CN107357949B - 基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法 - Google Patents

基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法 Download PDF

Info

Publication number
CN107357949B
CN107357949B CN201710286752.2A CN201710286752A CN107357949B CN 107357949 B CN107357949 B CN 107357949B CN 201710286752 A CN201710286752 A CN 201710286752A CN 107357949 B CN107357949 B CN 107357949B
Authority
CN
China
Prior art keywords
shell
digital model
process data
dental instrument
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710286752.2A
Other languages
English (en)
Other versions
CN107357949A (zh
Inventor
周可拓
黄雷
田杰
李华敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Ea Medical Instruments Technologies Ltd
Original Assignee
Wuxi Ea Medical Instruments Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Ea Medical Instruments Technologies Ltd filed Critical Wuxi Ea Medical Instruments Technologies Ltd
Publication of CN107357949A publication Critical patent/CN107357949A/zh
Application granted granted Critical
Publication of CN107357949B publication Critical patent/CN107357949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

本申请的一方面提供了一种基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其包括:获取基于热压膜成型技术的壳状牙科器械制作工艺的第一组工艺数据;基于所述第一组工艺数据,计算获得第一壳状牙科器械几何形态;以及基于所述第一壳状牙科器械几何形态,修改所述第一组工艺数据,以至少部分抵消由所述壳状牙科器械制作工艺中的弹塑性变形而造成的所述第一壳状牙科器械几何形态与设计的偏差,得到第二组工艺数据。

Description

基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优 化方法
技术领域
本申请总体上涉及计算机辅助基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法。
背景技术
由于美观、便捷以及利于清洁等优点,基于高分子材料的壳状牙科正畸矫治器越来越受欢迎。
目前,壳状牙科器械(包括但不限于正畸矫治器和保持器)一般是基于热压膜成型工艺制作获得。由于存在复杂的热力耦合效应,在热压膜成型工艺过程中温度场的动态分布直接影响壳状牙科器械冷却固形后的总内应力(即残余应力)水平,而当壳状牙科器械经裁剪脱离周边材料约束后,材料内部的部分残余应力得以释放,原有的应力平衡状态被打破,从而引起弹塑性变形。因此,壳状牙科器械的扩弓回弹变形是难以避免的。对于壳状牙科正畸矫治器而言,这会使得矫治器的实际施力与设计施力不符,从而无法达到预期的矫治效果。对于壳状牙科保持器而言,这会使得保持器对牙列施加不必要的力,从而改变原本理想的牙齿布局。
鉴于以上,有必要提供一种基于热压膜成型工艺的壳状牙科器械制作工艺的工艺数据优化方法,以解决以上问题。
发明内容
本申请的一方面提供了一种基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其包括:获取基于热压膜成型技术的壳状牙科器械制作工艺的第一组工艺数据;基于所述第一组工艺数据,计算获得第一壳状牙科器械几何形态;以及基于所述第一壳状牙科器械几何形态,修改所述第一组工艺数据,以至少部分抵消由所述壳状牙科器械制作工艺中的弹塑性变形而造成的所述第一壳状牙科器械几何形态与设计的偏差,得到第二组工艺数据。
在一些实施方式中,所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法还包括:基于所述第二组工艺数据制作壳状牙科器械。
在一些实施方式中,对所述第一组工艺数据的修改是对以下工艺数据的至少之一进行修改:阳模的弓宽、压膜工艺中阳模的初始温度、压膜工艺中基座的初始温度、压膜工艺的压力-时间曲线以及以上的任意组合,其中,在所述压膜工艺中,所述阳模是固定于所述基座之上。
在一些实施方式中,对所述第一组工艺数据的修改主要是至少部分抵消所述第一壳状牙科器械几何形态的弓宽与设计弓宽的偏差。
在一些实施方式中,基于所述第一组工艺数据,利用多网格模型计算方法对壳状牙科器械制作工艺进行仿真计算,获得第一壳状牙科器械多网格数字模型,其包括所述第一壳状牙科器械几何形态。
在一些实施方式中,所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法还包括:获取一牙颌的有多网格数字模型,其中,该牙颌的多网格数字模型包括所述牙颌的多颗牙齿的多网格数字模型、牙周膜多网格数字模型以及牙槽骨多网格数字模型;以及将所述第一壳状牙科器械多网格数字模型佩戴于所述牙颌的多网格数字模型之上,并利用多网格模型计算方法对其进行计算,获得包括以下至少之一的计算结果:在所述第一壳状牙科器械多网格数字模型的作用下,所述多颗牙齿的多网格数字模型达到的新的布局;其中,对所述第一组工艺数据的修改是基于所述计算结果。
在一些实施方式中,所述牙周膜多网格数字模型包覆所述多颗牙齿的多网格数字模型的牙根部分,所述牙槽骨多网格数字模型则包覆所述牙周膜多网格数字模型。
在一些实施方式中,所述牙周膜多网格数字模型和所述多颗牙齿的多网格数字模型,两者接触面上的节点的相对自由度被限制。
在一些实施方式中,所述牙周膜多网格数字模型和所述多颗牙齿的多网格数字模型,两者共享接触面上的节点。
在一些实施方式中,所述牙周膜多网格数字模型和所述牙槽骨多网格数字模型,两者接触面上的节点的相对自由度被限制。
在一些实施方式中,所述牙周膜多网格数字模型和所述牙槽骨多网格数字模型,两者共享接触面上的节点。
在一些实施方式中,在将所述第一壳状牙科器械多网格数字模型佩戴于所述牙颌的多网格数字模型之后,两者之间相互作用力的波动小于预定的值并保持预定时长,则将此时所述多颗牙齿的多网格数字模型的布局作为所述新的布局。
在一些实施方式中,对所述第一组工艺数据的修改是基于所述多颗牙齿的多网格数字模型的新的布局和设计布局的对比。
在一些实施方式中,所述多网格数字模型为有限元模型,所述多网格模型计算方法是有限元分析方法。
附图说明
以下将结合附图及其详细描述对本申请的上述及其他特征作进一步说明。应当理解的是,这些附图仅示出了根据本申请的若干示例性的实施方式,因此不应被视为是对本申请保护范围的限制。除非特别指出,附图不必是成比例的,并且其中类似的标号表示类似的部件。
图1为本申请一个实施例中的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法的的示意性流程图;
图2为本申请一个实施例中的基于热压膜成型技术的壳状牙科器械制作工艺的有限元分析方法的示意性流程图;以及
图3为本申请一个实施例中的基于计算机有限元分析的牙科正畸矫治器械的检验方法的示意性流程图。
具体实施方式
以下详细描述中引用了构成本说明书一部分的附图。说明书和附图所提及的示意性实施方式仅仅是出于说明性之目的,并非意图限制本申请之保护范围。在本申请的启示下,本领域技术人员能够理解,可以采用许多其他实施方式,并且可以对所描述的实施方式做出各种改变,而不背离本申请的主旨和保护范围。应当理解的是,在此说明并图示的本申请的各个方面可以按照很多不同的配置来布置、替换、组合、分离和设计,这些不同配置都在本申请的保护范围之内。
请参图1,本申请一个实施例中基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法100的示意性流程图。
在101中,获取第一组工艺数据。
该第一组工艺数据是基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据,其可以包括:阳模的数字模型、阳模的材料属性、膜片的厚度、膜片的材料属性、膜片的加热温度以及压膜的压力等。
在103中,基于第一组工艺数据计算得到第一壳状牙科器械几何形态。
在一个实施例中,可以利用有限元方法,基于所述第一组工艺数据对壳状牙科器械的制作工艺进行有限元分析,获得第一壳状牙科器械有限元模型,其包括代表壳状牙科器械几何形态的数据。可以把该第一壳状牙科器械有限元模型所包含的壳状牙科器械的几何形态称为第一壳状牙科器械几何形态。
请参图2,示意性地展示了本申请一个实施例中壳状牙科器械制作工艺的有限元分析方法200的示意性流程图。在一个实施例中,可以利用该方法,基于在101中获得的第一组工艺数据,对壳状牙科器械的制作工艺进行有限元分析,以获得所述第一壳状牙科器械有限元模型。
在一些实施例中,可以把膜片加热、压膜成型、阴模冷却以及阴模裁剪分步进行有限元分析,以简化运算。
在一个实施例中,可以采用ANSYS LS-DYNA软件进行有限元分析。然而,可以理解,除此之外,还可以采用任何其他适用的软件对壳状牙科器械的制作工艺进行有限元分析,比如,ANSYS、NASTRAN、CATIA、FEPG、SciFEA、JiFEX、KMAS、FELAC、DYNAFORM、LS-DYNA、ABAQUS、HyperWorks等软件。
在201中,获取工艺数据。
在一些实施例中,工艺数据可以包括:膜片的有限元模型、牙模的有限元模型、加热装置的有限元模型、成型基座的有限元模型、成型压力、阴模冷却温度等。在本申请中,多数情况下,“牙模”和“阳模”可以相互替代。其中,在压膜工艺过程中,牙模是固定在成型基座之上。
在一些实施例中,膜片的有限元模型可以包括膜片材料的物理参数,比如密度、泊松比、弹性模量、屈服强度、导热系数、比热容、线膨胀系数、粘弹性参数等。膜片的一些物理参数可能随着温度变化而变化,比如,下表1展示了本申请一个实施例中一种膜片材料的随温度变化的参数。
温度 泊松比 弹性模量 屈服强度
23℃ 0.38 2200MPa 53MPa
40℃ 0.38 1510MPa 50.2MPa
60℃ 0.40 1348MPa 39.6MPa
70℃ 0.41 1136MPa 29.5MPa
表1
在一些实施例中,可以在有限元仿真***中直接定义膜片的几何模型,即定义其二维形状并赋予其一定厚度,然后基于该几何模型进行网格划分以获得膜片的有限元模型。
在又一些实施例中,也可以直接导入膜片的IGES、STP或STL等格式的文件作为其几何模型。
在一个实施例中,为简化计算,可以采样壳单元对膜片进行网格划分。
加热装置的有限元模型可以包括加热装置的物理参数,比如热辐射系数和对流换热系数等。
在一些实施例中,可以直接导入加热装置的IGES、STP或STL等格式的文件作为其几何模型,然后基于该几何模型进行网格划分以获得加热装置的有限元模型。
在一些实施例中,牙模的有限元模型可以包括牙模材料的物理参数,比如热辐射系数以及对流换热系数等。
在一些实施例中,可以直接导入牙模的IGES、STP或STL等格式的文件作为其几何模型,然后基于该几何模型进行网格划分获得牙模的有限元模型。
在一些实施例中,可以采用自适应方法对牙模进行网格划分,使得几何曲率较大之处的网格划分比几何曲率较小之处的网格划分更精细。
在一些实施例中,成型基座的有限元模型可以包括成型基座的物理参数,比如比热容、导热系数以及对流换热系数等。
在一些实施例中,可以直接导入成型基座的IGES、STP或STL等格式的文件作为其几何模型,然后基于该几何模型进行网格划分获得成型基座的有限元模型。
在203中,进行膜片加热仿真。
在一个实施例中,可以基于膜片的有限元模型和加热装置的有限元模型,对膜片的加热进行有限元分析,获得加热后膜片的有限元模型。
在一些实施例中,膜片加热仿真的边界条件可以包括:限制膜片边缘节点自由度;加热装置与膜片的相对位置关系;以及加热装置的温度等。
在一些实施例中,在加热乃至压膜成型过程中,膜片始终被膜片卡箍夹紧固定于加压装置,因此,可以把膜片与膜片卡箍内侧接触之处的点作为边缘节点,并限制其自由度。
在一些实施例中,为简化仿真运算,可以假设加热装置为恒温。
在又一些实施例中,膜片加热仿真也可以包括加热装置升温过程以及温度波动的仿真。
在一些实施例中,加热后膜片的有限元模型可以包括加热后膜片的温度场、应力场以及变形情况。
在一些实施例中,可以把环境初始温度场作为膜片加热有限元仿真的初始条件之一。
由于目前很多商用软件集成了基本的动力学仿真运算模块,而且仿真运算方式可以根据具体情况和需求***,这里不再对具体的运算方程式进行说明。关于膜片加热仿真的具体实现,可以参考白映光发表的《聚合物片材加热过程温度场有限元分析及仿真研究》。
在205中,进行压膜成型仿真。
在一个实施例中,可以基于在203中获得的加热后膜片的有限元模型和牙模的有限元模型,对压膜成型进行有限元分析,获得冷却前阴模的有限元模型。
由于压膜成型过程一般只需几秒,为简化运算,可以假设在整个压膜成型过程中膜片温度场保持不变。
在一些实施例中,压膜成型仿真的边界条件可以包括:限制膜片边缘节点的自由度;成型压力;牙模的几何形态;以及牙模的位置。
在207中,进行阴模冷却仿真。
在一个实施例中,可以基于在205中获得的冷却前阴模的有限元模型、牙模的有限元模型以及成型基座的有限元模型,对阴模的冷却进行有限元分析,获得冷却后阴模的有限元模型。
在一个实施例中,为简化运算,可以在阴模冷却仿真中主要考虑牙模和成型基座对阴模冷却的影响,忽略壳状牙科器械制作装置其他部分对阴模冷却的影响。
在一些实施例中,阴模冷却仿真边界条件可以包括:限制膜片边缘节点自由度;以及冷却环境温度。
在一个实施例中,冷却后阴模的有限元模型可以包括冷却后阴模几何形态、厚度分布以及应力分布。
由于在阴模冷却过程中,热传导和对流换热起主导作用,而热辐射的作用比较有限,为简化运算,在一个实施例中,在进行阴模冷却有限元分析时可以忽略热辐射的影响。
在209中,进行阴模裁剪仿真。
在一个实施例中,可以基于在207中获得的冷却后阴模的有限元模型和裁剪线,对阴模裁剪进行有限元分析,获得壳状牙科器械的有限元模型。
在一个实施例中,裁剪线包括壳状牙科器械的边界线。
在一些实施例中,裁剪线可以由用户手动定义。在又一些实施例中,裁剪线也可以由计算机根据一定规则自动定义。
在一些实施例中,裁剪线还可以包括壳状牙科器械上其他结构的边界线,比如,与牙齿上的附件配合的镂空结构的边界线。
在一些实施例中,阴模裁剪仿真边界条件可以包括限制基准点的自由度。
在一些实施例中,基准点的选择可以尽量相互靠近,比如可以在阴模上对应同一颗牙齿的部位上选取三个基准点。
在一些实施例中,壳状牙科器械的有限元模型可以包括壳状牙科器械的几何形态、应力分布以及厚度分布。
基于在101中获得的第一组工艺数据,利用本申请一个实施例中的壳状牙科器械制作工艺的有限元分析方法200,可以获得第一壳状牙科器械几何形态。
请再参图1,在105中,基于第一壳状牙科器械几何形态修改第一组工艺数据,以至少部分抵消由热压膜成型工艺中的弹塑性变形或回弹变形而造成的第一壳状牙科器械几何形态与设计之间的偏差,得到第二组工艺数据。“设计”是指严格按照预期的牙齿布局设计获得的理想的壳状牙科器械。
在一个实施例中,对所述第一组工艺数据的修改主要是至少部分抵消第一壳状牙科器械几何形态的弓宽与设计弓宽的偏差。“设计弓宽”是指严格按照预期的牙齿布局设计获得的理想的壳状牙科器械的弓宽。
在一个实施例中,弓宽可以是从一颗犬牙的牙尖端到另一颗犬牙的牙尖端的直线距离。对于壳状牙科器械而言,弓宽可以是从对应一颗犬牙的牙尖端的部位到对应另一颗犬牙的牙尖端的部位的直线距离。
在又一实施例中,弓宽可以是从一颗第一磨牙的近中颊侧牙尖端到另一颗第一磨牙的近中颊侧牙尖端的直线距离。对于壳状牙科器械而言,弓宽可以是从对应一颗第一磨牙的近中颊侧牙尖端的部位到对应另一颗第一磨牙的近中颊侧牙尖端的部位的直线距离。
在又一实施例中,弓宽可以是从一颗第二磨牙的远中颊侧牙尖端到另一颗第二磨牙的远中颊侧牙尖端的直线距离。对于壳状牙科器械而言,弓宽可以是从对于一颗第二磨牙的远中颊侧牙尖端的部位到对应另一颗第二磨牙的远中颊侧牙尖端的部位的直线距离。
在一个实施例中,可以把在壳状牙科器械制作工艺的有限元分析方法200中获得的第一壳状牙科器械有限元模型的弓宽与设计弓宽进行对比,并基于该对比,修改所述第一组工艺数据中与壳状牙科器械的弓宽相关的工艺数据,得到第二组工艺数据,以使得基于第二组工艺数据制作获得的壳状牙科器械的弓宽更接近设计弓宽。
在一个实施例中,改变壳状牙科器械的弓宽的手段包括但不限于:改变牙模的弓宽(或弓形)、改变压膜工艺中牙模的初始温度、改变压膜工艺中基座的初始温度、改变压膜工艺中的压力-时间曲线以及以上的任意组合。
可以理解,改变牙模的弓宽能够直接改变壳状牙科器械的弓宽。
改变压膜工艺中牙模和基座的初始温度(比如通过对其进行预加热),能够降低膜片与牙模之间由于降温造成的形变影响。
改变压膜工艺中的压力-时间曲线,使得卸压过程较为平缓,能够在一定程度上降低因突然卸压而造成的回弹形变。
以上实施例是基于计算获得的壳状牙科器械的弓宽/弓形与设计弓宽/弓形进行对比,对工艺数据进行调整和优化。在又一实施例中,也可以根据计算获得的对牙齿的移动效果,对工艺数据进行修改和优化。
例如,在一个实施例中,可以基于壳状牙科器械制作工艺的有限元分析方法200中获得的第一壳状牙科器械有限元模型,计算壳状牙科器械移动牙齿的效果,并基于此修改工艺数据,以改变壳状牙科器械的弓宽。
请参图3,为本申请一个实施例中基于计算机有限元分析的牙科正畸矫治器械的检验方法300的示意性流程图。
在301中,获取牙颌的有限元模型。
该牙颌可以是上颌,也可以是下颌。
根据待检验的矫治器械,该牙颌可以是完整牙颌,也可以是部分牙颌。
牙颌的有限元模型可以包括牙列多颗牙齿的有限元模型、牙周膜有限元模型以及牙槽骨有限元模型。
在一个实施例中,可以通过CT扫描获得患者牙颌的牙齿、牙周膜和牙槽骨的几何模型。
在利用壳状牙科正畸矫治器(比如隐形矫治器)进行矫治的例子中,通常需要把矫治分成多个逐次的阶段(比如20~40个逐次的阶段),每一个阶段对应一个壳状牙科正畸矫治器。然而,每个阶段的牙颌各不相同,比如各阶段牙齿的布局不同,各阶段牙槽骨容纳牙根的腔的方位可能不同。为了检验某一阶段的壳状牙科正畸矫治器,需要获得该阶段初始时牙颌的几何模型。
在一个实施例中,可以假设牙周膜厚度不变,并且与牙根及牙槽骨的接触面相对固定,这样就能够根据当前牙齿布局确定牙槽骨收容牙根的空腔的方位。若假设牙槽骨的外轮廓不变,就能够获得牙颌的几何模型。若假设每一阶段初始时牙齿的布局与设计相符,通过上述方法就可获得任一阶段初始时牙颌的几何模型。获取各阶段牙齿的布局的方法为业界熟知,此处不再赘述。
在又一实施例中,利用有限元方法分析某一阶段壳状牙科正畸矫治器的效果所获得的该阶段结束时牙颌的几何模型,可以作为下一阶段初始时的牙颌的几何模型。
在一个实施例中,可以根据经验设置牙周膜的厚度,从而获得牙周膜的几何模型。比如,可以将牙周膜的厚度设置为0.25~0.38mm。
在获得牙颌的几何模型后,可以对其进行网格划分。
在一个实施例中,牙齿的材料模型可以采用弹塑性或刚性材料模型。
若采用弹塑性材料模型,由于在矫治过程中牙齿变形微小,无法达到塑性变形的应变量,因此可以不考虑塑性变形。在一个例子中,可以把牙齿的材料模型的弹性模量设置为15000~25000MPa之间的值,比如20000MPa。在一个例子中,可以把牙齿的材料模型的泊松比设置为0.15~0.4之间的值,比如0.3。
牙周膜的特性主要包括几乎不可压缩。在一个实施例中,在一个实施例中,可以把牙周膜的材料模型的弹性模量设置为0.05~70MPa之间的值,比如0.68MPa。当泊松比为0.5时,材料为不可压缩。在一个例子中,可以把牙周膜的材料模型的泊松比设置为0.4~0.49之间的值,比如0.45,使其几乎不可压缩。
在一个实施例中,与牙齿的情况类似,牙槽骨的材料模型可以采用弹塑性或刚性材料模型,并且可以不考虑塑性变形。
在一个例子中,可以把牙槽骨的材料模型的弹性模量设置为12000~15000MPa之间的值,比如13700MPa。在一个例子中,可以把牙槽骨的材料模型的泊松比设置为0.2~0.4之间的值,比如0.3。
在真实的牙齿矫正过程中,被矫正的牙齿处的牙槽骨可能发生破骨成骨。因此,当一个矫治阶段完成时,佩戴在牙列上的壳状牙科正畸矫治器的应力较小,相应地,壳状牙科正畸矫治器的变形较小。由于在本申请一个实施例中的牙槽骨的有限元模型不包括破骨成骨的特性,当壳状牙科正畸矫治器的有限元模型佩戴至牙颌的有限元模型上并达到平衡时,壳状牙科正畸矫治器的有限元模型的应力较大,相应地,壳状牙科正畸矫治器的有限元模型的变形较大。也就是说,这可能造成通过有限元分析得到的矫正后牙齿布局与实际的矫正后牙齿布局之间存在差距。
在一个例子中,为了在一定程度上弥补因牙槽骨有限元模型不具备破骨成骨特性带来的偏差,可以相应降低牙槽骨有限元模型的材料的弹性模量,使其低于牙槽骨的实际弹性模量。
在一个实施例中,为简化计算,可以约束牙齿的有限元模型与牙周膜有限元模型接触面的相对自由度,即设定牙根与牙周膜的接触面不发生相对位移。在一个实施例中,可以使牙齿的有限元模型与牙周膜有限元模型的接触面共享节点,以此限制两者接触面的相对自由度。
相似地,在一个实施例中,为简化计算,可以约束牙槽骨有限元模型与牙周膜有限元模型接触面的相对自由度,即设定牙槽骨与牙周膜的接触面不发生相对位移。在一个实施例中,可以使要槽骨有限元模型与牙周膜有限元模型的接触面共享节点,以此限制两者接触面的相对自由度。
基于以上牙齿、牙周膜、牙槽骨的几何模型、材料模型以及约束条件,即可获得牙颌的有限元模型。
在303中,获取牙科正畸矫治器械的有限元模型。
在一个实施例中,可以基于壳状牙科器械制作工艺的有限元分析方法200获取牙科正畸矫治器械的有限元模型。
在305中,把牙科正畸矫治器械的有限元模型佩戴于牙颌的有限元模型上并进行有限元分析。
在一个实施例中,把牙科正畸矫治器械的有限元模型佩戴于牙颌的有限元模型上,即把牙颌的有限元模型和牙科正畸矫治器械的有限元模型进行约束组合,可以作为作为非线性结构的刚柔耦合动态接触问题来解决。
在一个实施例中,可以先限制牙颌的有限元模型中牙齿的有限元模型的自由度,把牙科正畸矫治器械的有限元模型佩戴于牙颌的有限元模型后,再释放对牙齿的有限元模型的自由度的限制。这样可以简化把牙科正畸矫治器械的有限元模型佩戴于牙颌的有限元模型上的计算。
以壳状牙科正畸矫治器为例,在一个实施例中,可以在壳状牙科正畸矫治器的有限元模型对应每个牙齿的部位上随机选三个不在同一直线上的点,并将该三个点设置为刚性连接,即所连接的每个节点的六个自由度完全同步,相互之间无相对变形。这可以使得有限元分析的计算更加稳定。
然后,可以在壳状牙科正畸矫治器的有限元模型对应每个牙齿的部位上随机选一个点(该点不存在于牙齿的穿透干涉),对这些点施加六个自由度的全约束,或仅限定这些点在所有方向上的旋转自由度。这也可以使得有限元分析的计算更加稳定。
接着,可以将壳状牙科正畸矫治器的有限元模型的内表面和牙齿的有限元模型的外表面的相互位置进行一定方式的初始条件定义,例如,采用最佳拟合对齐算法进行初步形态拟合,或通过有限元前处理工具将壳状牙科正畸矫治器的有限元模型的内表面移动到牙齿的有限元模型的外表面。
再用显式算法对壳状牙科正畸矫治器的有限元模型施加一定方向(例如沿牙列外表面的法向)的恒定载荷。在建立初步接触之后,再用显式算法缓慢卸除之前施加的载荷。
用显式算法完成接触建立后,释放壳状牙科正畸矫治器上所有接触约束,然后用隐式算法进行应力重分布计算,以消除由于约束带来的不真实的应力集中,从而获得壳状牙科正畸矫治器佩戴于牙颌的限元模型,其包括但不限于壳状牙科器械佩戴于牙列时的几何形态以及应力分布。
这时,可以释放对牙齿的有限元模型的自由度的限制,以对在壳状牙科正畸矫治器的作用下牙齿的移动进行有限元分析。
在一个实施例中,可以把牙齿与牙齿之间以及牙齿与壳状牙科正畸矫治器之间的接触设置为无粘结、可滑动、有摩擦、无穿透的接触类型/特性。
在一个实施例中,可以把牙齿与牙周膜、牙周膜与牙槽骨之间的接触,设置为粘结绑定、不可滑动、不可脱离、无穿透的接触类型/特征。进一步地,在一个实施例中,可以使牙齿与牙周膜共享节点,牙周膜与牙槽骨共享节点。
在一个实施例中,可以在牙槽骨的有限元模型上,与牙周膜的有限元模型无接触的部位任意选择一个有限元节点,并对该节点施加六个自由度的全约束(牙槽骨虽然可以变形,但整体不发生位移),作为对牙齿移动的有限元分析的边界条件之一。
在一个实施例中,可以在牙齿的有限元模型上,与壳状牙科正畸矫治器无接触的部位任意选择一个有限元节点,并将该节点与该牙齿局部坐标系原点建立刚性连接,如此使得牙齿局部坐标系随牙齿的移动而移动。
在一个实施例中,可以设置一个阈值,当壳状牙科正畸矫治器的有限元模型各处的受力波动小于该阈值,并且保持一定时长,即认为达到平衡。可以把此时牙齿的新布局作为壳状牙科正畸矫治器所能达到的正畸效果,即充分佩戴该壳状牙科正畸矫治器后牙齿的布局。
在307中,基于有限元分析结果检验牙科正畸矫治器械。
在一个实施例中,可以把在305中获得的牙齿的新布局与设计的牙齿布局进行对比,若两者之差(包括距离和角度)符合预设的要求,那么认为牙科正畸矫治器械合格,反之,则认为不合格。
在一个实施例中,可以预设一牙齿位置偏差阈值和一匹配率下限。当新的牙齿布局与设计的牙齿布局相比,若小于以上牙齿位置偏差阈值的形态匹配区域的范围大于以上的匹配率下限,则认为牙科正畸矫治器械合格。
在一个实施例中,可以把牙齿位置偏差阈值设置为0.1mm,可以把匹配率下限设置为90%。
基于计算机有限元分析的牙科正畸矫治器械的检验方法300也可用于检验壳状牙科保持器,比如,可以把壳状牙科保持器的有限元模型佩戴于牙颌的有限元模型之上,通过有限元分析其对牙齿的影响,若壳状牙科保持器由于扩弓回弹而导致牙齿移动超出预定范围,则认为壳状牙科保持器不合格。
在一个实施例中,可以基于在307中获得的检验结果修改所述第一组工艺数据,以至少部分抵消由热压膜成型工艺中的弹塑性变形而造成的壳状牙科器械几何形态与设计的偏差,从而改进矫治效果。
请再参图1,在107中,基于第二组工艺数据制作壳状牙科器械。
在一个实施例中,假设基于所述第一组工艺数据修改得到的第二组工艺数据合格,那么可以基于第二组工艺数据制作壳状牙科器械。
可以理解,本申请的基于热压膜成型工艺的壳状牙科器械的工艺数据优化方法100中的101~105可以循环执行直至得到合格的工艺数据。
虽然以上具体实施例是以有限元分析为例对本申请的牙科正畸矫治器械的检验方法进行说明,但可以理解,有限元方法只是多网格模型的数值计算方法中的一种,除了有限元方法之外,还可以采样有限体积法(Finite Volume Method)、有限差分法(FiniteDifference Method)、区域分解法、有限点法、边界元法等方法来实现。
本申请的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法使得能够在器械制作之前的设计阶段进行优化,以提升矫治效率,提高经济效益。
尽管在此公开了本申请的多个方面和实施例,但在本申请的启发下,本申请的其他方面和实施例对于本领域技术人员而言也是显而易见的。在此公开的各个方面和实施例仅用于说明目的,而非限制目的。本申请的保护范围和主旨仅通过后附的权利要求书来确定。
同样,各个图表可以示出所公开的方法和***的示例性架构或其他配置,其有助于理解可包含在所公开的方法和***中的特征和功能。要求保护的内容并不限于所示的示例性架构或配置,而所希望的特征可以用各种替代架构和配置来实现。除此之外,对于流程图、功能性描述和方法权利要求,这里所给出的方框顺序不应限于以同样的顺序实施以执行所述功能的各种实施例,除非在上下文中明确指出。
除非另外明确指出,本文中所使用的术语和短语及其变体均应解释为开放式的,而不是限制性的。在一些实例中,诸如“一个或多个”、“至少”、“但不限于”这样的扩展性词汇和短语或者其他类似用语的出现不应理解为在可能没有这种扩展性用语的示例中意图或者需要表示缩窄的情况。

Claims (14)

1.一种基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其包括:
获取基于热压膜成型技术的壳状牙科器械制作工艺的第一组工艺数据;
基于所述第一组工艺数据,计算获得第一壳状牙科器械几何形态;以及
基于所述第一壳状牙科器械几何形态,修改所述第一组工艺数据,以至少部分抵消由所述壳状牙科器械制作工艺中的弹塑性变形而造成的所述第一壳状牙科器械几何形态与设计的偏差,得到第二组工艺数据。
2.如权利要求1所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,它还包括:基于所述第二组工艺数据制作壳状牙科器械。
3.如权利要求1所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,对所述第一组工艺数据的修改是对以下工艺数据的至少之一进行修改:阳模的弓宽、压膜工艺中阳模的初始温度、压膜工艺中基座的初始温度、压膜工艺的压力-时间曲线以及以上的任意组合,其中,在所述压膜工艺中,所述阳模是固定于所述基座之上。
4.如权利要求1所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,对所述第一组工艺数据的修改主要是至少部分抵消所述第一壳状牙科器械几何形态的弓宽与设计弓宽的偏差。
5.如权利要求1所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,基于所述第一组工艺数据,利用多网格模型计算方法对壳状牙科器械制作工艺进行仿真计算,获得第一壳状牙科器械多网格数字模型,其包括所述第一壳状牙科器械几何形态。
6.如权利要求5所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,它还包括:
获取一牙颌的多网格数字模型,其中,该牙颌的多网格数字模型包括所述牙颌的多颗牙齿的多网格数字模型、牙周膜多网格数字模型以及牙槽骨多网格数字模型;以及
将所述第一壳状牙科器械多网格数字模型佩戴于所述牙颌的多网格数字模型之上,并利用多网格模型计算方法对其进行计算,获得包括以下至少之一的计算结果:在所述第一壳状牙科器械多网格数字模型的作用下,所述多颗牙齿的多网格数字模型达到的新的布局;
其中,对所述第一组工艺数据的修改是基于所述计算结果。
7.如权利要求6所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述牙周膜多网格数字模型包覆所述多颗牙齿的多网格数字模型的牙根部分,所述牙槽骨多网格数字模型则包覆所述牙周膜多网格数字模型。
8.如权利要求7所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述牙周膜多网格数字模型和所述多颗牙齿的多网格数字模型,两者接触面上的节点的相对自由度被限制。
9.如权利要求8所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述牙周膜多网格数字模型和所述多颗牙齿的多网格数字模型,两者共享接触面上的节点。
10.如权利要求7所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述牙周膜多网格数字模型和所述牙槽骨多网格数字模型,两者接触面上的节点的相对自由度被限制。
11.如权利要求10所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述牙周膜多网格数字模型和所述牙槽骨多网格数字模型,两者共享接触面上的节点。
12.如权利要求6所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,在将所述第一壳状牙科器械多网格数字模型佩戴于所述牙颌的多网格数字模型之后,两者之间相互作用力的波动小于预定的值并保持预定时长,则将此时所述多颗牙齿的多网格数字模型的布局作为所述新的布局。
13.如权利要求6所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,对所述第一组工艺数据的修改是基于所述多颗牙齿的多网格数字模型的新的布局和设计布局的对比。
14.如权利要求5或6所述的基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法,其特征在于,所述多网格数字模型为有限元模型,所述多网格模型计算方法是有限元分析方法。
CN201710286752.2A 2016-05-10 2017-04-27 基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法 Active CN107357949B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610304667X 2016-05-10
CN2016103043012 2016-05-10
CN201610304301 2016-05-10
CN201610304667 2016-05-10

Publications (2)

Publication Number Publication Date
CN107357949A CN107357949A (zh) 2017-11-17
CN107357949B true CN107357949B (zh) 2021-03-12

Family

ID=60270873

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710286751.8A Active CN107349021B (zh) 2016-05-10 2017-04-27 基于热压膜成型工艺的壳状牙科器械制作工艺的压膜角度优化方法
CN201710286752.2A Active CN107357949B (zh) 2016-05-10 2017-04-27 基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710286751.8A Active CN107349021B (zh) 2016-05-10 2017-04-27 基于热压膜成型工艺的壳状牙科器械制作工艺的压膜角度优化方法

Country Status (1)

Country Link
CN (2) CN107349021B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559093B (zh) * 2019-09-20 2022-07-01 正雅齿科科技(上海)有限公司 一种牙科器械的制备方法、制备装置及电子设备
CN112823761B (zh) * 2019-11-21 2022-03-01 西安博恩生物科技有限公司 一种基于正负压控制的矫治器成型工艺
CN111274653B (zh) * 2019-12-06 2023-03-24 正雅齿科科技(上海)有限公司 牙科器械的设计检验方法及装置
CN111274721B (zh) * 2019-12-06 2023-02-28 正雅齿科科技(上海)有限公司 牙科器械的设计方法及装置
CN111096814B (zh) * 2019-12-27 2021-12-10 上海牙典医疗器械有限公司 一种矫治器的生成方法及装置
EP3888586B1 (en) * 2020-03-30 2022-11-30 DENTSPLY SIRONA Inc. Device for separating a deep-drawn jaw-spanning dental apparatus of thermoform film and method of use

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975893A (en) * 1997-06-20 1999-11-02 Align Technology, Inc. Method and system for incrementally moving teeth
DE19835251A1 (de) * 1998-07-10 2000-03-23 Eckhard Binder Formteile, insbesondere Folien, zur Förderung der Neubildung von Knochenmaterial im Kiefer
US7831322B2 (en) * 2005-03-07 2010-11-09 Align Technology, Inc. Producing wrinkled dental aligner for dental treatment
US8439672B2 (en) * 2008-01-29 2013-05-14 Align Technology, Inc. Method and system for optimizing dental aligner geometry
CN102054091A (zh) * 2009-11-09 2011-05-11 无锡时代天使医疗器械科技有限公司 制造用于调整牙齿位置的牙科器械的方法
CN201987689U (zh) * 2011-03-10 2011-09-28 常州高新技术产业开发区三维工业技术研究所有限公司 一种组合式牙齿矫治装置和牙套加强装置
CN102415916A (zh) * 2011-07-29 2012-04-18 首都医科大学附属北京口腔医院 防止正畸治疗过程中牙根和颌骨应力过度集中的矫治方法
CA2855645C (en) * 2011-11-15 2020-06-23 Trispera Dental Inc. Method and system for acquiring data from an individual for preparing a 3d model
US20140067334A1 (en) * 2012-09-06 2014-03-06 Align Technology Inc. Method and a system usable in creating a subsequent dental appliance
CN202908863U (zh) * 2012-10-30 2013-05-01 朱房勇 一种热压膜成型的磁力矫治器
CN103932807B (zh) * 2013-01-18 2016-10-05 无锡时代天使医疗器械科技有限公司 获得牙齿目标矫治状态的方法、牙齿矫治器制造方法以及牙齿矫治器
CN104644276B (zh) * 2013-11-22 2020-01-10 无锡时代天使医疗器械科技有限公司 制造牙齿矫治器的方法以及牙齿矫治器
CN203805300U (zh) * 2014-03-17 2014-09-03 无锡时代天使医疗器械科技有限公司 一种组合式热压成型装置
CN105310786A (zh) * 2014-07-04 2016-02-10 上海时代天使医疗器械有限公司 复合型牙齿矫治***及其制造方法
CN104840262B (zh) * 2015-05-08 2017-11-03 北京爱普力思健康科技有限公司 一种牙齿矫治器及其制造方法

Also Published As

Publication number Publication date
CN107357949A (zh) 2017-11-17
CN107349021A (zh) 2017-11-17
CN107349021B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN107357949B (zh) 基于热压膜成型技术的壳状牙科器械制作工艺的工艺数据优化方法
CN108831551B (zh) 计算机辅助牙科正畸矫治器械的检验方法
CN107357946B (zh) 基于热压膜成型技术的壳状牙科器械制作工艺的验证方法
CN115408814A (zh) 用于对牙齿矫治器的矫治效果进行数字化仿真的方法
US10251710B2 (en) Method and system for assembly of a modular prosthetic socket based on residual limb metrics
KR102434934B1 (ko) 치과교정 장치 및 치과교정 장치의 제조 방법
CN103340690A (zh) 一种隐形矫治器的制作和使用方法
CN110192923B (zh) 壳状矫治器及其制作方法
CN104392016B (zh) 一种橡皮囊成形薄壁零件的坯料制备方法
CN110000293A (zh) 一种考虑非均匀温度场的复杂曲面件热成形模具设计方法
CN105260542A (zh) 牙槽骨塑形器的制作方法、制作***及牙槽骨塑形器
CN108362482B (zh) 基于计算机有限元分析的壳状牙科器械的检验方法
JP2006263788A (ja) 見込み金型形状設計システム
KR101838992B1 (ko) 투명 교정 장치의 설계를 위한 치아 모델링 장치 및 방법
CN108763709B (zh) 一种基于有限元分析的再造耳支架拓扑结构优化方法
CN112545680B (zh) 一种隐形矫治器的制作方法及***
Li et al. Parametric modeling and performance analysis of a personalized insole based on 3D scanning and selective laser sintering
CN108363823B (zh) 基于计算机有限元分析的壳状牙科器械的附件的检验方法
CN114861507A (zh) 一种牙胶片制作正畸矫治器过程的建模及有限元方法
CN113134969A (zh) 壳状牙科器械制作方法
CN107357947B (zh) 基于热压膜成型技术的壳状牙科器械制作工艺的验证方法
Zhang et al. Simulation and analysis of orthodontic archwire bending robot
CN211300422U (zh) 壳状牙齿正畸矫治器
CN205433947U (zh) 隐形矫治器数字化全自动流水线生产***
JP7184671B2 (ja) プレス成形金型の形状設定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant