CN107340546B - 一种水下探测分孔径双ccd实时偏振成像装置及方法 - Google Patents

一种水下探测分孔径双ccd实时偏振成像装置及方法 Download PDF

Info

Publication number
CN107340546B
CN107340546B CN201710607071.1A CN201710607071A CN107340546B CN 107340546 B CN107340546 B CN 107340546B CN 201710607071 A CN201710607071 A CN 201710607071A CN 107340546 B CN107340546 B CN 107340546B
Authority
CN
China
Prior art keywords
image
polarization
aperture
underwater
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710607071.1A
Other languages
English (en)
Other versions
CN107340546A (zh
Inventor
刘卿卿
杨梅
胡凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201710607071.1A priority Critical patent/CN107340546B/zh
Publication of CN107340546A publication Critical patent/CN107340546A/zh
Application granted granted Critical
Publication of CN107340546B publication Critical patent/CN107340546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种水下探测分孔径双CCD实时偏振成像装置及方法,包括被探测目标、前置共孔径成像透镜组、无偏振分光棱镜、偏振元件组、后置分孔径成像透镜组、CCD探测器、LED光源和透明树脂密封舱。本发明采用CCD分孔径设计装置,完成分孔径与分振幅相结合的偏振成像***,实现对圆偏振、线偏振原始图像及光强度图像的同时采集。本发明采用基于机器学习的多光学信息融合偏振成像方法,针对不同水深、水质的水下环境,在人工光源条件下基于图像的颜色、光强、偏振度等光学参数以及水体环境和探测距离进行建模,建立学习机制,获得具有较高对比度、清晰度的水下目标探测图像,提高水下偏振成像的适应性。

Description

一种水下探测分孔径双CCD实时偏振成像装置及方法
技术领域
本发明所涉及的是一种水下光学成像装置及方法,尤其是水下偏振成像的装置及方法。
背景技术
偏振成像技术是近十几年来发展起来的新型目标探测技术,应用偏振成像技术不仅可以表征一些自然目标物体的粗糙度、湿度、材料理化特性等信息,而且在水下目标探测时可以不同程度的减少进入探测器的后向散射光和目标反射光,大部分后向散射光被滤去而大部分目标反射光能够到达探测器,即目标反射光的入射比例得到提高,在探测器上形成的图像对比度得到提高,所以采用偏振成像技术能够在很大程度上提高图像的清晰度,进而增大探测距离和探测深度。因此,偏振成像技术在水下成像领域具有良好的发展和应用前景。
目前国内外水下偏振成像的研究可归纳为两大类,一是在激光主动成像的方法基础上引入偏振片,以抑制水体后向散射光;二是借鉴遥感偏振成像方法,以旋转偏振片的方式获取多角度偏振图像,进而求解偏振度、偏振角等偏振特征,以提高水下目标检测能力。
然而由于水介质本身及悬浮颗粒所造成的光谱、光强衰减及光线散射,导致水下图像色度畸变、细节模糊,并且这种影响并非稳定的,随着水质、成像水深及视距而发生动态变化,因此简单的移植或改进遥感偏振成像方法进行水下目标探测在实际应用中成像质量提高程度比较有限,同时采用旋转偏振片式的分时偏振成像方法不适用于水下浮动场合。因此,本发明提出一种分孔径双CCD实时水下偏振成像装置及方法,解决光谱、光强衰减以及光散射等造成的目标探测模糊、对比度低,以及分时偏振成像造成的图像抖动等问题。
发明内容
本发明提出一种分孔径双CCD实时水下偏振成像装置及方法,解决光谱、光强衰减以及光散射等造成的目标探测模糊、对比度低,以及分时偏振成像造成的图像抖动等问题。
本发明采用的技术方案是:一种水下探测分孔径双CCD实时偏振成像装置,包括被探测目标、前置共孔径成像透镜组、无偏振分光棱镜、偏振元件组、后置分孔径成像透镜组、CCD探测器、LED光源和透明树脂密封舱;
所述被探测目标经LED光源照明后,其反射光依次经过前置共孔径成像透镜组、无偏振分光棱镜、两组偏振元件组、两组后置分孔径成像透镜组,最终成像于两个CCD探测器上;
所述前置共孔径成像透镜组、无偏振分光棱镜、偏振元件组、后置分孔径成像透镜组及CCD探测器固定于透明树脂密封舱内;
所述两组偏振元件组中,一组为四通道偏振元件组,另一组则为双通道偏振元件组;四通道偏振元件组分别放置一个线偏振片,其偏振角分别设置为0°,45°,90°,45°和135°;双通道偏振元件组一路放置一个圆偏振片,另一路放置一片与偏振片厚度相同的无偏振平行平板,以减小各光路光学成像差异;两组后置分孔径成像透镜组分别与两组偏振元件组对应,且各通道透镜组光轴与前置共孔径透镜组光轴偏离距离e=4.2mm,CCD探测器像元尺寸为8μm×8μm,保证像中心偏移量等于像高的一半。
作为优选,所述透明树脂密封舱以太网水密连接器接口,使微处理器与上位机利用网线进行通讯,实现图像视频的传输并接受上位机的控制。
采用上述装置的水下探测分孔径双CCD实时偏振成像方法为:被探测目标经无偏振分光棱镜后,造成透射图像与反射图像互为镜像,因此,首先通过镜像处理对反射图像进行预处理,使其具有相同的方向。而后将图像进行二值化处理,基于形态学图像处理原理提取同一CCD探测器上探测到的各图像边缘信息,进行图像分割。图像配准拟采用基于特征的配准方法,首先需将彩色图像转化为灰度图像,采用SURF算法,对分割好的全部原始图像进行积分图像变换,使用近似的Hessian矩阵检测特征点,而后以Haar小波响应构建特征向量分布信息,对特征点进行描述。以优先kD树方法匹配特征点对,然后结合RANSAC算法剔除误匹配点对,最小二乘法求出图像之间的变换矩阵,最后利用双线性插值方法进行插值重采样,获得配准图像结果。
根据Stokes矢量S={I,Q,U,V}T对配准后的偏振角为0°,45°,90°,135°方向上的目标偏振灰度图像求解偏振度图A;目标彩色图像提取光强特征图B;应用RGB色彩空间中三个通道的灰度线性关系提取颜色特征图C,灰度化的圆偏振图像D。采用加权策略对上述图像进行融合,各权重由水下光学先验知识学习获得。光学先验知识学习过程是针对不同材质、颜色的目标在不同水质及探测距离下提取光强、光谱和偏振度图,形成训练样本,以聚类方法对其进行分类,而后针对不同类别,求解最优权重;用先验知识指导将被测图像的检测结果,可以确定特定水下光学环境中目标检测任务对偏振度、光强、光谱、和圆偏振信息的依赖度,即权重,分别用m,n,p,q表示。则可以根据公式X=mA+nB+pC+qD得到该特定场景的融合图像。
有益效果:本发明采用CCD分孔径设计装置,完成分孔径与分振幅相结合的偏振成像***,实现对圆偏振、线偏振原始图像及光强度图像的同时采集。
本发明采用基于机器学习的多光学信息融合偏振成像方法,针对不同水深、水质的水下环境,在人工光源条件下基于图像的颜色、光强、偏振度等光学参数以及水体环境和探测距离进行建模,建立学习机制,获得具有较高对比度、清晰度的水下目标探测图像,提高水下偏振成像的适应性。
附图说明
图1为本发明分孔径双CCD水下偏振成像装置结构示意图。1、被探测目标;2、前置共孔径成像透镜组;3、无偏振分光棱镜;4、四通道偏振元件组;5、四通道后置分孔径成像透镜组;6、CCD探测器一;7、双通道偏振元件组;8、双通道后置分孔径成像透镜组;9、CCD探测器二;10、LED光源一;11、LED光源二;12、透明树脂密封舱。
图2a为后置分孔径透镜组正向示意图(四通道组);
图2b为后置分孔径透镜组正向示意图(双通道组);
图3为基于先验知识的水下目标探测原理框图。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步详述:
本发明提出一种分孔径双CCD实时水下偏振成像装置,被探测目标1经两个10W的LED光源一10和LED光源二11后,其反射光依次经过前置共孔径成像透镜组2、无偏振分光棱镜3、两组偏振元件组、两组后置分孔径成像透镜组,最终成像于两组CCD探测器上。
前置共孔径成像透镜组2、无偏振分光棱镜3、偏振元件组、后置分孔径成像透镜组及CCD探测器固定于透明树脂密封舱12内。
透明树脂密封舱12设计以太网水密连接器接口,以Atmega8微处理器与上位机用网线进行通讯,上位机程序采用VC编写,实现图像视频的传输并接受上位机的控制。
前置共孔径成像透镜组2焦距为100mm,后置分孔径成像透镜组焦距均为35mm,前后两透镜组间距为47mm,两组偏振元件组中,一组为四通道偏振元件组4,另一组则为双通道偏振元件组7。四通道偏振元件组4分别放置一个线偏振片,其偏振角分别设置为0°,45°,90°,45°和135°。双通道偏振元件组7一路放置一个圆偏振片,另一路放置一片与偏振片厚度相同的无偏振平行平板,以减小各光路光学成像差异。四通道后置分孔径成像透镜组5与四通道偏振元件组4对应,四通道后置分孔径成像透镜组5后为CCD探测器一6,双通道后置分孔径成像透镜组8与双通道偏振元件组7对应,双通道后置分孔径成像透镜组8后为CCD探测器二9,且各通道透镜组光轴与前置共孔径透镜组2光轴偏离距离e=4.2mm,CCD探测器像元尺寸为8μm×8μm。
目标经分光棱镜后,造成透射图像与反射图像互为镜像,因此,首先通过镜像处理对反射图像进行预处理,使其具有相同的方向。而后将图像进行二值化处理,基于形态学图像处理原理提取同一CCD探测器上探测到的各图像边缘信息,进行图像分割。图像配准拟采用基于特征的配准方法,首先需将彩色图像转化为灰度图像,采用SURF算法,对分割好的全部原始图像进行积分图像变换,使用近似的Hessian矩阵检测特征点,而后以Haar小波响应构建特征向量分布信息,对特征点进行描述。以优先kD树方法匹配特征点对,然后结合RANSAC算法剔除误匹配点对,最小二乘法求出图像之间的变换矩阵,最后利用双线性插值方法进行插值重采样,获得配准图像结果。
根据Stokes矢量S={I,Q,U,V}T对配准后的偏振角为0°,45°,90°,135°方向上的目标偏振灰度图像求解偏振度图A;目标彩色图像提取光强特征图B;应用RGB色彩空间中三个通道的灰度线性关系提取颜色特征图C,灰度化的圆偏振图像D。采用加权策略对上述图像进行融合,各权重由水下光学先验知识学习获得。光学先验知识学习过程是针对不同材质、颜色的目标在不同水质及探测距离下提取光强、光谱和偏振度图,形成训练样本,以聚类方法对其进行分类,而后针对不同类别,求解最优权重;用先验知识指导将被测图像的检测结果,可以确定特定水下光学环境中目标检测任务对偏振度、光强、光谱、和圆偏振信息的依赖度,即权重,分别用m,n,p,q表示。则可以根据公式X=mA+nB+pC+qD得到该特定场景的融合图像。
当然,以上只是本发明的典型实例,除此之外,本发明还可以有其它多种具体实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求保护的范围之内。

Claims (1)

1.一种使用水下探测分孔径双CCD实时偏振成像装置的方法,其特征在于:
所述水下探测分孔径双CCD实时偏振成像装置包括被探测目标、前置共孔径成像透镜组、无偏振分光棱镜、偏振元件组、后置分孔径成像透镜组、CCD探测器、LED光源和透明树脂密封舱;
所述被探测目标经LED光源照明后,其反射光依次经过前置共孔径成像透镜组、无偏振分光棱镜、两组偏振元件组、两组后置分孔径成像透镜组,最终成像于两个CCD探测器上;所述前置共孔径成像透镜组、无偏振分光棱镜、偏振元件组、后置分孔径成像透镜组及CCD探测器固定于透明树脂密封舱内;
所述两组偏振元件组中,一组为四通道偏振元件组,另一组则为双通道偏振元件组;四通道偏振元件组分别放置一个线偏振片,其偏振角分别设置为0°,45°,90°和135°;双通道偏振元件组一路放置一个圆偏振片,另一路放置一片与偏振片厚度相同的无偏振平行平板;两组后置分孔径成像透镜组分别与两组偏振元件组对应,且各通道透镜组光轴与前置共孔径透镜组光轴偏离距离e=4.2mm,CCD探测器像元尺寸为8μm×8μm,保证像中心偏移量等于像高的一半;
所述透明树脂密封舱以太网水密连接器接口,使微处理器与上位机利用网线进行通讯;使用所述水下探测分孔径双CCD实时偏振成像装置的方法:
被探测目标经无偏振分光棱镜后,造成透射图像与反射图像互为镜像,因此,首先通过镜像处理对反射图像进行预处理,使其具有相同的方向;而后将图像进行二值化处理,基于形态学图像处理原理提取同一CCD探测器上探测到的各图像边缘信息,进行图像分割;图像配准拟采用基于特征的配准方法,首先需将彩色图像转化为灰度图像,采用SURF算法,对分割好的全部原始图像进行积分图像变换,使用近似的Hessian矩阵检测特征点,而后以Haar小波响应构建特征向量分布信息,对特征点进行描述;以优先kD树方法匹配特征点对,然后结合RANSAC算法剔除误匹配点对,最小二乘法求出图像之间的变换矩阵,最后利用双线性插值方法进行插值重采样,获得配准图像结果;
根据Stokes矢量S={I,Q,U,V}T对配准后的偏振角为0°,45°,90°,135°方向上的目标偏振灰度图像求解偏振度图A;目标彩色图像提取光强特征图B;应用RGB色彩空间中三个通道的灰度线性关系提取颜色特征图C,灰度化的圆偏振图像D;采用加权策略对上述图像进行融合,各权重由水下光学先验知识学习获得;光学先验知识学习过程是针对不同材质、颜色的目标在不同水质及探测距离下提取光强、光谱和偏振度图,形成训练样本,以聚类方法对其进行分类,而后针对不同类别,求解最优权重;用先验知识指导将被测图像的检测结果,确定特定水下光学环境中目标检测任务对偏振度、光强、光谱、和圆偏振信息的依赖度,即权重,分别用m,n,p,q表示;则根据公式X=mA+nB+pC+qD得到该特定场景的融合图像。
CN201710607071.1A 2017-07-24 2017-07-24 一种水下探测分孔径双ccd实时偏振成像装置及方法 Active CN107340546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710607071.1A CN107340546B (zh) 2017-07-24 2017-07-24 一种水下探测分孔径双ccd实时偏振成像装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710607071.1A CN107340546B (zh) 2017-07-24 2017-07-24 一种水下探测分孔径双ccd实时偏振成像装置及方法

Publications (2)

Publication Number Publication Date
CN107340546A CN107340546A (zh) 2017-11-10
CN107340546B true CN107340546B (zh) 2023-05-05

Family

ID=60216333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710607071.1A Active CN107340546B (zh) 2017-07-24 2017-07-24 一种水下探测分孔径双ccd实时偏振成像装置及方法

Country Status (1)

Country Link
CN (1) CN107340546B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548603A (zh) * 2018-04-12 2018-09-18 中国科学院光电技术研究所 一种非共轴四通道偏振成像方法及***
CN109118460B (zh) * 2018-06-27 2020-08-11 河海大学 一种分光偏振光谱信息同步处理方法及***
CN109188395A (zh) * 2018-07-19 2019-01-11 合肥工业大学 一种全偏振条纹管激光成像雷达装置
CN109357764B (zh) * 2018-08-09 2021-06-15 北京理工大学 一种双探测器动态局部偏振成像***
CN109343230B (zh) * 2018-09-17 2021-03-23 中国人民解放军海军工程大学 一种同时全偏振成像装置以及方法
CN109905585A (zh) * 2019-04-02 2019-06-18 浙江大学 一种转轮式水下偏振相机
CN110057754B (zh) * 2019-05-23 2024-04-19 南京信息工程大学 一种用于水下偏振成像的分孔径光学镜头
CN111812039B (zh) * 2020-06-19 2022-10-04 天津大学 一种基于偏振成像原理的水下触觉传感装置及方法
CN112164017B (zh) * 2020-09-27 2023-11-17 中国兵器工业集团第二一四研究所苏州研发中心 一种基于深度学习的偏振彩色化方法
CN112379391B (zh) * 2020-09-30 2022-11-08 西安电子科技大学 一种水下偏振成像方法及其装置
CN113504643B (zh) * 2021-06-23 2022-07-19 中国科学院长春光学精密机械与物理研究所 一种基于棱镜分光的水下微光彩色成像设计方法
CN115880207A (zh) * 2021-09-26 2023-03-31 深圳先进技术研究院 图像构建方法
CN114137781A (zh) * 2021-12-06 2022-03-04 湖北久之洋红外***股份有限公司 一种跨介质成像多功能光学***及控制方法
CN114324185A (zh) * 2022-01-04 2022-04-12 浙江大学 一种基于Stokes矢量的水下偏振探测装置
CN114782451B (zh) * 2022-06-23 2022-09-16 季华实验室 工件缺陷检测方法、装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201589659U (zh) * 2010-01-13 2010-09-22 中国科学院安徽光学精密机械研究所 同时偏振成像探测***的光学结构
CN102707452A (zh) * 2012-07-02 2012-10-03 北京理工大学 双分离渥拉斯顿棱镜高分辨力同时偏振成像***
CN104793343A (zh) * 2015-04-13 2015-07-22 西安电子科技大学 三通道单渥拉斯顿棱镜偏振成像装置及偏振信息探测方法
CN104792415A (zh) * 2015-04-10 2015-07-22 中国科学院光电研究院 一种完全偏振高光谱成像装置
CN207301366U (zh) * 2017-07-24 2018-05-01 南京信息工程大学 一种水下探测分孔径双ccd实时偏振成像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201589659U (zh) * 2010-01-13 2010-09-22 中国科学院安徽光学精密机械研究所 同时偏振成像探测***的光学结构
CN102707452A (zh) * 2012-07-02 2012-10-03 北京理工大学 双分离渥拉斯顿棱镜高分辨力同时偏振成像***
CN104792415A (zh) * 2015-04-10 2015-07-22 中国科学院光电研究院 一种完全偏振高光谱成像装置
CN104793343A (zh) * 2015-04-13 2015-07-22 西安电子科技大学 三通道单渥拉斯顿棱镜偏振成像装置及偏振信息探测方法
CN207301366U (zh) * 2017-07-24 2018-05-01 南京信息工程大学 一种水下探测分孔径双ccd实时偏振成像装置

Also Published As

Publication number Publication date
CN107340546A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
CN107340546B (zh) 一种水下探测分孔径双ccd实时偏振成像装置及方法
Bruno et al. Experimentation of structured light and stereo vision for underwater 3D reconstruction
Bryson et al. True color correction of autonomous underwater vehicle imagery
Biskup et al. A stereo imaging system for measuring structural parameters of plant canopies
CN106407927B (zh) 基于偏振成像的适用于水下目标检测的显著性视觉方法
CN102789114A (zh) 一种可见-红外双通摄像机
CN106504291B (zh) 基于场景Stokes矢量测量及其RGB图像优化的多物体区分方法
CN111122452A (zh) 基于穆勒矩阵的去散射成像方法
CN108548603A (zh) 一种非共轴四通道偏振成像方法及***
CN106952282A (zh) 一种基于偏振参数的伪装识别方法
JP3078577B2 (ja) 反射の影響を受けない水中像を航空機から電気光学的に検出するシステム
CN207301366U (zh) 一种水下探测分孔径双ccd实时偏振成像装置
CN102062945B (zh) 一种空间变分辨率红外双色成像探测***
CN115950890A (zh) 用于工业检测的谱域光学相干层析成像检测方法及***
Huang et al. An underwater image enhancement method for simultaneous localization and mapping of autonomous underwater vehicle
CN114659635A (zh) 一种基于像面分割光场的光谱深度成像装置及方法
CN113790676B (zh) 一种基于编码孔径和光场分布的三维空间光谱成像方法及装置
Li et al. Visibility enhancement of underwater images based on active polarized illumination and average filtering technology
Lin et al. Polarization enhanced visual surveillance techniques
CN106597422A (zh) 小型化光电被动测距装置
CN201221981Y (zh) 一种测量运动目标颜色饱和度指标和形状大小的装置
CN110514302A (zh) 基于小型水下机器设备的海洋光纤光谱仪检测方法
CN113310441A (zh) 一种对金属表面粗糙度加工进行探测的偏振关联成像方案
CN108961191A (zh) 一种散射环境中圆偏振及线偏振联合图像复原方法
RU2734070C9 (ru) Способ измерения пространственного расстояния между малоразмерными объектами

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant