CN107356947A - The method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data - Google Patents

The method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data Download PDF

Info

Publication number
CN107356947A
CN107356947A CN201710400859.5A CN201710400859A CN107356947A CN 107356947 A CN107356947 A CN 107356947A CN 201710400859 A CN201710400859 A CN 201710400859A CN 107356947 A CN107356947 A CN 107356947A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710400859.5A
Other languages
Chinese (zh)
Other versions
CN107356947B (en
Inventor
袁运斌
张红星
张宝成
李敏
张啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geodesy and Geophysics of CAS
Original Assignee
Institute of Geodesy and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geodesy and Geophysics of CAS filed Critical Institute of Geodesy and Geophysics of CAS
Priority to CN201710400859.5A priority Critical patent/CN107356947B/en
Publication of CN107356947A publication Critical patent/CN107356947A/en
Application granted granted Critical
Publication of CN107356947B publication Critical patent/CN107356947B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A kind of method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data, is related to the determination of satellite navigation application Satellite difference pseudorange biases and correction technique, this method comprise the following steps:A, the collection of single-frequency GNSS original observed datas and precise satellite track, the acquisition of clock correction product;B, the structure of the non-combined pseudoranges of single-frequency GNSS and phase observations equation;C, the structure of the non-combined Static Precise Point Positioning function model of single-frequency;D, the non-combined Static Precise Point Positioning Kalman filtering of single-frequency resolves;E, ionosphere delay modeling and the determination of aeronautical satellite difference pseudorange biases;The determination of aeronautical satellite difference pseudorange biases parameter is realized using single frequency receiving, the hardware cost of existing aeronautical satellite difference pseudorange biases method of estimation can be reduced to 90 more than ﹪, meanwhile, this method is reasonable in design simple, improves efficiency.Not only cost is low by the design, and efficiency high.

Description

The method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data
Technical field
The present invention relates to the determination of satellite navigation application Satellite difference pseudorange biases and correction technique, more particularly to a kind of base In the method that single-frequency navigation satellite data determines satellite difference pseudorange biases, being primarily adapted for use in reduces cost, improves efficiency.
Background technology
Satellite difference pseudorange biases (DCB) are GPS (GNSS) distance measuring signals in satellite hardware passage Time-delay deviation, the parameter is to have a strong impact on the monitoring of GNSS ionospheres and the systematic error of modeling accuracy, meanwhile, it or multifrequency One of error that must be eliminated in GNSS observation aggregation of data processing procedures.Aeronautical satellite DCB determination method for parameter has hardware Standardization and two kinds of software estimation method, aeronautical satellite directly would generally be surveyed initially using hardware standardization to its DCB parameter It is fixed.But DCB is influenceed to change by many factors such as hardware performance, external environments, must use in practice Software Method accurately estimates DCB parameters, to monitor and correct its influence to satellite navigation application.Software estimation method is normally based on The double frequency GNSS data of actual measurement accurately determines satellite DCB parameters, i.e., the ionosphere extracted with double frequency " no geometry influences " observation Retardation carries out the whole world to TEC or region models, and invariant parameter synchronizes estimation when DCB is used as in modeling process.Base In the method, international GNSS services (IGS) tissue is combined global Duo Jia ionospheres analysis center and tracked using the IGS of distribution on global Stand and Dual Frequency Observation data Continuous plus and regularly published the difference pseudorange biases product of GNSS satellite.But implement this method Need to lay more geodetic type double frequency GNSS receivers, continuously to gather the double frequency pseudorange of aeronautical satellite and phase observations Value, hardware input are larger.
The content of the invention
The purpose of the present invention is to overcome the defects of cost present in prior art is high, efficiency is low and problem, there is provided a kind of Cost is low, the method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data of efficiency high.
To realize object above, technical solution of the invention is:One kind determines to defend based on single-frequency navigation satellite data The method of star difference pseudorange biases, this method comprise the following steps:
A, the collection of single-frequency GNSS original observed datas and precise satellite track, the acquisition of clock correction product;
B, the structure of the non-combined pseudoranges of single-frequency GNSS and phase observations equation
Via linearisation, original non-combined single-frequency GNSS pseudoranges and phase observations equation are represented by:
In formula (1), s and r are respectively satellite, receiver;I is epoch number;J is frequency number;WithRespectively Pseudorange and phase observations amount;Contain and frequency outlier:Stand star away from, tropospheric delay, observation noise and some non-moulds Type error;dtR, iWithRespectively receiver clock-offsets and satellite clock correction;dR, iWithRespectively receiver and satellite pseudorange Hardware delay;Tiltedly postpone for the i-th frequency upper ionized layer;For fuzziness parameter;
C, the structure of the non-combined Static Precise Point Positioning function model of single-frequency
A, it is single based on the observation data on the first frequency j=1 of each navigation system and precise satellite track, clock correction product structure Frequently non-combined Static Precise Point Positioning function model;
B, the rank defect that disappears processing
MergeWithSatellite difference pseudorange biases parameter can be obtained
In formula (2),For iono-free combination satellite pseudorange Hardware delay parameter,For the satellite pseudorange hardware delay in first frequency;
Merge the unknown parameter dt of two class receiver endsR, iAnd dR, 1, obtaining shape isHave partially Receiver clock-offsets;
DefinitionWithOn the basis of, then can obtain shape isCan Estimate ionosphere tiltedly to postpone, wherein,Headed by epoch have inclined receiver clock-offsets;
C, at least combine the observation data of the first two epoch and be filtered initialization, establish the non-combined precision of single-frequency of full rank One-Point Location function model:
The design matrix of the non-combined Static Precise Point Positioning function model of single-frequency is:
In formula (4), first row correspondence position parameter and convection current layer parameter, secondary series correspond to receiver clock-offsets item, the 3rd row Corresponding fuzziness parameter, fourth, fifth row correspond to first and second epoch Ionospheric Parameters respectively, by going through since second epoch Member filtering resolves, and receiver clock-offsets parameter can be estimated;
After initialization, it is assumed that current epoch is second epoch to observe m satellite afterwards, and combining all satellites can obtain Pseudorange P and phase Φ observational equations, concrete form in the first frequencies of 2m is as follows:
In formula (5), YiFor i-th of epoch observation vector, form is such as
In formula (5), A, iFor i-th of epoch state-transition matrix,For parameter vector to be estimated, εyIt is not modeled Noise;
D, the non-combined Static Precise Point Positioning Kalman filtering of single-frequency resolves
Resolved since second epoch by epoch Kalman filtering, process description is as follows:
Time Forecast:
In formula (7),And DI, i-1The step Time Forecast value of parameter one respectively to be estimated and its forecast covariance matrix, Φ are State-transition matrix;
New breath vector:
In formula (8),WithIt is observation vector for new breath vector and its covariance matrix, Y, A is the non-combined essence of single-frequency The design matrix of close One-Point Location function model,For priori variance of unit weight, Q is the covariance matrix of observation noise;
Gain matrix K is:
State vector updates:
In formula (10),And DiKalman filtering values and covariance matrix of the as parameter X in the i-th epoch;
E, the modeling of ionosphere delay and the determination of aeronautical satellite difference pseudorange biases
It will estimate what is obtained by step DAs the input information of this step, the modeling of ionosphere delay is carried out, Estimate ionospheric delay model coefficient, synchronously realize the determination of satellite difference pseudorange biases parameter.
In step A, the collection of the single-frequency GNSS original observed datas refers to:Utilize single-frequency GNSS receiver EVK-M8T As hardware platform, the single-frequency for gathering aeronautical satellite observes data, sample rate 30s;The precise satellite track, clock correction product Acquisition refer to:Precise satellite track, clock correction product are obtained by international GNSS Servers Organizations IGS websites.
Compared with prior art, beneficial effects of the present invention are:
A kind of method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data of the present invention, relative to traditional Aeronautical satellite difference pseudorange biases determine method, significantly reduce and (reduce about 90 ﹪) hardware on the premise of result precision is ensured Input cost;Meanwhile this method supports that the software platform of the technology is also relatively simple with building, to existing support conventional method Ripe software to make less modification (being such as implanted into non-combined PPP modules) i.e. achievable.Therefore, not only cost is low by the present invention, and And efficiency high.
Brief description of the drawings
Fig. 1 is the flow chart for the method that the present invention determines satellite difference pseudorange biases based on single-frequency navigation satellite data.
Fig. 2 is that single-frequency survey station (CUAU stations) data utilize conventional carrier using the present invention and neighbouring double frequency survey station (CUCC stations) The moon product comparison in difference figure for the gps satellite DCB and CODE that smoothing pseudorange method resolves respectively.
Embodiment
Below in conjunction with brief description of the drawings, the present invention is further detailed explanation with embodiment.
Referring to Fig. 1, a kind of method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data, this method is included Following steps:
A, the collection of single-frequency GNSS original observed datas and precise satellite track, the acquisition of clock correction product;
B, the structure of the non-combined pseudoranges of single-frequency GNSS and phase observations equation
Via linearisation, original non-combined single-frequency GNSS pseudoranges and phase observations equation are represented by:
In formula (1), s and r are respectively satellite, receiver;I is epoch number;J is frequency number;WithRespectively Pseudorange and phase observations amount;Contain and frequency outlier:Stand star away from, tropospheric delay, observation noise and some non-moulds Type error;dtR, iWithRespectively receiver clock-offsets and satellite clock correction;dR, iWithRespectively receiver and satellite pseudorange Hardware delay;Tiltedly postpone for the i-th frequency upper ionized layer;For fuzziness parameter;
C, the structure of the non-combined Static Precise Point Positioning function model of single-frequency
A, it is single based on the observation data on the first frequency j=1 of each navigation system and precise satellite track, clock correction product structure Frequently non-combined Static Precise Point Positioning function model;
B, the rank defect that disappears processing
MergeWithSatellite difference pseudorange biases parameter can be obtained
In formula (2),For iono-free combination satellite pseudorange Hardware delay parameter,For the satellite pseudorange hardware delay in first frequency;
Merge the unknown parameter dt of two class receiver endsR, iAnd dR, 1, obtaining shape isHave partially Receiver clock-offsets;
DefinitionWithOn the basis of, then can obtain shape isCan Estimate ionosphere tiltedly to postpone, wherein,Headed by epoch have inclined receiver clock-offsets;
C, at least combine the observation data of the first two epoch and be filtered initialization, establish the non-combined precision of single-frequency of full rank One-Point Location function model:
The design matrix of the non-combined Static Precise Point Positioning function model of single-frequency is:
In formula (4), first row correspondence position parameter and convection current layer parameter, secondary series correspond to receiver clock-offsets item, the 3rd row Corresponding fuzziness parameter, fourth, fifth row correspond to first and second epoch Ionospheric Parameters respectively, by going through since second epoch Member filtering resolves, and receiver clock-offsets parameter can be estimated;
After initialization, it is assumed that current epoch is second epoch to observe m satellite afterwards, and combining all satellites can obtain Pseudorange P and phase Φ observational equations, concrete form in the first frequencies of 2m is as follows:
In formula (5), YiFor i-th of epoch observation vector, form is such as
In formula (5), A, iFor i-th of epoch state-transition matrix,For parameter vector to be estimated, εyIt is not modeled Noise;
D, the non-combined Static Precise Point Positioning Kalman filtering of single-frequency resolves
Resolved since second epoch by epoch Kalman filtering, process description is as follows:
Time Forecast:
In formula (7),And DI, i-1The step Time Forecast value of parameter one respectively to be estimated and its forecast covariance matrix, Φ are State-transition matrix;
New breath vector:
In formula (8),WithIt is observation vector for new breath vector and its covariance matrix, Y, A is the non-combined essence of single-frequency The design matrix of close One-Point Location function model,For priori variance of unit weight, Q is the covariance matrix of observation noise;
Gain matrix K is:
State vector updates:
In formula (10),And DiKalman filtering values and covariance matrix of the as parameter X in the i-th epoch;
E, ionosphere delay modeling and the determination of aeronautical satellite difference pseudorange biases
It will estimate what is obtained by step DAs the input information of this step, the modeling of ionosphere delay is carried out, Estimate ionospheric delay model coefficient, synchronously realize the determination of satellite difference pseudorange biases parameter.
In step A, the collection of the single-frequency GNSS original observed datas refers to:Utilize single-frequency GNSS receiver EVK-M8T As hardware platform, the single-frequency for gathering aeronautical satellite observes data, sample rate 30s;The precise satellite track, clock correction product Acquisition refer to:Precise satellite track, clock correction product are obtained by international GNSS Servers Organizations IGS websites.
The principle of the present invention is described as follows:
The design provides a kind of satellite difference pseudorange biases based on single-frequency GNSS data and determines method, serves primarily in GNSS satellite difference pseudorange biases determine that this method is improved traditional single-frequency Static Precise Point Positioning algorithm model, build Non-combined single-frequency Static Precise Point Positioning algorithm model, realizes the determination of aeronautical satellite difference pseudorange biases.Pass through design The rational rank defect strategy that disappears, constructs non-combined single-frequency Static Precise Point Positioning (SF-PPP) function model, and based on SF-PPP and Single-frequency GNSS data is extracted station star direction ionospheric delay, and aeronautical satellite is realized by follow-up ionosphere modeling Difference pseudorange biases estimation.By experimental verification, the method based on the design utilizes lower-cost single-frequency GNSS receiver Result phase of the satellite code deviation precision of data calculation with conventional method using the double frequency GNSS receiver data calculation of high cost When so as to provide a kind of inexpensive, efficient solution for the determination of aeronautical satellite difference pseudorange biases.
Embodiment:
Referring to Fig. 1, a kind of method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data, this method is included Following steps:
A, the collection of single-frequency GNSS original observed datas and precise satellite track, the acquisition of clock correction product
Existing market price is only 249 dollars of UBLOXEVK-M8T receivers, can capture three navigation system simultaneously and adjust The distance measuring signal being formed in respective first frequency, and at most tracking satellite number is 25, utilizes single-frequency GNSS receiver EVK-M8T As hardware platform, the single-frequency for gathering aeronautical satellite observes data, sample rate 30s;Precise satellite track, clock correction product use More GNSS precise satellites products that international GNSS Servers Organizations IGS websites provide;
B, the structure of the non-combined pseudoranges of single-frequency GNSS and phase observations equation
Via linearisation, original non-combined single-frequency GNSS pseudoranges and phase observations equation are represented by:
In formula (1), s and r are respectively satellite, receiver;I is epoch number;J is frequency number;WithRespectively For pseudorange and phase observations amount;Contain and frequency outlier:Stand star away from, tropospheric delay, observation noise and some non- Model errors;dtR, iWithRespectively receiver clock-offsets and satellite clock correction;dR, iWithRespectively receiver and satellite are pseudo- Away from hardware delay;Tiltedly postpone for the i-th frequency upper ionized layer;For fuzziness parameter;
C, the structure of the non-combined Static Precise Point Positioning of single-frequency (SF-PPP) function model
A, precise satellite track, clock correction based on the observation data on the first frequency j=1 of each navigation system and IGS offers Product builds the non-combined Static Precise Point Positioning function model of single-frequency;
B, the rank defect that disappears processing
It is mutually inseparable between partly unknown parameters in original non-combined pseudorange and phase observations equation from formula (1), Cause observational equation rank defect, inseparable parameter has:Satellite pseudorange hardware delay in first frequencyReceiver pseudorange Hardware delay dR, 1, receiver clock-offsets dtR, i, ionosphere tiltedly postponesFuzziness parameterWith through IGS precise satellite clocks Poor productThe iono-free combination satellite pseudorange hardware delay parameter introduced after correctionIts rank defect strategy that disappears is as follows:
, it is known that the Clock Bias that IGS is providedIt is to be resolved based on iono-free combination observation, therefore its Contain iono-free combination satellite pseudorange hardware delay parameter in precise clock correction productConcrete form can represent For:
MergeWithSatellite difference pseudorange biases parameter can be obtained
In formula (2),For iono-free combination satellite pseudorange Hardware delay parameter,For the satellite pseudorange hardware delay in first frequency;
Merge the unknown parameter dt of two class receiver endsR, iAnd dR, 1, obtaining shape isHave partially Receiver clock-offsets;
WithBetween rank defect be present, defineWithOn the basis of, then it can obtain shape ForIonosphere of estimating tiltedly postpone, wherein,Headed by epoch have and connect partially Receipts machine clock correction;
C, for increase model redundancy, the observation data that need at least combine the first two epoch are filtered initialization, establish The non-combined Static Precise Point Positioning function model of single-frequency of full rank:
The design matrix of the non-combined Static Precise Point Positioning function model of single-frequency is:
In formula (4), first row correspondence position parameter and convection current layer parameter, secondary series correspond to receiver clock-offsets item, the 3rd row Corresponding fuzziness parameter, fourth, fifth row correspond to first and second epoch Ionospheric Parameters respectively, by going through since second epoch Member filtering resolves, and receiver clock-offsets parameter can be estimated;
After initialization, it is assumed that current epoch is second epoch to observe m satellite afterwards, and combining all satellites can obtain Pseudorange P and phase Φ observational equations, concrete form in the first frequencies of 2m is as follows:
In formula (5), YiFor i-th of epoch observation vector, form is such as
In formula (5), A, iFor i-th of epoch state-transition matrix,For parameter vector to be estimated, εyIt is not modeled Noise;
D, the non-combined Static Precise Point Positioning Kalman filtering of single-frequency resolves
Resolved since second epoch by epoch Kalman filtering, process description is as follows:
Time Forecast:
In formula (7),And DI, i-1The step Time Forecast value of parameter one respectively to be estimated and its forecast covariance matrix, Φ are State-transition matrix;
New breath vector:
In formula (8),WithIt is observation vector for new breath vector and its covariance matrix, Y, A is the non-combined essence of single-frequency The design matrix of close One-Point Location function model,For priori variance of unit weight, Q is the covariance matrix of observation noise;
Gain matrix K is:
State vector updates:
In formula (10),And DiKalman filtering values and covariance matrix of the as parameter X in the i-th epoch;
E, ionosphere delay modeling and the determination of aeronautical satellite difference pseudorange biases
It will estimate what is obtained by step DAs the input information of this step, the modeling of ionosphere delay is carried out, Estimate ionospheric delay model coefficient, synchronously realize the determination of satellite difference pseudorange biases parameter.
Single-frequency GNSS observation data are based on using the design and carry out the estimation of gps satellite difference pseudorange biases, and estimated accuracy is such as Shown in Fig. 2, as seen from Figure 2, using the single-frequency GPS receiver of relatively low cost, (single frequency receiving price is about double frequency 10 ﹪ of receiver price) estimation to gps satellite difference pseudorange biases is realized, its estimated accuracy is seen with tradition based on double frequency The estimated accuracy for surveying the smoothing the phase of carrier wave method (CCL) of data is substantially suitable.

Claims (2)

  1. A kind of 1. method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data, it is characterised in that this method bag Include following steps:
    A, the collection of single-frequency GNSS original observed datas and precise satellite track, the acquisition of clock correction product;
    B, the structure of the non-combined pseudoranges of single-frequency GNSS and phase observations equation
    Via linearisation, original non-combined single-frequency GNSS pseudoranges and phase observations equation are represented by:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msub> <mi>dt</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>dt</mi> <mrow> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mi>j</mi> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;phi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msub> <mi>dt</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>dt</mi> <mrow> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>z</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>s</mi> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    In formula (1), s and r are respectively satellite, receiver;I is epoch number;J is frequency number;WithIt is respectively pseudo- Away from phase observations amount;Contain and frequency outlier:Stand star away from, tropospheric delay, observation noise and some non-models Change error;dtR, iWithRespectively receiver clock-offsets and satellite clock correction;dR, iWithRespectively receiver and satellite pseudorange is hard Part postpones;Tiltedly postpone for the i-th frequency upper ionized layer;For fuzziness parameter;
    C, the structure of the non-combined Static Precise Point Positioning function model of single-frequency
    A, it is non-based on the observation data on the first frequency j=1 of each navigation system and precise satellite track, clock correction product structure single-frequency Combine Static Precise Point Positioning function model;
    B, the rank defect that disappears processing
    MergeWithSatellite difference pseudorange biases parameter can be obtained
    <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>G</mi> <mi>F</mi> </mrow> <mi>s</mi> </msubsup> <mo>=</mo> <msubsup> <mi>d</mi> <mrow> <mi>I</mi> <mi>F</mi> </mrow> <mi>s</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mn>1</mn> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mrow> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mn>1</mn> </mrow> <mi>s</mi> </msubsup> <mo>-</mo> <mfrac> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mn>2</mn> </mrow> <mi>s</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mn>1</mn> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <msubsup> <mi>f</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mn>1</mn> </mrow> <mi>s</mi> </msubsup> <mi>-</mi> <msubsup> <mi>d</mi> <mrow> <mo>,</mo> <mi>2</mi> </mrow> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    In formula (2),For iono-free combination satellite pseudorange hardware Delay parameter,For the satellite pseudorange hardware delay in first frequency;
    Merge the unknown parameter dt of two class receiver endsR, iAnd dR, 1, obtaining shape isHave inclined reception Machine clock correction;
    DefinitionWithOn the basis of, then can obtain shape isEstimate electricity Absciss layer tiltedly postpones, wherein,Headed by epoch have inclined receiver clock-offsets;
    C, at least combine the observation data of the first two epoch and be filtered initialization, establish the non-combined accurate one-point of single-frequency of full rank Mapping function model:
    The design matrix of the non-combined Static Precise Point Positioning function model of single-frequency is:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    In formula (4), first row correspondence position parameter and convection current layer parameter, secondary series correspond to receiver clock-offsets item, and the 3rd row are corresponding Fuzziness parameter, fourth, fifth row correspond to first and second epoch Ionospheric Parameters, filtered since second epoch by epoch respectively Ripple resolves, and receiver clock-offsets parameter can be estimated;
    After initialization, it is assumed that current epoch is second epoch to observe m satellite afterwards, and 2m head can be obtained by combining all satellites Pseudorange P and phase Φ observational equations, concrete form in individual frequency is as follows:
    <mrow> <msub> <mi>Y</mi> <mrow> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mover> <mi>X</mi> <mo>~</mo> </mover> <mrow> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mi>y</mi> </msub> <mo>,</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <mi>N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>Q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    In formula (5), YiFor i-th of epoch observation vector, form is such as
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>p</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <mn>...</mn> <msubsup> <mi>p</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Phi;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;phi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <mn>...</mn> <msubsup> <mi>&amp;phi;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> 2
    In formula (5), A, iFor i-th of epoch state-transition matrix,For parameter vector to be estimated, εyMade an uproar for what is be not modeled Sound;
    D, the non-combined Static Precise Point Positioning Kalman filtering of single-frequency resolves
    Resolved since second epoch by epoch Kalman filtering, process description is as follows:
    Time Forecast:
    <mrow> <mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&amp;Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    In formula (7),And DI, i-1The step Time Forecast value of parameter one respectively to be estimated and its forecast covariance matrix, Φ is state Transfer matrix;
    New breath vector:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <msub> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>A</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>Q</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    In formula (8),WithFor new breath vector and its covariance matrix, Y is observation vector, and A is that single-frequency is non-combined accurate single The design matrix of point location function model,For priori variance of unit weight, Q is the covariance matrix of observation noise;
    Gain matrix K is:
    <mrow> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>D</mi> <msub> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    State vector updates:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>A</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mi>T</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    In formula (10),And DiKalman filtering values and covariance matrix of the as parameter X in the i-th epoch;
    E, ionosphere delay modeling and the determination of aeronautical satellite difference pseudorange biases
    It will estimate what is obtained by step DAs the input information of this step, the modeling of ionosphere delay is carried out, is estimated Ionospheric delay model coefficient, synchronously realize the determination of satellite difference pseudorange biases parameter.
  2. 2. a kind of method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data according to claim 1, It is characterized in that:In step A, the collection of the single-frequency GNSS original observed datas refers to:Using single-frequency GNSS receiver EVK- For M8T as hardware platform, the single-frequency for gathering aeronautical satellite observes data, sample rate 30s;The precise satellite track, clock correction The acquisition of product refers to:Precise satellite track, clock correction product are obtained by international GNSS Servers Organizations IGS websites.
CN201710400859.5A 2017-05-31 2017-05-31 The method for determining satellite difference pseudorange biases based on single-frequency navigation satellite data Active CN107356947B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710400859.5A CN107356947B (en) 2017-05-31 2017-05-31 The method for determining satellite difference pseudorange biases based on single-frequency navigation satellite data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710400859.5A CN107356947B (en) 2017-05-31 2017-05-31 The method for determining satellite difference pseudorange biases based on single-frequency navigation satellite data

Publications (2)

Publication Number Publication Date
CN107356947A true CN107356947A (en) 2017-11-17
CN107356947B CN107356947B (en) 2019-06-18

Family

ID=60271986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710400859.5A Active CN107356947B (en) 2017-05-31 2017-05-31 The method for determining satellite difference pseudorange biases based on single-frequency navigation satellite data

Country Status (1)

Country Link
CN (1) CN107356947B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873029A (en) * 2018-06-07 2018-11-23 南京航空航天大学 A method of realizing the modeling of navigation neceiver clock deviation
CN109061696A (en) * 2018-09-28 2018-12-21 中国人民解放军61540部队 A kind of method of determining navigation satellite track and clock deviation
CN109683186A (en) * 2018-12-20 2019-04-26 中国科学院国家授时中心 A method of eliminating multi-satellite navigation system carrier phase time transmitting day jump
CN109709579A (en) * 2019-02-21 2019-05-03 哈尔滨工程大学 A kind of GNSS satellite ephemeris fault detection method based on user ranging errors real-time estimation
CN110161547A (en) * 2019-06-26 2019-08-23 哈尔滨工程大学 A kind of medium-long baselines Ambiguity Solution Methods of adaptive ionosphere estimation model
CN110208835A (en) * 2019-05-21 2019-09-06 哈尔滨工程大学 A kind of cross-system tight integration Differential positioning method based on iono-free combination
CN110764122A (en) * 2019-11-22 2020-02-07 武汉云图智信科技有限公司 Precise single-point positioning method of single-frequency GPS receiver
CN111175789A (en) * 2020-01-16 2020-05-19 中国民用航空总局第二研究所 Ionized layer anomaly monitoring method, device and system of foundation enhancement system
CN111323796A (en) * 2020-03-18 2020-06-23 中国科学院国家空间科学中心 GNSS receiver high-sampling clock error resolving method
CN111947667A (en) * 2020-06-24 2020-11-17 火眼位置数智科技服务有限公司 Low-orbit satellite real-time high-precision orbit determination method based on kinematics and dynamics combination
CN111965673A (en) * 2020-06-24 2020-11-20 中山大学 Time frequency transfer method of single-frequency precise single-point positioning algorithm based on multiple GNSS
WO2020233158A1 (en) * 2019-05-22 2020-11-26 东南大学 High-precision single-point positioning method and apparatus based on smartphone
CN112014860A (en) * 2020-07-20 2020-12-01 中国科学院空天信息创新研究院 Low-orbit satellite space-time reference establishment method based on Beidou PPP-RTK
CN112433234A (en) * 2020-11-19 2021-03-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Ionized layer TEC real-time estimation method suitable for GNSS receiver in middle and low latitude areas
CN113126128A (en) * 2021-04-20 2021-07-16 东方红卫星移动通信有限公司 DCB correction-based Beidou satellite navigation system frequency point precise point positioning method
CN113204042A (en) * 2021-05-21 2021-08-03 北京交通大学 Multi-constellation combined train positioning method based on precise single-point positioning
CN113552606A (en) * 2020-04-23 2021-10-26 千寻位置网络有限公司 Method for determining bit ambiguity
CN113671534A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Positioning compensation method, vehicle-mounted unit, medium and system
CN113703017A (en) * 2020-05-22 2021-11-26 中国人民解放军战略支援部队信息工程大学 Satellite antenna phase center deviation calculation method and device
CN113865592A (en) * 2021-09-09 2021-12-31 河海大学 Multi-path parameterization method and storage medium suitable for multi-frequency GNSS precision navigation positioning
CN114518586A (en) * 2021-03-17 2022-05-20 山东科技大学 GNSS precise point positioning method based on spherical harmonic expansion
US20220171076A1 (en) * 2020-11-30 2022-06-02 Qualcomm Incorporated Global navigation satellite system precise positioning engine with estimated ionosphere
CN114994728A (en) * 2022-05-25 2022-09-02 中南大学 Precise single-point positioning method and system for mixed use of different channel observation values
CN115267843A (en) * 2022-06-14 2022-11-01 中国科学院精密测量科学与技术创新研究院 Real-time non-difference estimation method for multi-frequency multi-mode GNSS high-frequency precise satellite clock difference
CN115390104A (en) * 2022-10-26 2022-11-25 中国人民解放军国防科技大学 Navigation satellite time delay deviation modeling method
CN115712130A (en) * 2022-11-18 2023-02-24 中国科学院空天信息创新研究院 Pseudo-range correction method and device, electronic equipment and storage medium
CN115993614A (en) * 2022-12-07 2023-04-21 中国科学院国家授时中心 Time transmission method for weakening deviation in Beidou system
CN116299617A (en) * 2023-02-16 2023-06-23 北京航空航天大学 Method for establishing GNSS satellite-ground atomic clock real-time dynamic model
WO2023123147A1 (en) * 2021-12-30 2023-07-06 华为技术有限公司 Data preprocessing method, data preprocessing apparatus, and chip
CN116609810A (en) * 2023-05-19 2023-08-18 复旦大学 Ionosphere four-dimensional electron density dynamic prediction method based on navigation foundation system
CN116699663A (en) * 2023-08-08 2023-09-05 中国西安卫星测控中心 Intersystem deviation parameter determination method for GNSS observation fusion positioning
CN117741714A (en) * 2023-12-19 2024-03-22 中国科学院上海天文台 GPS satellite pseudo-range deviation correction method for improving satellite-based enhanced service precision

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558609A (en) * 2013-11-08 2014-02-05 中国科学院测量与地球物理研究所 Correcting method for global satellite navigation system troposphere zenith delay
CN104101888A (en) * 2014-05-28 2014-10-15 中国科学院光电研究院 GNSS ionization layer delay precise modeling method suitable for Chinese region
CN106569242A (en) * 2016-11-04 2017-04-19 中国科学院测量与地球物理研究所 Global navigation satellite system (GNSS) single difference processing method of fixed reference satellite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558609A (en) * 2013-11-08 2014-02-05 中国科学院测量与地球物理研究所 Correcting method for global satellite navigation system troposphere zenith delay
CN104101888A (en) * 2014-05-28 2014-10-15 中国科学院光电研究院 GNSS ionization layer delay precise modeling method suitable for Chinese region
CN106569242A (en) * 2016-11-04 2017-04-19 中国科学院测量与地球物理研究所 Global navigation satellite system (GNSS) single difference processing method of fixed reference satellite

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张宝成 等: ""GPS接收机仪器偏差的短期时变特征提取与建模"", 《地球物理学报》 *
张宝成 等: ""利用非组合精密单点定位技术确定斜向电离层中电子含量和站星差分码偏差"", 《测绘学报》 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873029B (en) * 2018-06-07 2022-04-22 南京航空航天大学 Method for realizing clock error modeling of navigation receiver
CN108873029A (en) * 2018-06-07 2018-11-23 南京航空航天大学 A method of realizing the modeling of navigation neceiver clock deviation
CN109061696A (en) * 2018-09-28 2018-12-21 中国人民解放军61540部队 A kind of method of determining navigation satellite track and clock deviation
CN109683186A (en) * 2018-12-20 2019-04-26 中国科学院国家授时中心 A method of eliminating multi-satellite navigation system carrier phase time transmitting day jump
CN109709579B (en) * 2019-02-21 2023-02-14 哈尔滨工程大学 GNSS satellite ephemeris fault detection method based on user ranging error real-time estimation
CN109709579A (en) * 2019-02-21 2019-05-03 哈尔滨工程大学 A kind of GNSS satellite ephemeris fault detection method based on user ranging errors real-time estimation
CN110208835B (en) * 2019-05-21 2023-05-05 哈尔滨工程大学 Cross-system tight combination differential positioning method based on ionosphere combination
CN110208835A (en) * 2019-05-21 2019-09-06 哈尔滨工程大学 A kind of cross-system tight integration Differential positioning method based on iono-free combination
US11709281B2 (en) 2019-05-22 2023-07-25 Southeast University High-precision point positioning method and device based on smartphone
WO2020233158A1 (en) * 2019-05-22 2020-11-26 东南大学 High-precision single-point positioning method and apparatus based on smartphone
US20220155465A1 (en) * 2019-05-22 2022-05-19 Southeast University High-precision point positioning method and device based on smartphone
CN110161547B (en) * 2019-06-26 2022-09-16 哈尔滨工程大学 Medium-long baseline ambiguity resolution method of adaptive ionosphere estimation model
CN110161547A (en) * 2019-06-26 2019-08-23 哈尔滨工程大学 A kind of medium-long baselines Ambiguity Solution Methods of adaptive ionosphere estimation model
CN110764122A (en) * 2019-11-22 2020-02-07 武汉云图智信科技有限公司 Precise single-point positioning method of single-frequency GPS receiver
CN111175789A (en) * 2020-01-16 2020-05-19 中国民用航空总局第二研究所 Ionized layer anomaly monitoring method, device and system of foundation enhancement system
CN111175789B (en) * 2020-01-16 2022-03-04 中国民用航空总局第二研究所 Ionized layer anomaly monitoring method, device and system of foundation enhancement system
CN111323796B (en) * 2020-03-18 2021-11-09 中国科学院国家空间科学中心 GNSS receiver high-sampling clock error resolving method
CN111323796A (en) * 2020-03-18 2020-06-23 中国科学院国家空间科学中心 GNSS receiver high-sampling clock error resolving method
CN113552606A (en) * 2020-04-23 2021-10-26 千寻位置网络有限公司 Method for determining bit ambiguity
CN113671534A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Positioning compensation method, vehicle-mounted unit, medium and system
CN113703017A (en) * 2020-05-22 2021-11-26 中国人民解放军战略支援部队信息工程大学 Satellite antenna phase center deviation calculation method and device
CN113703017B (en) * 2020-05-22 2023-06-13 中国人民解放军战略支援部队信息工程大学 Satellite antenna phase center deviation calculation method and device
CN111965673B (en) * 2020-06-24 2023-06-20 中山大学 Time-frequency transfer method of single-frequency precise single-point positioning algorithm based on multiple GNSS
CN111965673A (en) * 2020-06-24 2020-11-20 中山大学 Time frequency transfer method of single-frequency precise single-point positioning algorithm based on multiple GNSS
CN111947667A (en) * 2020-06-24 2020-11-17 火眼位置数智科技服务有限公司 Low-orbit satellite real-time high-precision orbit determination method based on kinematics and dynamics combination
CN112014860A (en) * 2020-07-20 2020-12-01 中国科学院空天信息创新研究院 Low-orbit satellite space-time reference establishment method based on Beidou PPP-RTK
CN112014860B (en) * 2020-07-20 2023-07-14 中国科学院空天信息创新研究院 Low orbit satellite space-time reference establishment method based on Beidou PPP-RTK
CN112433234A (en) * 2020-11-19 2021-03-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Ionized layer TEC real-time estimation method suitable for GNSS receiver in middle and low latitude areas
US20220171076A1 (en) * 2020-11-30 2022-06-02 Qualcomm Incorporated Global navigation satellite system precise positioning engine with estimated ionosphere
US11550065B2 (en) * 2020-11-30 2023-01-10 Qualcomm Incorporated Global navigation satellite system precise positioning engine with estimated ionosphere
CN114518586B (en) * 2021-03-17 2024-04-30 山东科技大学 GNSS precise single-point positioning method based on spherical harmonic expansion
CN114518586A (en) * 2021-03-17 2022-05-20 山东科技大学 GNSS precise point positioning method based on spherical harmonic expansion
CN113126128A (en) * 2021-04-20 2021-07-16 东方红卫星移动通信有限公司 DCB correction-based Beidou satellite navigation system frequency point precise point positioning method
CN113204042A (en) * 2021-05-21 2021-08-03 北京交通大学 Multi-constellation combined train positioning method based on precise single-point positioning
CN113865592A (en) * 2021-09-09 2021-12-31 河海大学 Multi-path parameterization method and storage medium suitable for multi-frequency GNSS precision navigation positioning
CN113865592B (en) * 2021-09-09 2024-05-10 河海大学 Multipath parameterization method and storage medium suitable for multi-frequency GNSS precise navigation positioning
WO2023123147A1 (en) * 2021-12-30 2023-07-06 华为技术有限公司 Data preprocessing method, data preprocessing apparatus, and chip
CN114994728B (en) * 2022-05-25 2024-05-28 中南大学 Precise single-point positioning method and system for mixed use of different channel observation values
CN114994728A (en) * 2022-05-25 2022-09-02 中南大学 Precise single-point positioning method and system for mixed use of different channel observation values
CN115267843A (en) * 2022-06-14 2022-11-01 中国科学院精密测量科学与技术创新研究院 Real-time non-difference estimation method for multi-frequency multi-mode GNSS high-frequency precise satellite clock difference
CN115390104A (en) * 2022-10-26 2022-11-25 中国人民解放军国防科技大学 Navigation satellite time delay deviation modeling method
CN115390104B (en) * 2022-10-26 2023-04-07 中国人民解放军国防科技大学 Navigation satellite time delay deviation modeling method
CN115712130B (en) * 2022-11-18 2023-11-07 中国科学院空天信息创新研究院 Pseudo-range correction method and device, electronic equipment and storage medium
CN115712130A (en) * 2022-11-18 2023-02-24 中国科学院空天信息创新研究院 Pseudo-range correction method and device, electronic equipment and storage medium
CN115993614A (en) * 2022-12-07 2023-04-21 中国科学院国家授时中心 Time transmission method for weakening deviation in Beidou system
CN116299617B (en) * 2023-02-16 2023-10-31 北京航空航天大学 Method for establishing GNSS satellite-ground atomic clock real-time dynamic model
CN116299617A (en) * 2023-02-16 2023-06-23 北京航空航天大学 Method for establishing GNSS satellite-ground atomic clock real-time dynamic model
CN116609810A (en) * 2023-05-19 2023-08-18 复旦大学 Ionosphere four-dimensional electron density dynamic prediction method based on navigation foundation system
CN116609810B (en) * 2023-05-19 2024-06-07 复旦大学 Ionosphere four-dimensional electron density dynamic prediction method based on navigation foundation system
CN116699663B (en) * 2023-08-08 2023-10-17 中国西安卫星测控中心 Intersystem deviation parameter determination method for GNSS observation fusion positioning
CN116699663A (en) * 2023-08-08 2023-09-05 中国西安卫星测控中心 Intersystem deviation parameter determination method for GNSS observation fusion positioning
CN117741714A (en) * 2023-12-19 2024-03-22 中国科学院上海天文台 GPS satellite pseudo-range deviation correction method for improving satellite-based enhanced service precision

Also Published As

Publication number Publication date
CN107356947B (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN107356947A (en) The method that satellite difference pseudorange biases are determined based on single-frequency navigation satellite data
CN102288978B (en) Continuous operational reference system (CORS) base station cycle slip detection and recovering method
CN108226985B (en) Train combined navigation method based on precise single-point positioning
CN105158780B (en) One kind is based on the interchangeable navigation locating method of a variety of aeronautical satellites
CN104102822B (en) A kind of multifrequency GNSS observations stochastic behaviour modeling method
CN109061696A (en) A kind of method of determining navigation satellite track and clock deviation
CN104656108B (en) Sparse reference station network zenith troposphere delay modeling method considering elevation difference
CN103630914B (en) A kind of GNSS baseline solution reference satellite system of selection
CN107710017A (en) For the satellite navigation receiver and method switched between real time kinematics pattern and relative positioning mode
CN110045407A (en) A kind of distribution pseudo satellite, pseudolite/GNSS optimum position method
CN108196284B (en) GNSS network data processing method for fixing single-difference ambiguity between satellites
CN108254773A (en) A kind of real-time clock correction calculation method of more GNSS
CN103728643B (en) With the Big Dipper three network RTK blur level single epoch fixing means frequently that wide lane retrains
CN105182388B (en) A kind of accurate one-point positioning method of Fast Convergent
CN105467415B (en) A kind of SUAV RTK relative positioning methods constrained based on difference pressure altitude
CN104614741B (en) Real-time precise satellite clock error estimation method not impacted by deviation of code frequency of GLONASS
CN106970398A (en) Take the satellite visibility analysis and ephemeris forecasting procedure of satellite obstruction conditions into account
CN107942346B (en) A kind of high-precision GNSS ionized layer TEC observation extracting method
CN104597465A (en) Method for improving convergence speed of combined precise point positioning of GPS (Global Position System) and GLONASS
CN106569242A (en) Global navigation satellite system (GNSS) single difference processing method of fixed reference satellite
CN103542854A (en) Autonomous orbit determination method based on satellite borne processor
CN102998681A (en) High-frequency clock error estimation method of satellite navigation system
CN107861131A (en) The acquisition methods and system of a kind of wrong path footpath ionosphere delay
CN104035113A (en) Pseudo-range-based reliable locating method of multimode GNSS receiver
Banville et al. Defining the basis of an integer-levelling procedure for estimating slant total electron content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant