回路的导通时间;
其中所述脉冲宽度控制单元包括:
两个或两个以上的斜坡发生器,用于生成斜坡电压信号,各所述斜坡发生器对应一所述电感和反激式二极管所构成的反馈回路;以及,
两个或两个以上的比较器,各所述比较器对应一所述斜坡发生器;
其中,各所述比较器用于:
将所述斜坡电压信号与DC电压信号相比较;以及,
当所述斜坡电压信号达到所述DC电压信号时,产生重置脉冲信号以截止所述开关,进而截止连接至所述开关的所述电感和反激式二极管所构成的反馈回路。
5.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电流控制器包括:
两个或两个以上开关,各所述开关连接至一所述电感和反激式二极管所构成的反馈回路并用于导通或截止,提供所述电感和反激式二极管所构成的反馈回路的所述导通时间;以及,
两个或两个以上开关驱动电路,各所述开关驱动电路连接至一所述开关并具有SR锁存器;
其中,所述SR锁存器用于:
接收用于导通相应所述开关的设定脉冲信号;以及,
接收重置脉冲信号或安全超时停止控制信号以截止所述相应开关。
6.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电流控制器包括:
开关模式控制单元,用于:
接收提供至所述负载的平均总电流的估计值;
接收所述负载的目标亮度的外部数据输入;
产生各所述电感和反激式二极管所构成的反馈回路的设定脉冲信号以触发所述电感和反激式二极管所构成的反馈回路的所述导通时间;
产生导通期间长度数据值以作为所述电感和反激式二极管所构成的反馈回路的DC电压电平;以及,
产生安全超时停止控制信号以在检测到所述电感和反激式二极管所构成的反馈回路具有不正常反馈时截止一个或多个所述电感和反激式二极管所构成的反馈回路。
7.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述负载为串联的一个或多个OLED。
8.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电感和反激式二极管所构成的反馈回路的数量为4。
9.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电感和反激式二极管所构成的反馈回路的数量为3。
10.如权利要求1所述的用于提供恒流的多相电路拓扑,其中,所述电感和反激式二极管所构成的反馈回路的数量为6。
CN201710277487.1A 2016-04-26 2017-04-25 多相转换器拓扑的方法及装置 Active CN107396484B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662327999P 2016-04-26 2016-04-26
US62/327,999 2016-04-26

Publications (2)

Publication Number Publication Date
CN107396484A CN107396484A (zh) 2017-11-24
CN107396484B true CN107396484B (zh) 2019-02-01

Family

ID=60089173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710277487.1A Active CN107396484B (zh) 2016-04-26 2017-04-25 多相转换器拓扑的方法及装置

Country Status (5)

Country Link
US (1) US9954441B2 (zh)
JP (1) JP6348633B2 (zh)
KR (1) KR101969042B1 (zh)
CN (1) CN107396484B (zh)
TW (1) TWI623244B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10097010B2 (en) * 2016-04-19 2018-10-09 Infineon Technologies Ag Control of freewheeling voltage
CN109792830A (zh) * 2016-09-09 2019-05-21 保富图公司 用于闪光管的驱动电路和用于控制驱动电路的方法
GB2557272B (en) 2016-12-02 2020-03-18 Cmr Surgical Ltd Sensing motor current
CN110034543B (zh) * 2019-03-20 2020-09-08 华为技术有限公司 多相降压式变换电路及其故障检测方法、装置及存储介质
FR3101933B1 (fr) * 2019-10-15 2021-10-01 Valeo Vision Système d’eclairage comprenant un convertisseur de puissance entrelace multi-phase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795810B1 (ko) * 2006-10-16 2008-01-21 삼성에스디아이 주식회사 누설 전류가 감소된 스위칭 소자, 그를 포함하는 유기 발광표시 장치 및 그의 화소 회로
CN101795061A (zh) * 2010-03-03 2010-08-04 哈尔滨工业大学 适用于电流源型隔离全桥升压类拓扑的无源无损缓冲电路
CN103312165A (zh) * 2013-05-21 2013-09-18 东北大学 一种高频多相交错式变换装置及控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2192891C (en) * 1996-01-16 2000-02-22 Jon O. Reynolds Plasma cutting or arc welding power supply with phase staggered secondary switchers
US5900712A (en) * 1998-02-20 1999-05-04 General Motors Corporation Transistor drive circuit and control for a switched reluctance motor
US6466188B1 (en) * 2000-01-20 2002-10-15 International Business Machines Corporation DC-DC converter with current sensing for use with non-linear devices
US7348948B2 (en) * 2004-06-09 2008-03-25 Analog Modules, Inc Polyphase diode driver
US7239117B2 (en) * 2005-01-06 2007-07-03 Solomon Systech Limited Programmable inductor current control for DC-DC converters
JP2007042758A (ja) * 2005-08-01 2007-02-15 Harison Toshiba Lighting Corp Led駆動装置
US7999487B2 (en) * 2008-06-10 2011-08-16 Allegro Microsystems, Inc. Electronic circuit for driving a diode load with a predetermined average current
US8421364B2 (en) * 2008-07-15 2013-04-16 Intersil Americas Inc. Transient suppression for boost regulator
US20100141230A1 (en) * 2008-07-17 2010-06-10 Exar Corporation Self-tuning sensorless digital current-mode controller with accurate current sharing for multiphase dc-dc converters
US8729870B2 (en) * 2008-08-15 2014-05-20 Analog Modules, Inc. Biphase laser diode driver and method
US8207711B2 (en) * 2008-08-15 2012-06-26 Analog Modules, Inc. Biphase laser diode driver and method
CN102014543B (zh) * 2010-07-02 2011-12-28 凹凸电子(武汉)有限公司 驱动光源的驱动电路、方法及控制器
US8536842B2 (en) * 2011-03-03 2013-09-17 Exar Corporation Sensorless self-tuning digital current programmed mode (CPM) controller with multiple parameter estimation and thermal stress equalization
TWI543661B (zh) * 2011-08-05 2016-07-21 通嘉科技股份有限公司 電源控制器以及控制方法
JP5779043B2 (ja) * 2011-08-23 2015-09-16 株式会社東芝 Dc−dc変換器および情報処理装置
JP5947034B2 (ja) * 2011-12-20 2016-07-06 ローム株式会社 Dc/dcコンバータおよび電流ドライバの制御回路ならびにそれらを用いた発光装置および電子機器
JP5643777B2 (ja) * 2012-02-21 2014-12-17 株式会社東芝 マルチフェーズ・スイッチング電源回路
TWI489908B (zh) * 2013-09-06 2015-06-21 Macroblock Inc Light emitting diode drive circuit
WO2016037085A1 (en) * 2014-09-04 2016-03-10 Rensselaer Polytechnic Institute N-color scalable led driver
US9716433B2 (en) * 2015-01-15 2017-07-25 R2 Semiconductor, Inc. Control of conversion ratios of a power source block and a bidirectional active filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795810B1 (ko) * 2006-10-16 2008-01-21 삼성에스디아이 주식회사 누설 전류가 감소된 스위칭 소자, 그를 포함하는 유기 발광표시 장치 및 그의 화소 회로
CN101795061A (zh) * 2010-03-03 2010-08-04 哈尔滨工业大学 适用于电流源型隔离全桥升压类拓扑的无源无损缓冲电路
CN103312165A (zh) * 2013-05-21 2013-09-18 东北大学 一种高频多相交错式变换装置及控制方法

Also Published As

Publication number Publication date
KR20170122123A (ko) 2017-11-03
TW201739320A (zh) 2017-11-01
KR101969042B1 (ko) 2019-04-15
US20170310218A1 (en) 2017-10-26
JP2017200430A (ja) 2017-11-02
TWI623244B (zh) 2018-05-01
CN107396484A (zh) 2017-11-24
JP6348633B2 (ja) 2018-06-27
US9954441B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
CN107396484B (zh) 多相转换器拓扑的方法及装置
US10038365B2 (en) Soft start systems and methods for multi-level step-up converters
US9350243B2 (en) Power converter with separate buck and boost conversion circuits
US9924569B2 (en) LED driving circuit
JP6473756B2 (ja) 共振降圧dc−dc電力コンバータ
Hwu et al. Applying one-comparator counter-based sampling to current sharing control of multichannel LED strings
US8659237B2 (en) Hybrid power control system
US8890441B2 (en) Load driving device and LED lighting appliance therewith
Tahan et al. Multiple string LED driver with flexible and high-performance PWM dimming control
US9648677B2 (en) LED driving circuit and method using single inductor
US9615415B2 (en) LED driving circuit and method using single inductor
CN110536518A (zh) 调光控制电路、控制芯片、电源转换装置以及去频闪方法
KR102075991B1 (ko) 광원장치 및 발광다이오드 패키지
CN101849430B (zh) 用于驱动负载的设备
US9958886B2 (en) Tunable DC voltage generating circuit
Huang et al. A driving circuit with partial power regulation for RGB LED lamps
Modepalli et al. A single stage offline HB-LED driver with power factor correction for multi-color dynamic lighting systems
Ladhari et al. A Novel Mains Operated LED Driver Using a GaN AC Switch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant