CN107389561A - 基于rgb颜色传感器的植物叶片养分监测设备及监测方法 - Google Patents

基于rgb颜色传感器的植物叶片养分监测设备及监测方法 Download PDF

Info

Publication number
CN107389561A
CN107389561A CN201710569751.9A CN201710569751A CN107389561A CN 107389561 A CN107389561 A CN 107389561A CN 201710569751 A CN201710569751 A CN 201710569751A CN 107389561 A CN107389561 A CN 107389561A
Authority
CN
China
Prior art keywords
rgb color
color sensor
casing
monitoring device
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710569751.9A
Other languages
English (en)
Inventor
姜学玲
杨剑超
张晓伟
王德涛
贺晶
孙晓
汤国民
张瑞清
徐维华
王新语
郑秋玲
宋勇义
赵霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai North Tea Promotion Center
Shandong Yantai Academy of Agricultural Sciences
Original Assignee
Yantai North Tea Promotion Center
Shandong Yantai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai North Tea Promotion Center, Shandong Yantai Academy of Agricultural Sciences filed Critical Yantai North Tea Promotion Center
Priority to CN201710569751.9A priority Critical patent/CN107389561A/zh
Publication of CN107389561A publication Critical patent/CN107389561A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于RGB颜色传感器的植物叶片养分监测设备,包括箱体,箱体内设置有微处理器,在箱体表面设置有电源接口、通信接口、USB接口和显示屏,在箱体下方吊装有RGB颜色传感器,在RGB颜色传感器的感光单元周边安装有LED光源,所述电源接口、通信接口、USB接口、显示屏、RGB颜色传感器和LED光源均与微处理器电路连接;在箱体靠近RGB颜色传感器的位置竖直设置有测距尺。本发明采用非接触性叶片测量和自动白平衡功能可以实现长期叶片营养监测。USB和串口方案可以对本设备进行远程传输调控。监测设备内置多种果树叶片营养诊断模型,可以通过网络进行更新升级。

Description

基于RGB颜色传感器的植物叶片养分监测设备及监测方法
技术领域
本发明涉及通信控制领域,特别涉及一种基于RGB颜色传感器的植物叶片氮素营养监测设备及监测方法。
背景技术
在现有技术中,在果树、蔬菜等经济作物生产过程中,只有实时把控作物的营养信息,尤其是叶片的氮素营养信息和土壤的氮素信息,才能对栽培作物给出最佳营养判断,并进行针对性施肥获得最佳经济效益。目前对植株氮素营养的检测手段还是分有限。常规手段主要包括化学分析法、计算机视觉分析法和叶绿素仪分析法。化学分析法通过化学手段检测植物的叶片内氮素营养,利用土壤化验检测方法获取土壤中的硝态氮和铵态氮。虽然常规的检测方法具有精确度高的优势,但是仅符合实验室使用。目前利用计算机视觉分析建模需要大型数据库以及上位机资源,其图形捕捉需要航拍等手段,也很难普及。叶绿素仪法通过利用传感器捕获叶片透射光和反射光信息,即时给出叶绿素信息和相对氮素信息,具有便携,快速读取数据的优势。目前比较流行的是美能达公司生产的SPAD系列便携性叶绿素仪,以及工作原理类似的氮素诊断仪。其特点是利用650nm和940nm两个波段进行检测,虽然这类非损伤性叶绿素/氮素仪器具有便携高效的优点,但是由于其检测波谱范围有限,精度略差,适合抽检也不适合长期监控。随着颜色检测技术的发展,特别是R/G/B传感器的高速发展,有一些应用于科研领域的叶绿素检测仪器也由此诞生,目前比较流行的是基于TAO公司的TS230 CMOS颜色传感器的仪器,较SPAD检测仪具有精度高的优势,但是其机械结构包括避光检测室、叶片夹等仍然与SPAD类仪器相似。仪器每次检测仍然需要人为手动通过机械装置才能实现,也无法将这类设备作为田间长期监控设备进行开发。
发明内容
针对上述现有技术中的缺点和不足,本发明利用TS230的高精度和抗干扰特性,开发一种可以在田间进行长期监控,具备远程通讯功能的氮素监控仪器。
本发明的目的是通过以下技术方案实现的:
一种基于RGB颜色传感器的植物叶片养分监测设备,包括箱体,箱体内设置有微处理器,在箱体表面设置有电源接口、通信接口、USB接口和显示屏,在箱体下方吊装有RGB颜色传感器,在RGB颜色传感器的感光单元周边安装有LED光源,所述电源接口、通信接口、USB接口、显示屏、RGB颜色传感器和LED光源均与微处理器电路连接;在箱体靠近RGB颜色传感器的位置竖直设置有测距尺。
优选地,所述电源接口、通信接口和USB接口设置于箱体的侧面;所述显示屏设置在箱体的前端面,在箱体的前端面上还设置有控制面板;在箱体的上方固定设置有吊装环。
优选地,所述微处理器为STC89C52RC单片机,所述RGB颜色传感器为TCS320 RGBCMOS传感器。
优选地,所述TCS320 RGB CMOS传感器采用8引脚的SOIC表面贴装式封装,在单一芯片上集成64个光电二极管。
优选地,64个光电二极管均分为4组:其中16个光电二极管带有红色滤波器;16个光电二极管带有绿色滤波器;16个光电二极管带有蓝色滤波器;其余16个不带有任何滤波器,可以透过全部的光信息。
优选地,所述单片机内嵌有模型公式:
y=k+0.63log10(R)+2.59log10(G)-4.31log10(B)………………(1)
在公式(1)中,R、G、B为传感器侦测获得的色彩通道数值,k为植物特异性常量参数(如苹果为40.4,大樱桃为32.7等),最终输出的y为植株氮素水平和相对应的土壤硝态氮水平的比率。
一种基于RGB颜色传感器的植物叶片氮素营养监测方法,包括如下步骤:
S1,开启LED光源发射白光,RGB颜色传感器补货叶片的颜色信号中R/G/B的相对强度,转化为电信号后传输至单片机;
S2,单片机根据分别根据R/G/B的数值带入到其内嵌的模型公式中,计算出植株氮素水平和相对应的土壤硝态氮水平的比率,确认植物叶片氮素营养是否处于正常范围。
优选地,在步骤S1之前还包括仪器准备阶段:
ZB01,将12v直流电源***电源接口,将通信线缆分别接入通信接口和远程通信终端;
ZB02,通过吊装环将监测设备的RGB颜色传感器的感光单元吊装至与被测叶片平行;
ZB03,通过控制面板上的开关键开机并设置监测参数;
ZB04,利用测距尺伸缩调节传感器与叶片之间的相对位置,根据测距尺测得的距离设置LED光源的照射频率。
优选地,所述检测参数包括采集日期、采集品种和采集频率。
与现有技术相比,本发明实施例至少具有以下优点:
本发明TS230 CMOS芯片具有输出信号可以直接与微处理器相连实现每个色彩10位以上的转换高精度,并不需要依赖传统的A/D转换电路。TS230只要在有LED补光条件下,设置程序可以自动白平衡,实现在非封闭环境中的高精度颜色检测。采用非接触性叶片测量和自动白平衡功能可以实现长期叶片营养监测。USB和串口方案可以对本设备进行远程传输调控。监测设备内置多种果树叶片营养诊断模型,可以通过网络进行更新升级。
附图说明
图1为本发明基于RGB颜色传感器的植物叶片养分监测设备的结构示意图;
图2为本发明基于RGB颜色传感器的植物叶片养分监测方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图和实施例对本发明作进一步详述。
一种基于RGB颜色传感器的植物叶片养分监测设备,包括箱体6,箱体6内设置有微处理器,在箱体6表面设置有电源接口5、通信接口3、USB接口4和显示屏7,在箱体6下方吊装有RGB颜色传感器1,在RGB颜色传感器1的感光单元周边安装有LED光源9,所述电源接口5、通信接口3、USB接口4、显示屏7、RGB颜色传感器1和LED光源9均与微处理器电路连接;在箱体6靠近RGB颜色传感器1的位置竖直设置有测距尺10。可以利用USB接口4和通信接口3连接电脑进行调试或升级。
所述电源接口5、通信接口3和USB接口4设置于箱体6的侧面;所述显示屏7设置在箱体6的前端面,在箱体6的前端面上还设置有控制面板8;在箱体6的上方固定设置有吊装环2。
所述微处理器为STC88C52RC单片机,所述RGB颜色传感器1为TCS320RGB CMOS传感器。
所述TCS320 RGB CMOS传感器采用8引脚的SOIC表面贴装式封装,在单一芯片上集成64个光电二极管。
64个光电二极管均分为4组:其中16个光电二极管带有红色滤波器;16个光电二极管带有绿色滤波器;16个光电二极管带有蓝色滤波器;其余16个不带有任何滤波器,可以透过全部的光信息。
4组光电二极管在芯片内交叉排列;位于同组的光电二极管并联连接,均匀分布在二极管阵列中。
所述单片机内嵌有模型公式:
y=k+0.63log10(R)+2.59log10(G)-4.31log10(B)………………(1)
在公式(1)中,R、G、B为传感器侦测获得的色彩通道数值,k为植物特异性常量参数(如苹果为40.4,大樱桃为32.7等),最终输出的y为植株氮素水平和相对应的土壤硝态氮水平的比率。
一种基于RGB颜色传感器1的植物叶片氮素营养监测方法,包括如下步骤:
S1,开启LED光源9发射白光,RGB颜色传感器1补货叶片的颜色信号中R/G/B的相对强度,转化为电信号后传输至单片机;
S2,单片机根据分别根据R/G/B的数值带入到其内嵌的模型公式中,计算出植株氮素水平和相对应的土壤硝态氮水平的比率,确认植物叶片氮素营养是否处于正常范围。
在步骤S1之前还包括仪器准备阶段:
ZB01,将12v直流电源***电源接口5,将通信线缆分别接入通信接口3和远程通信终端;
ZB02,通过吊装环2将监测设备的RGB颜色传感器1的感光单元吊装至与被测叶片平行;
ZB03,通过控制面板8上的开关键开机并设置监测参数;
ZB04,利用测距尺10伸缩调节传感器与叶片之间的相对位置,根据测距尺10测得的距离设置LED光源9的照射频率。
所述检测参数包括采集日期、采集品种和采集频率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种基于RGB颜色传感器的植物叶片养分监测设备,其特征在于,包括箱体,箱体内设置有微处理器,在箱体表面设置有电源接口、通信接口、USB接口和显示屏,在箱体下方吊装有RGB颜色传感器,在RGB颜色传感器的感光单元周边安装有LED光源,所述电源接口、通信接口、USB接口、显示屏、RGB颜色传感器和LED光源均与微处理器电路连接;在箱体靠近RGB颜色传感器的位置竖直设置有测距尺。
2.根据权利要求1所述的监测设备,其特征在于,所述电源接口、通信接口和USB接口设置于箱体的侧面;所述显示屏设置在箱体的前端面,在箱体的前端面上还设置有控制面板;在箱体的上方固定设置有吊装环。
3.根据权利要求1所述的监测设备,其特征在于,所述微处理器为STC89C52RC单片机,所述RGB颜色传感器为TCS320 RGB CMOS传感器。
4.根据权利要求3所述的监测设备,其特征在于,所述TCS320 RGB CMOS传感器采用8引脚的SOIC表面贴装式封装,在单一芯片上集成64个光电二极管。
5.根据权利要求4所述的监测设备,其特征在于,64个光电二极管均分为4组:其中16个光电二极管带有红色滤波器;16个光电二极管带有绿色滤波器;16个光电二极管带有蓝色滤波器;其余16个不带有任何滤波器,可以透过全部的光信息。
6.根据权利要求2-6中任一项所述的监测设备,其特征在于,所述单片机内嵌有模型公式:
y=k+0.63log10(R)+2.59log10(G)-4.31log10(B)..................(1)
在公式(1)中,R、G、B为传感器侦测获得的色彩通道数值,k为植物特异性常量参数(如苹果为40.4,大樱桃为32.7等),最终输出的y为植株氮素水平和相对应的土壤硝态氮水平的比率。
7.一种基于RGB颜色传感器的植物叶片养分监测方法,其特征在于,包括如下步骤:
S1,开启LED光源发射白光,RGB颜色传感器补货叶片的颜色信号中R/G/B的相对强度,转化为电信号后传输至单片机;
S2,单片机根据分别根据R/G/B的数值带入到其内嵌的模型公式中,计算出植株氮素水平和相对应的土壤硝态氮水平的比率,确认植物叶片氮素营养是否处于正常范围。
8.根据权利要求8所述的监测方法,其特征在于,在步骤S1之前还包括仪器准备阶段:
ZB01,将12v直流电源***电源接口,将通信线缆分别接入通信接口和远程通信终端;
ZB02,通过吊装环将监测设备的RGB颜色传感器的感光单元吊装至与被测叶片平行;
ZB03,通过控制面板上的开关键开机并设置监测参数;
ZB04,利用测距尺伸缩调节传感器与叶片之间的相对位置,根据测距尺测得的距离设置LED光源的照射频率。
9.根据权利要求9所述的监测方法,其特征在于,所述检测参数包括采集日期、采集品种和采集频率。
CN201710569751.9A 2017-07-13 2017-07-13 基于rgb颜色传感器的植物叶片养分监测设备及监测方法 Pending CN107389561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710569751.9A CN107389561A (zh) 2017-07-13 2017-07-13 基于rgb颜色传感器的植物叶片养分监测设备及监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710569751.9A CN107389561A (zh) 2017-07-13 2017-07-13 基于rgb颜色传感器的植物叶片养分监测设备及监测方法

Publications (1)

Publication Number Publication Date
CN107389561A true CN107389561A (zh) 2017-11-24

Family

ID=60340575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710569751.9A Pending CN107389561A (zh) 2017-07-13 2017-07-13 基于rgb颜色传感器的植物叶片养分监测设备及监测方法

Country Status (1)

Country Link
CN (1) CN107389561A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738438A (zh) * 2018-12-29 2019-05-10 扬州大学 一种小麦叶片衰老程度快速测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201277945Y (zh) * 2008-10-14 2009-07-22 浙江大学 一种便携式植物土壤养分快速测试仪
CN101556240A (zh) * 2009-05-22 2009-10-14 天津大学 一种基于红、绿、蓝三原色数字信号的叶绿素测量仪
CN101975764A (zh) * 2010-09-29 2011-02-16 中国农业大学 基于近红外光谱技术的多波段土壤氮素检测装置和方法
CN102435564A (zh) * 2011-09-19 2012-05-02 南京农业大学 一种基于三波段光谱指数估测植物氮含量的方法
CN102506938A (zh) * 2011-11-17 2012-06-20 江苏大学 基于多传感信息的温室作物生长和环境信息检测方法
CN102721651A (zh) * 2012-06-18 2012-10-10 浙江大学 基于多光谱图像的植物叶片水分含量的检测方法及***
CN103674849A (zh) * 2012-09-04 2014-03-26 南京农业大学 农作物氮素营养诊断传感器
CN106934724A (zh) * 2017-02-13 2017-07-07 浙江海高思通信科技有限公司 基于物联网的绿色蔬菜长势分析***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201277945Y (zh) * 2008-10-14 2009-07-22 浙江大学 一种便携式植物土壤养分快速测试仪
CN101556240A (zh) * 2009-05-22 2009-10-14 天津大学 一种基于红、绿、蓝三原色数字信号的叶绿素测量仪
CN101975764A (zh) * 2010-09-29 2011-02-16 中国农业大学 基于近红外光谱技术的多波段土壤氮素检测装置和方法
CN101975764B (zh) * 2010-09-29 2013-01-30 中国农业大学 基于近红外光谱技术的多波段土壤氮素检测装置和方法
CN102435564A (zh) * 2011-09-19 2012-05-02 南京农业大学 一种基于三波段光谱指数估测植物氮含量的方法
CN102506938A (zh) * 2011-11-17 2012-06-20 江苏大学 基于多传感信息的温室作物生长和环境信息检测方法
CN102721651A (zh) * 2012-06-18 2012-10-10 浙江大学 基于多光谱图像的植物叶片水分含量的检测方法及***
CN103674849A (zh) * 2012-09-04 2014-03-26 南京农业大学 农作物氮素营养诊断传感器
CN106934724A (zh) * 2017-02-13 2017-07-07 浙江海高思通信科技有限公司 基于物联网的绿色蔬菜长势分析***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李喜朋: "基于RGB颜色传感器的植物颜色检测***研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738438A (zh) * 2018-12-29 2019-05-10 扬州大学 一种小麦叶片衰老程度快速测量方法

Similar Documents

Publication Publication Date Title
CN109470179B (zh) 一种大规模水耕蔬菜长势检测***及方法
CN101915738B (zh) 基于高光谱成像技术的茶树营养信息快速探测方法及装置
CN102721651B (zh) 基于多光谱图像的植物叶片水分含量的检测方法及***
CN109883959B (zh) 一种基于阵列传感器芯片的便携式多光谱成像装置及其应用
CN102081039A (zh) 一种环境可控的作物营养水分高光谱图像检测装置
CN101839979A (zh) 作物冠层植被指数测量方法及装置
CN103278503B (zh) 一种基于多传感器技术的葡萄水分胁迫诊断方法及***
CN203299112U (zh) 一种农产品品质的多光谱成像检测装置
CN101210876A (zh) 基于可见/近红外多光谱成像的水稻养分信息测量方法
CN105651713A (zh) 一种基于计算机图像分析的青菜叶片叶绿素定量检测方法
CN203502345U (zh) 群体叶绿素实时监测***
CN105738302B (zh) 植株生长周期叶绿素含量高精度自动化测量装置及测定方法
CN103093737B (zh) 一种用于调整显示设备颜色白平衡的装置及方法
CN106769944A (zh) 基于图像的双波长植物叶片叶绿素含量检测方法和装置
CN102798614A (zh) 一种土壤总含钾量检测装置以及方法
CN102967562B (zh) 一种高精度作物生长信息监测仪及其检测方法
CN105509658A (zh) 一种叶面积指数检测方法
CN107389561A (zh) 基于rgb颜色传感器的植物叶片养分监测设备及监测方法
CN114429591A (zh) 一种基于机器学习的植被生物量自动监测方法及***
CN210775225U (zh) 基于拉曼光谱的果实成熟度检测与采摘装置
CN102508366B (zh) 一种液晶模组Flicker闪烁度测定仪
CN103197451B (zh) 一种光学探头及包括该探头的用于测定液晶模组Flicker闪烁度的设备
CN102830071B (zh) 一种土壤总含磷量检测装置以及方法
CN105548031A (zh) 基于移动终端的土壤类型识别装置
CN114577739A (zh) 一种鲜烟成熟度判定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124

RJ01 Rejection of invention patent application after publication