CN107326160B - 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法 - Google Patents

一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法 Download PDF

Info

Publication number
CN107326160B
CN107326160B CN201710518311.0A CN201710518311A CN107326160B CN 107326160 B CN107326160 B CN 107326160B CN 201710518311 A CN201710518311 A CN 201710518311A CN 107326160 B CN107326160 B CN 107326160B
Authority
CN
China
Prior art keywords
carbon
steel
low
distribution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710518311.0A
Other languages
English (en)
Other versions
CN107326160A (zh
Inventor
景财年
邢兆贺
涂英明
吕明桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710518311.0A priority Critical patent/CN107326160B/zh
Publication of CN107326160A publication Critical patent/CN107326160A/zh
Application granted granted Critical
Publication of CN107326160B publication Critical patent/CN107326160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种具有TRIP效应的低碳C‑Mn‑Si系钢C、Mn综合配分的热处理方法,首先将经过前处理的的低碳C‑Mn‑Si系冷轧钢板在820℃保温5‑10min,然后加热到920℃并保温3min,再将试验钢温度降到870℃,保温3‑7min,接着将钢淬火至240‑260℃,保温10‑30s,最后水淬至室温。本发明特别适用于碳含量为0.1‑0.15ωt.%的低碳C‑Mn‑Si系钢,可得到强塑积14000‑15000MPa·%,延伸率达到15%‑16%,同时具有良好焊接性的高强钢板,其微观组织为马氏体、铁素体和残余奥氏体。同时,利用高温二次Mn配分,低温碳配分的模式提高了奥氏体稳定性及Q&P钢中残余奥氏体含量,进一步改善了Q&P钢性能。本发明奥氏体化温度较低,可降低加热温度,节省加热时间。同时整个热处理流程时间也较短,看大幅提高生产效率,节约生产成本,在汽车工业上具有良好的应用前景。

Description

一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理 方法
技术领域
本发明涉及一种低碳钢的热处理方法,特别涉及一种具有TRIP效应的低碳C-Mn-Si系钢的C、Mn综合配分热处理方法,属于材料热处理技术领域。
背景技术
汽车的轻量化是指在保证汽车安全性能的前提下,通过对汽车车体结构的优化和对轻质材料的大量应用来降低汽车自身重量的一种技术。汽车的轻量化技术在缓解能源、环境的危机方面有着巨大的潜力。将先进高强度钢制造的车身零部件大量用在汽车白车身中,能够在保证汽车的安全性的情况下,有效降低汽车的自身重量,提高燃油率,减少尾气的排放。汽车轻量化已成为世界汽车工业发展的主要趋势之一。
Q&P钢,即淬火-配分(Quenching-Partitioning,Q&P)钢,由美国科罗拉多矿业大学的Speer教授在2003年提出,Q&P钢的显微组织主要为贫碳的马氏体,并含有部分富碳的残余奥氏体,残余奥氏体的存在是因为碳元素的配分增加了奥氏体的化学稳定性,因而保留到了室温, Q&P钢中残余奥氏体的作用是在受到外界作用力时转变为马氏体(TRIP效应),从而提高Q&P钢的塑性,使其兼具高强度和高塑性,Q&P钢的TRIP效应不仅会吸收冲击能,抵御撞击时的塑性变形,显著提升汽车的安全等级,同时,由于Q&P钢中马氏体基体的强度很高,可在不降低甚至提高汽车安全性的情况下适当地减薄车部件的厚度而达到轻量化的目的。
常用Q&P热处理的母材有C-Mn-Si系和C-Mn-Al系钢,其中C-Mn-Al系的TRIP钢的铁素体和奥氏体的相变温度较高,甚至在1100℃以上还没有发生奥氏体相变,Q&P工艺的实施难度大,成本较高。本发明选用低碳C-Mn-Si系钢,其铁素体和奥氏体的相变温度较低,可以节约如处理时间。碳含量较低可以保证钢板具有良好的焊接性。但碳含量低会影响传统Q&P工艺过程中碳的配分过程,降低奥氏体稳定性;导致马氏体中碳含量较低,降低马氏体强度。导致热处理后的低碳C-Mn-Si系钢强塑积较低。而且,现有的Q&P热处理工艺时间较长,参数的配合仍需进一步探索。
发明内容
针对现有技术中热处理工艺存在的问题,提出了一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分的热处理方法,目的是通过第一次Mn配分、奥氏体化、二次Mn配分、C配分合理的相互配合,生产出具有良好焊接性、强塑积的低碳C-Mn-Si系Q&P钢。特别适用于碳含量为0.1-0.15ωt%低碳C-Mn-Si系钢。除了C元素外,让Mn元素也承担一部分提高奥氏体稳定性的任务。从而形成高温Mn配分,低温碳配分的模式。充分利用C、Mn元素的综合配分来增加奥氏体的稳定性及Q&P钢中残余奥氏体的含量。从而获得强塑积较高低成本且焊接性良好的高强度钢板。该热处理方法奥氏体化温度较低,仅920℃,这样就降低了加热温度,节省加热时间。同时整个热处理流程时间也较短,大幅度地提高钢的生产效率高,节约生产成本,在汽车工业上具有良好的应用前景。
实现本发明目的的技术方案按照以下步骤进行:(1)第一次Mn配分:将经过前处理的低碳C-Mn-Si系钢加热到两相区820℃并保温5-10min。
(2)完全奥氏体化:加热到奥氏体区920℃,并保温3min,使之完全奥氏体化。
(3)第二次Mn配分:将试验钢温度降到870℃,保温3-7min,进行第二次Mn配分。
(4)碳配分:保温结束后迅速淬火至240-260℃,控制配分时间在10-30s,然后水淬至室温。得到强塑积14000-15000MPa·%,延伸率15%-16%的Q&P钢板。
所述的前处理是将低碳C-Mn-Si系冷轧钢板使用洗洁精浸泡一段时间后清洗,除锈去油后风干,使表面光洁,以避免热处理时的受热不均匀。
与现有技术相比,本发明的特点和有益效果是:通过对传统Q&P工艺的优化改进,采用了二次Mn配分加碳配分的工艺,使Mn元素也承担一部分提高奥氏体的稳定性的任务,形成高温Mn配分,低温碳配分的模式。充分利用C、Mn元素的综合配分来增加奥氏体的稳定性及Q&P钢中残余奥氏体的含量,进一步改善了Q&P钢的性能,使Q&P工艺最大限度地发挥其优势。特别适用于碳含量为0.1-0.15ωt%低碳C-Mn-Si系钢。
所述步骤(1)中将钢加热到820℃并保温5-10min,进行第一次Mn配分,目的是使铁素体中的Mn元素聚集到奥氏体中。
所述步骤(2)中奥氏体化温度和时间为920℃保温3min,奥氏体化温度与时间的选择既要考虑得到全奥氏体组织,同时防止第一次配分到奥氏体中的Mn发生均匀化。
所述步骤(3),将试验钢温度降到870℃,保温3-7min,进行第二次Mn配分。第二次Mn配分的温度高于第一次,其主要原因是控制铁素体的含量,温度过低,则铁素体含量高,会影响最终钢板的抗拉强度。
所述步骤(4)中将二次Mn配分完成后的试验钢迅速在盐浴炉中淬火至240-260℃,保温10-30s,进行碳配分工艺。碳元素在这个保温过程中将会从马氏体中向奥氏体中配分,使奥氏体发生热稳定化而最终保留到室温。最终得到室温组织为马氏体、残余奥氏体和少量铁素体的Q&P钢。
本发明中的热处理工艺,通过Mn元素在高温下的两次配分,再配合较低温度的碳配分,充分利用C、Mn元素的综合配分来提升奥氏体的稳定性,增加Q&P钢中残余奥氏体的含量,从而通过残余奥氏体的TRIP效应大幅提高钢的强塑积。相比以往的Q&P热处理工艺,本发明中的C、Mn综合配分能提高奥氏体的稳定性,提高材料的强塑积。采用标准国标拉伸试样测得的,数值可靠。在汽车工业上具有良好的应用前景。
本发明热处理工艺中奥氏体化温度低,保温时间较短,这样就降低了加热温度,节省了热处理时间。相比其他热处理工艺可以大幅度地提高钢的生产效率并且节约成本,在工业生产上有更好的应用前景。
附图说明
图1为本发明热处理工艺示意图。
图2为本发明实施例1中低碳C-Mn-Si系钢扫描电镜图像。
图3为本发明实施例2中低碳C-Mn-Si系钢的背散射电子图像。
图4为本发明实施例2中低碳C-Mn-Si系钢Mn元素的电子探针图像。
图5为本发明实施例2中低碳C-Mn-Si系钢C元素的电子探针图像。
具体实施方式
本发明实施例中是将热处理得到的钢板按ASTM E8标准用线切割机加工成标距为32mm的拉伸试样,并在万能拉伸试验机上进行拉伸试验,应变速率为1mm/min,测试其抗拉强度延伸率和强塑积,每实施例取3个样品,结果取平均值,以保证实验数据的可靠性。
实施例1
将成分为0.12C-1.5Mn-1.1Si的冷轧钢板清洗干净,除锈去油后风干,使表面光洁。以避免热处理过程中的受热不均。
(1)第一次Mn配分:将经过前处理的低碳C-Mn-Si钢加热到两相区820℃并保温5min。
(2)完全奥氏体化:加热到奥氏体区920℃,并保温3min,使之完全奥氏体化。
(3)第二次Mn配分:将试验钢温度降到870℃,保温5min,进行第二次Mn配分。
(4)碳配分:保温结束后迅速淬火至260℃,控制配分时间在20s,最后水淬至室温。
图2为热处理工艺得到的低碳C-Mn-Si系钢的扫描电镜图像。显微组织主要由马氏体、铁素体、残余奥氏体组成。马氏体为典型的板条状,少量的铁素体呈块状、粒状或其他不规则的形态均匀地分布在马氏体基体上。
经检测,其抗拉强度为960MPa,断后延伸率为15.4%,强塑积达14800MPa·% 。
实施例2
将成分为0.12C-1.5Mn-1.1Si的冷轧钢板清洗干净,除锈去油后风干,使表面光洁。以避免热处理过程中的受热不均。
(1)第一次Mn配分:将经过前处理的低碳C-Mn-Si钢加热到两相区820℃并保温7min。
(2)完全奥氏体化:加热到奥氏体区920℃,并保温3min,使之完全奥氏体化。
(3)第二次Mn配分:将试验钢温度降到870℃,保温7min,进行第二次Mn配分。
(4)碳配分:保温结束后迅速淬火至240℃,控制配分时间在30s,最后水淬至室温。
根据背散射和电子探针图像,凸起部分为马氏体,凹陷部分为铁素体。马氏体由奥氏体转化而来,可以看出C、Mn元素在奥氏体中配分效果明显。
经检测,其抗拉强度为946MPa,断后延伸率为15.5%,强塑积达14700MPa·% 。
实施例3
将成分为0.12C-1.5Mn-1.1Si的冷轧钢板清洗干净,除锈去油后风干,使表面光洁。以避免热处理过程中的受热不均。
(1)第一次Mn配分:将经过前处理的低碳C-Mn-Si钢加热到两相区820℃并保温7min。
(2)完全奥氏体化:加热到奥氏体区920℃,并保温3min,使之完全奥氏体化。
(3)第二次Mn配分:将试验钢温度降到870℃,保温5min,进行第二次Mn配分。
(4)碳配分:保温结束后迅速淬火至260℃,控制配分时间在20s,最后水淬至室温。
经检测,其抗拉强度为940MPa,断后延伸率为15.6%,强塑积达14700MPa·%。

Claims (2)

1.一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法,其特征在于,按照以下步骤进行:
(1)第一次Mn配分:将经过前处理的低碳C-Mn-Si系钢加热到两相区820℃并保温5-10min;所述低碳C-Mn-Si系钢碳含量为0.1-0.15ωt%;
(2)完全奥氏体化:加热到奥氏体区920℃,并保温3min,使之完全奥氏体化;
(3)第二次Mn配分:将试验钢温度降到870℃,保温3-7min,进行第二次Mn配分;
(4)碳配分:保温结束后迅速淬火至240℃-260℃,控制配分时间在10-30s,最后水淬至室温,得到强塑积14000-15000MPa·%,延伸率15%-16%的Q&P钢板。
2.根据权利要求1所述的一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法,其特征在于:所述的前处理是将该具有TRIP效应的低碳C-Mn-Si系冷轧钢板使用洗洁精浸泡一段时间后清洗,除锈去油后风干,使表面光洁,以避免热处理时的受热不均匀。
CN201710518311.0A 2017-06-29 2017-06-29 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法 Active CN107326160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710518311.0A CN107326160B (zh) 2017-06-29 2017-06-29 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710518311.0A CN107326160B (zh) 2017-06-29 2017-06-29 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法

Publications (2)

Publication Number Publication Date
CN107326160A CN107326160A (zh) 2017-11-07
CN107326160B true CN107326160B (zh) 2020-03-31

Family

ID=60198272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710518311.0A Active CN107326160B (zh) 2017-06-29 2017-06-29 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法

Country Status (1)

Country Link
CN (1) CN107326160B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825683B (zh) * 2018-08-14 2020-10-09 山东建筑大学 一种锰配分和逆转变800MPa低碳Q&P钢制备方法
CN112899463A (zh) * 2021-01-15 2021-06-04 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种提高双相组织低相变熔敷金属强韧性的焊后低温配分方法
CN113789432B (zh) * 2021-09-16 2023-01-24 昆明理工大学 一种改善sa508-4钢焊接组织局部硬化的方法
CN114262778B (zh) * 2021-12-27 2023-01-06 中国科学院金属研究所 一种中锰钢板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212657A (zh) * 2011-06-09 2011-10-12 北京科技大学 一种冷轧相变诱导塑性钢的淬火配分生产方法
CN103215516A (zh) * 2013-04-09 2013-07-24 宝山钢铁股份有限公司 一种700MPa级高强度热轧Q&P钢及其制造方法
CN103820613A (zh) * 2014-03-07 2014-05-28 东北大学 一种C-Mn-Al系TRIP590钢的Q&P热处理方法
CN106191390A (zh) * 2016-08-31 2016-12-07 内蒙古科技大学 一种中锰trip钢及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120113588A (ko) * 2011-04-05 2012-10-15 현대하이스코 주식회사 도금성이 우수한 고강도 trip강 및 그 제조 방법
EP2982769A1 (en) * 2014-08-06 2016-02-10 Indexator Group AB Austempered steel, method for producing it, component and semi-finished bad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212657A (zh) * 2011-06-09 2011-10-12 北京科技大学 一种冷轧相变诱导塑性钢的淬火配分生产方法
CN103215516A (zh) * 2013-04-09 2013-07-24 宝山钢铁股份有限公司 一种700MPa级高强度热轧Q&P钢及其制造方法
CN103820613A (zh) * 2014-03-07 2014-05-28 东北大学 一种C-Mn-Al系TRIP590钢的Q&P热处理方法
CN106191390A (zh) * 2016-08-31 2016-12-07 内蒙古科技大学 一种中锰trip钢及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Mn配分时间对低碳硅锰钢I&Q&P处理后组织与性能影响";田亚强等;《热加工工艺》;20160831;第45卷(第16期);第162-164页 *
"配分制度对低碳硅锰钢组织性能及残余奥氏体的影响";田亚强等;《热加工工艺》;20150831;第44卷(第16期);第212-214页 *
"锰配分温度对I&Q&P处理后低碳硅锰钢组织与力学性能的影响";陈连生等;《机械工程材料》;20161130;第40卷(第11期);第27-30页 *

Also Published As

Publication number Publication date
CN107326160A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
CN107326160B (zh) 一种具有TRIP效应的低碳C-Mn-Si系钢C、Mn综合配分热处理方法
Filippov et al. Low-cost treatment of rolled products used to make long high-strength bolts
CN104593573B (zh) 一种高效提升非调质钢强韧性的复合形变热处理强化方法
CN103866095B (zh) 一种针对具有片状微观组织的Cr、Mo钢的球化退火方法
CN103517996B (zh) 制造极高弹性极限马氏体钢的方法及如此获得的板材或部件
Güler et al. Investigation of the hot ductility of a high-strength boron steel
CN106521334B (zh) 高强塑积低碳硅锰系q&p钢板及异步轧制的制备方法
Hase et al. Effect of initial microstructure on ultrafine grain formation through warm deformation in medium-carbon steels
CN110872641A (zh) 一种奥氏体逆正转变与亚温成形生产汽车安全件的方法
CN105088081B (zh) 稳定杆的制造工艺
CN108774681A (zh) 高强钢的超快速热处理方法
CN108531690B (zh) 一种改善残奥形貌提高trip钢力学性能的热处理方法
Wu et al. Effect of initial spheroidizing microstructure after quenching and tempering on wear and contact fatigue properties of GCr15 bearing steel
CN107287401B (zh) 一种通过碳-锰综合配分提高传统q&p钢性能的方法
Bo et al. Research on a new process of the non-quenched and tempered steel with high strength and high toughness
CN104357747A (zh) 一种微合金化锰硼合金钢及其热处理方法和应用
CN103468913A (zh) 一种超高压容器用钢晶粒细化的热处理方法
CN113584267A (zh) 一种高碳纳米贝氏体钢组织的动态等温处理方法
CN109402350A (zh) 一种钢材的热处理工艺
CN108570543A (zh) 一种超高强韧含镍纳米级贝氏体钢及其制备方法
CN102732710A (zh) 一种大厚度钢板热处理方法
CN107130088B (zh) 一种波动式回火工艺方法
CN106148881B (zh) 用于线性滑轨的渗碳沃斯回火滑块及其制造方法
Chen et al. Processing, microstructures and mechanical properties of ultra-high strength steel sheet
CN104131142A (zh) 一种针对汽车用马氏体钢的快速热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant