CN107391818B - 一种基于状态观测器的振动模态参数识别方法 - Google Patents

一种基于状态观测器的振动模态参数识别方法 Download PDF

Info

Publication number
CN107391818B
CN107391818B CN201710548811.9A CN201710548811A CN107391818B CN 107391818 B CN107391818 B CN 107391818B CN 201710548811 A CN201710548811 A CN 201710548811A CN 107391818 B CN107391818 B CN 107391818B
Authority
CN
China
Prior art keywords
vibration
rank
modal
state observer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710548811.9A
Other languages
English (en)
Other versions
CN107391818A (zh
Inventor
盛贤君
周少征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201710548811.9A priority Critical patent/CN107391818B/zh
Publication of CN107391818A publication Critical patent/CN107391818A/zh
Application granted granted Critical
Publication of CN107391818B publication Critical patent/CN107391818B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明一种基于状态观测器的振动模态参数识别方法属于振动模态分析领域,涉及一种基于状态观测器的振动模态参数识别方法。该方法针对特定结构和关注的振动阶次,先利用ANSYS模态分析近似得到各阶振动频率和振型,再建立自由振动实验,采用多个非接触式的高分辨率激光位移传感器测量结构位移信号,据此建立整个***的模态状态空间方程和状态观测器。在利用状态观测器得到各阶自由振动模态坐标之后,采用FIR滤波器滤除其中的干扰信号。最后,采用指数衰减的正弦函数来拟合滤波后的模态坐标获取各阶振动精确的频率和阻尼比。识别方法实现简单,识别精确,方法通用性强,适用于各种结构的振动模态参数识别。

Description

一种基于状态观测器的振动模态参数识别方法
技术领域
本发明属于振动模态分析领域,涉及一种基于状态观测器的振动模态参数识别方法。
背景技术
力学结构的振动问题是很多工程实际中必须考虑的问题,根据振动力学可知,结构的振动是由无穷阶振动模态组成的,其中,前几阶振动属于力学结构重要的力学性质。尤其在航空航天的振动控制领域,各阶振动的固有频率和阻尼比是重要的模态参数,对飞机的飞行速度和抗风能力有着重要影响。在对力学结构进行几何建模并且获得相应的材料力学参数之后,可以利用有限元分析软件对结构进行模态分析,但是由于建模的精度有限,分析结果往往与实际情况存在偏差,这就需要在有限元分析的基础上进行模态分析的实验,来获得更精确的模态参数。
传统的模态参数识别方法一般采用对振动信号进行频域拟合的方法来确定模态参数,如Mark H.Richardson和David L.Formenti在“Parameter estimation fromfrequency response measurements using rational fraction polynomials(twentyyears of progress)[A].Proceedings of 20th International Modal AnalysisConference[C].IMAC,Los Angeles:Society for Experimental Mechanics,2002.373-382”中提出的正交多项式识别法,是一种经典且常用的模态参数识别方法,这种方法为保证精度需选取比较高的识别模态的阶数,但当识别模态的阶数高于真实模态的阶数时会出现虚假模态,对于虚假模态的剔除一般要凭经验,且对于存在频率相近的振动模态的分析效果不好。事实上不同的振动模态可能有相等的固有频率,但是不会有相同的固有振型,所以在模态参数识别时将固有振型考虑进去有助于区分频率相近的振动模态。
发明内容
本发明的目的是针对有限元软件模态参数分析精度有限,传统的模态参数识别方法不利于区分频率相近的振动阶次的模态参数,发明一种基于状态观测器的振动模态参数识别方法,该方法在有限元分析得到的固有频率和固有振型信息的基础之上,针对特定结构和关注的振动阶次,先利用 ANSYS模态分析近似得到各阶振动频率和振型,再建立自由振动实验。充分利用有限元分析得到的固有频率和固有振型信息,有利于区分识别频率相近的振动阶次的模态参数。识别方法实现简单,识别精确,方法通用性强,适用于各种结构的振动模态参数识别。
本发明采取的技术方案是一种基于状态观测器的振动模态参数识别方法,其特征是,该方法针对特定结构和关注的振动阶次,先利用ANSYS模态分析近似得到各阶振动频率和振型,再建立自由振动实验,采用多个非接触式的高分辨率激光位移传感器测量结构位移信号,据此建立整个***的模态状态空间方程和状态观测器。在利用状态观测器得到各阶自由振动模态坐标之后,采用FIR滤波器滤除其中的干扰信号。最后采用指数衰减的正弦函数来拟合滤波后的模态坐标获取各阶振动精确的频率和阻尼比,利用锤击法在自由振动实验中获得更精确的模态参数;方法具体步骤如下:
步骤一:组建自由振动实验***,
自由振动实验***由铝悬臂梁1、铝配重2、钢配重3、固定端4、激光位移传感器组5、数据采集卡6和计算机7组成;铝悬臂梁1的左端为固定端4,铝悬臂梁1的右端装有铝配重2和钢配重3,铝悬臂梁1的上表面装有激光位移传感器组5,激光位移传感器组5、数据采集卡6与计算机7 连接;以激光位移传感器组5作为测量元件测量悬臂梁的位移信号,并经数据采集卡6进行A/D转换后传输给计算机7,在计算机内对离散化的位移信号进行数据处理得到精确的悬臂梁模态参数;
步骤二:建立结构的几何模型,确定结构的材料力学参数,并导入到 ANSYS中进行模态分析;
首先确定结构的材料力学参数,并导入到ANSYS中进行模态分析,分析结束后,将关注的振动阶次的频率(ω12,…,ωn)和正则振型导出;选取自由振动实验中激光位移传感器的测量点和测量方向,激光位移传感器的个数选为关注的振动阶次的个数n。
将各阶振动阻尼比取为0,***的模态阻尼矩阵D和模态刚度矩阵K 为:
***的模态坐标动力学方程为:
选取振动模态坐标向量η和其变化率为状态量,建立模态状态空间方程如下:
其中:
式中:y是各传感器测量组成的列向量;分别代表第i个激光位移传感器测量点在结构几何建模坐标系中的位置和测量方向;代表结构的第j阶正则振型矢量场。
在建立完状态空间方程后可以对***的能观测性进行校验,如不满足,可以重新选取传感器的测量点,直到满足能观测性要求。***完全能观测的充要条件是能观测性矩阵N满秩,其中:
步骤三:进一步以y和的组合作为反馈量建立状态观测器方程:
式中:
是x的状态估计值,状态观测器的增益矩阵L可以由MATLAB中极点配置的函数来确定,具体程序为:
L=(place(A',Cz',V))'; (8)
其中,V是由期望的状态观测器极点所构成的向量,极点选取为对应阶次圆频率的2~3倍的负数可以保证状态观测器快速跟踪传感器信号变化。
步骤四:利用锤击法做自由振动实验,采集各传感器的测量数据,经过状态观测器得到各阶振动模态坐标随时间的变化。针对其中的杂波成分,设计FIR带通滤波器将其滤除,FIR滤波器的离散时域表达式为:
其中为滤波器输入信号序列,为滤波后的输出信号序列,N为的抽样数,一般抽样数越多,滤波器可以越接近理想滤波器。h(k)为滤波器的单位脉冲响应序列h的第k个值,h由MATLAB中的FIR滤波器设计函数得到,具体程序为:
h=fir1(N,[f1,f2]*2/Fs,'DC-0'); (10)
其中,f1和f2分别为带通滤波器的低截止频率和高截止频率,这里可以根据ANSYS分析结果和估计误差范围进行设定。Fs为采样频率,应取为最高关注频率的20倍以上。'DC-0'表示选取带通滤波器设计模式。在得到h之后可以利用以下MATLAB程序查看所设计的FIR滤波器的幅频特性和相频特性:
freqz(h,1); (11)
步骤五:在对各阶观测到的模态坐标进行滤波之后,可以用指数衰减的正弦变化函数对其进行拟合。首先查找信号中的极大值点,对应的时间组成的数组为time,极大值组成的数组为local_max,然后对这些极大值点做指数函数拟合,用公式(12)、(13)、(14)、(15),
f=(numel(time)-1)/(time(end)-time(1)); (12)
myfunc=inline('b(1)*exp(b(2)*x)','b','x'); (13)
b=nlinfit(time,local_max,myfunc,[0 0]); (14)
c=-b(2)/(2*pi*f); (15)
则精确的频率f和阻尼比c可以由以下MATLAB程序计算出来。
本发明的有益效果是充分利用有限元分析得到的固有频率和固有振型信息,有利于区分识别频率相近的振动阶次的模态参数。利用激光位移传感器相比于接触式传感器来说对实验结果无干扰,对实验条件要求不高,在激光位移传感器布置不精确的情况下也能精确地识别模态参数。识别方法实现简单,识别精确,方法通用性强,适用于各种结构的振动模态参数识别。
附图说明
图1为本发明基于状态观测器的振动模态参数识别方法的流程图。
图2为本发明的自由振动实验***示意图,其中:1-铝悬臂梁,2-铝配重,3-钢配重,4-固定端,5-激光位移传感器组,6-数据采集卡,7-计算机。
图3为滤波后的第一阶自由振动模态坐标以及拟合结果,其中,横坐标表示时间,单位,秒;纵坐标表示第一阶自由振动模态,图中曲线表示拟合结果。
图4为滤波后的第二阶自由振动模态坐标以及拟合结果。其中,横坐标表示时间,单位,秒;纵坐标表示第二阶自由振动模态,图中曲线表示拟合结果。
图5为滤波后的第三阶自由振动模态坐标以及拟合结果,其中,横坐标表示时间,单位,秒;纵坐标表示第三阶自由振动模态,图中曲线表示拟合结果。
具体实施方式
下面结合附图和技术方案详细说明本发明的具体实施。
如图2所示,先组建自由振动实验***,自由振动实验***由铝悬臂梁1、铝配重2、钢配重3、固定端4、激光位移传感器组5、数据采集卡6 和计算机7组成;以激光位移传感器组5作为测量元件构建悬臂梁自由振动实验装置,激光位移传感器测量悬臂梁的位移信号,并经数据采集卡6 进行A/D转换后传输给计算机7,在计算机内对离散化的位移信号进行数据处理得到精确的悬臂梁模态参数。
图1是本发明基于状态观测器的振动模态参数识别方法的流程图,识别方法的具体步骤如下:
步骤一:建立结构的几何模型,确定结构的材料力学参数,导入到 ANSYS中进行模态分析。
本算例中带配重的悬臂梁几何模型中以长度方向为x向,宽度方向为y 向,厚度方向为z向建立坐标系。铝悬臂梁的尺寸为0.25m×0.05m×0.001m,铝配重尺寸为0.01m×0.1m×0.01m,两块钢配重尺寸均为 0.003m×0.025m×0.01m,整个结构在y向和z向是对称的。铝的密度为 2770Kg/m3,杨氏模量为7.1×1010Pa,泊松比为0.33。钢的密度为 7850Kg/m3,杨氏模量为2×1011Pa,泊松比为0.3。ANSYS前三阶频率分析结果为4.6634Hz、29.742Hz和56.15Hz。选取自由振动实验中三个激光位移传感器的测量点坐标分别为(0.25m,0.025m,0m)、(0.15m,0.005m,0m)和 (0.15m,0.045m,0m),测量方向为z向。
步骤二:将各阶振动阻尼比取为0,则***的模态阻尼矩阵和模态刚度矩阵为:
D=03×3, K=diag(858.55,34922.08,124468.44)
进而建立模态状态空间方程如下:
其中:
对***的能观测性进行校验,满足能观测性要求。
步骤三:进一步以y和的组合作为反馈量建立状态观测器方程:
其中:
是x的状态估计值,状态观测器的增益矩阵L可以由MATLAB中极点配置的函数来确定,具体程序为:
L=(place(A',Cz',V))';
其中,V是由期望的状态观测器极点所构成的向量,极点选取为对应阶次圆频率的2~3倍的负数可以保证状态观测器快速跟踪传感器信号变化,这里选取为:
V=[-58.60,-373.751,-705.60,-58.75,-374.68,-707.37];
步骤四:利用锤击法做自由振动实验,采集各传感器的测量数据,经过状态观测器可以得到各阶振动模态坐标随时间的变化。针对其中的杂波成分,可以设计FIR带通滤波器将其滤除,FIR滤波器的离散时域表达式为:
其中为滤波器输入信号序列,为滤波后的输出信号序列,N为的抽样数,一般抽样数越多,滤波器可以越接近理想滤波器。h(k)为滤波器的单位脉冲响应序列h的第k个值,h由MATLAB中的FIR滤波器设计函数得到,具体程序为:
h=fir1(N,[f1,f2]*2/Fs,'DC-0');
其中,f1和f2分别为带通滤波器的低截止频率和高截止频率,这里可以根据ANSYS分析结果和估计误差范围进行设定。这里第一阶选为f1=2.5、f2=10,第二阶选为f1=25、f2=35,第三阶选为f1=40、 f2=60。Fs为采样频率,这里选取Fs=1000。'DC-0'表示选取带通滤波器设计模式。
步骤五:在对各阶观测到的模态坐标进行滤波之后,可以用指数衰减的正弦变化函数对其进行拟合。首先查找信号中的极大值点,对应的时间组成的数组为time,极大值组成的数组为local_max,然后对这些极大值点做指数函数拟合,则精确的频率f和阻尼比c可以由以下MATLAB程序计算出来:
f=(numel(time)-1)/(time(end)-time(1));
myfunc=inline('b(1)*exp(b(2)*x)','b','x');
b=nlinfit(time,local_max,myfunc,[0 0]);
c=-b(2)/(2*pi*f);
运行上述程序之后,得到前三阶频率为3.9026Hz、26.4750Hz和 43.5825Hz,前三阶阻尼比为0.0278、0.0219和0.02404。
图3、图4和图5表示了在本发明提出的模态参数识别方法下的悬臂梁滤波后前三阶自由振动模态坐标和其各自的拟合曲线。从这些实验图可以看出,经过本方法的一系列数据处理,各阶自由振动模态坐标能够被很好的分离出来,且对其进行拟合的准确度很高,从而说明对各阶模态参数的识别精度很高。

Claims (1)

1.一种基于状态观测器的振动模态参数识别方法,其特征是,该方法针对特定结构和关注的振动阶次,先利用ANSYS模态分析近似得到各阶振动频率和振型,再建立自由振动实验,采用多个非接触式的高分辨率激光位移传感器测量结构位移信号,据此建立整个***的模态状态空间方程和状态观测器;在利用状态观测器得到各阶自由振动模态坐标之后,采用FIR滤波器滤除其中的干扰信号;最后采用指数衰减的正弦函数来拟合滤波后的模态坐标获取各阶振动精确的频率和阻尼比,利用锤击法在自由振动实验中获得更精确的模态参数;方法的具体步骤如下:
步骤一:组建自由振动实验***,
自由振动实验***由铝悬臂梁(1)、铝配重(2)、钢配重(3)、固定端(4)、激光位移传感器组(5)、数据采集卡(6)和计算机(7)组成;铝悬臂梁(1)的左端为固定端(4),铝悬臂梁(1)的右端装有铝配重(2)和钢配重(3),铝悬臂梁(1)的上表面装有激光位移传感器组(5),激光位移传感器组(5)、数据采集卡(6)与计算机(7)连接;以激光位移传感器组(5)作为测量元件测量悬臂梁的位移信号,并经数据采集卡(6)进行A/D转换后传输给计算机(7),在计算机(7)内对离散化的位移信号进行数据处理得到精确的悬臂梁模态参数;
步骤二:建立结构的几何模型,确定结构的材料力学参数,并导入到ANSYS中进行模态分析;
首先确定结构的材料力学参数,并导入到ANSYS中进行模态分析,分析结束后,将关注的振动阶次的频率(ω12,…,ωn)和正则振型导出;选取自由振动实验中激光位移传感器的测量点和测量方向,激光位移传感器的个数选为关注的振动阶次的个数n;
将各阶振动阻尼比取为0,***的模态阻尼矩阵D和模态刚度矩阵K为:
***的模态坐标动力学方程为:
选取n维振动模态坐标向量η和其变化率为状态量,建立模态状态空间方程如下:
其中,x为2n维状态向量,y为各传感器测量组成的n维输出向量;A为***矩阵,为2n阶方阵;C为输出矩阵,为n行2n列矩阵:
式中:In×n为n阶单位阵;Cη为n阶方阵,其第i行第j列元素其中,分别代表第i个激光位移传感器测量点在结构几何建模坐标系中的位置和测量方向,代表结构的第j阶正则振型矢量场;
在建立完状态空间方程后对***的能观测性进行校验,如不满足,重新选取传感器的测量点,直到满足能观测性要求;***完全能观测的充要条件是能观测性矩阵N满秩;N可以由***矩阵A和输出矩阵C构造出来:
步骤三:进一步以y和的组合作为反馈量建立状态观测器方程:
式中:
是x的状态估计值,状态观测器的增益矩阵L由MATLAB中极点配置的函数来确定,具体程序为:
L=(place(A',Cz',V))'; (8)
其中,V是由期望的状态观测器极点所构成的向量,极点选取为对应阶次圆频率的2~3倍的负数可以保证状态观测器快速跟踪传感器信号变化;
步骤四:利用锤击法做自由振动实验,采集各传感器的测量数据,经过状态观测器得到各阶振动模态坐标随时间的变化;针对其中的杂波成分,设计FIR带通滤波器将其滤除,FIR滤波器的离散时域表达式为:
其中,为滤波器输入信号序列的第i-k个值,为滤波后的输出信号序列的第i个值,N为的抽样数,一般抽样数越多,滤波器越接近理想滤波器;h(k)为滤波器的单位脉冲响应序列h的第k个值,h由MATLAB中的FIR滤波器设计函数得到,具体程序为:
h=fir1(N,[f1,f2]*2/Fs,'DC-0'); (10)
其中,f1和f2分别为带通滤波器的低截止频率和高截止频率,根据ANSYS分析结果和估计误差范围进行设定;Fs为采样频率,应取为最高关注频率的20倍以上;'DC-0'表示选取带通滤波器设计模式;在得到h之后,利用以下MATLAB程序查看所设计的FIR滤波器的幅频特性和相频特性:
freqz(h,1); (11)
步骤五:在对各阶观测到的模态坐标进行滤波之后,用指数衰减的正弦变化函数对其进行拟合;首先查找信号中的极大值点,对应的时间组成的数组为time,极大值组成的数组为local_max,然后对这些极大值点做指数函数拟合,用公式(12)、(13)、(14)、(15):
f=(numel(time)-1)/(time(end)-time(1)); (12)
myfunc=inline('b(1)*exp(b(2)*x)','b','x'); (13)
b=nlinfit(time,local_max,myfunc,[0 0]); (14)
c=-b(2)/(2*pi*f); (15)
则精确的f和阻尼比c利用MATLAB程序计算出来。
CN201710548811.9A 2017-07-07 2017-07-07 一种基于状态观测器的振动模态参数识别方法 Expired - Fee Related CN107391818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710548811.9A CN107391818B (zh) 2017-07-07 2017-07-07 一种基于状态观测器的振动模态参数识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710548811.9A CN107391818B (zh) 2017-07-07 2017-07-07 一种基于状态观测器的振动模态参数识别方法

Publications (2)

Publication Number Publication Date
CN107391818A CN107391818A (zh) 2017-11-24
CN107391818B true CN107391818B (zh) 2019-10-11

Family

ID=60335503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710548811.9A Expired - Fee Related CN107391818B (zh) 2017-07-07 2017-07-07 一种基于状态观测器的振动模态参数识别方法

Country Status (1)

Country Link
CN (1) CN107391818B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415884B (zh) * 2018-02-24 2021-07-02 大连理工大学 一种结构模态参数实时追踪方法
WO2019173943A1 (zh) * 2018-03-12 2019-09-19 大连理工大学 一种自动追踪结构模态参数的方法
CN110000599B (zh) * 2019-04-08 2020-09-22 西北工业大学 薄板/壁类零件切削加工通用配重抑振方法
CN110231402B (zh) * 2019-05-22 2020-09-11 张博湉 一种集装箱检测方法及装置
CN110132875B (zh) * 2019-05-27 2021-09-10 哈尔滨工业大学 基于多源脉冲激光信息融合的弥散介质多宗量场重建装置及方法
CN110737958B (zh) * 2019-10-16 2024-04-05 北京工业大学 一种利用曲率转角指标辨识弹性支撑梁刚度薄弱环节的方法
CN111521359A (zh) * 2020-04-29 2020-08-11 河南工程学院 面向结构振动主动控制优化配置方法及振动控制实验平台
CN111521360A (zh) * 2020-04-30 2020-08-11 上海核工程研究设计院有限公司 一种水箱-支撑结构***模态参数的试验装置和方法
CN111784647B (zh) * 2020-06-19 2024-05-28 西北工业大学 基于视频振动放大的高精度结构模态测试方法
CN112067116B (zh) * 2020-07-13 2022-08-19 东南大学 一种具有抗噪性的中小桥梁冲击振动测试与分析方法
CN113408672B (zh) * 2021-08-19 2021-11-09 中国科学院力学研究所 一种用于飞行器模态试验的关键参数识别方法
CN114383874A (zh) * 2021-12-10 2022-04-22 中国电子科技集团公司第五十四研究所 一种大型结构模态测试方法
CN114993451A (zh) * 2022-06-23 2022-09-02 无锡中鼎集成技术有限公司 低频振动测试***及测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112072A (zh) * 2014-07-15 2014-10-22 华侨大学 基于小波阈值去噪的主成分分析的工作模态参数识别方法
CN105956213A (zh) * 2016-03-07 2016-09-21 重庆大学 一种机敏约束层阻尼板结构模态状态观测器的设计方法
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112072A (zh) * 2014-07-15 2014-10-22 华侨大学 基于小波阈值去噪的主成分分析的工作模态参数识别方法
CN105956213A (zh) * 2016-03-07 2016-09-21 重庆大学 一种机敏约束层阻尼板结构模态状态观测器的设计方法
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法

Also Published As

Publication number Publication date
CN107391818A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107391818B (zh) 一种基于状态观测器的振动模态参数识别方法
CN106960068B (zh) 一种基于脉冲激励响应频谱的模态阻尼比快速计算方法
CN103175602B (zh) 基于单点激光连续平面扫描测振的模态测试***及方法
CN107991060B (zh) 基于自适应和迭代算法的载荷分布式光纤辨识方法
Chwalowski et al. Preliminary computational analysis of the (hirenasd) configuration in preparation for the aeroelastic prediction workshop
CN108489512B (zh) 一种半球谐振陀螺标度因数的补偿标定方法及装置
Stocking et al. A capacitance-based whisker-like artificial sensor for fluid motion sensing
CN104132791A (zh) 一种基于脉冲激励的运行模态分析实验方法及装置
Grimshaw et al. Fast settling millimetre-scale five-hole probes
CN105628976A (zh) Mems加速度传感器性能参数标定方法、处理器及***
CN110346005B (zh) 基于深度学习的科里奥利质量流量计数字信号处理方法
Hu et al. A flow sensing method of power spectrum based on piezoelectric effect and vortex-induced vibrations
CN107121271A (zh) 一种识别重型机床地基基础模态参数的实验方法
CN108828661B (zh) 基于地震脉冲响应谱测定场地卓越周期的方法
CN111879348A (zh) 一种惯性仪表性能地面测试***效能分析方法
CN110726852A (zh) 一种mems加速度计温度补偿方法
CN108120439B (zh) 一种三分量感应线圈姿态测量方法及装置
Ritter Static and forced motion aeroelastic simulations of the HIRENASD wind tunnel model
CN106092534A (zh) 叶片模态阻尼测定方法
Herranen et al. Acceleration data acquisition and processing system for structural health monitoring
CN109085654B (zh) 一种旋转加速度计重力梯度仪数字建模仿真方法
CN109239403B (zh) 一种基于时间测量的单器件虚拟加速度计及其实现方法
CN103712634B (zh) 光纤陀螺振动-磁场交叉耦合度的测量方法
CN116155143A (zh) 马达参数的获取方法及装置
CN114184192A (zh) 一种惯性测量装置角速度测量通道传递函数的获取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011

Termination date: 20210707

CF01 Termination of patent right due to non-payment of annual fee