CN107308502A - 复合负载生长因子微球的3d打印支架及其制备方法 - Google Patents

复合负载生长因子微球的3d打印支架及其制备方法 Download PDF

Info

Publication number
CN107308502A
CN107308502A CN201610969574.9A CN201610969574A CN107308502A CN 107308502 A CN107308502 A CN 107308502A CN 201610969574 A CN201610969574 A CN 201610969574A CN 107308502 A CN107308502 A CN 107308502A
Authority
CN
China
Prior art keywords
growth factor
microballoon
biological material
composite load
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610969574.9A
Other languages
English (en)
Inventor
刘威
何勇
王大平
王大明
黄江鸿
陈洁琳
段莉
刘建全
朱伟民
熊建义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Second Peoples Hospital
Original Assignee
Shenzhen Second Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Second Peoples Hospital filed Critical Shenzhen Second Peoples Hospital
Priority to CN201610969574.9A priority Critical patent/CN107308502A/zh
Publication of CN107308502A publication Critical patent/CN107308502A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/622Microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种复合负载生长因子微球的3D打印支架的制备方法,包括以下步骤:提供负载生长因子的复合微球和合成生物材料溶液,将所述负载生长因子的复合微球加入所述合成生物材料溶液,搅拌均匀形成合成生物材料/微球溶液;使用LDM***的Cark软件设计三维复合材料支架的打印参数,依次连接料罐、送料管、喷头,将所述合成生物材料/微球溶液倒入料罐内;待成型室温度降至‑25~‑35℃时,启动温控、数控,使用所述Cark软件设置造型参数开始打印造型,层层叠加形成一个三维冻结支架;将所述三维冻结支架取出后进行冷冻干燥处理,得到复合负载生长因子微球的3D打印支架。

Description

复合负载生长因子微球的3D打印支架及其制备方法
技术领域
本发明属于生物医学领域,尤其涉及一种复合负载生长因子微球的3D打印支架及其制备方法。
背景技术
运动损伤、炎症、肿瘤和自然退化造成软骨缺损。软骨缺损后自身修复能力有限,特别是关节软骨,损伤后不能自行愈合。据估计,仅在美国,到2020年,就将有4千万相关的软骨缺损病例。中国是人口大国,在膝关节镜检查的人群中,软骨损伤的发病率在61-68%之间,并且呈现逐年增加的趋势。目前临床上常用的治疗方法主要有微骨折术、自体软骨细胞移植和人工关节置换等,这些修复方法各有缺点。组织工程的兴起为软骨缺损修复研究提供了一个新的方向。在体外构建人工软骨的过程中,面临诸多问题,如活性生长因子的长期稳定缓释、细胞行为的调控和支架孔隙结构及尺寸的精确控制。其中,生长因子的长期稳定缓释是体外构建人工软骨的一个关键问题。特别是诱导干细胞向软骨细胞分化构建人工软骨过程中,需要生长因子发挥长期稳定的作用。
快速成型技术又称3D打印技术(3DP)。低温快速成型制造技术(LDM)是基于快速成型技术原理,结合相分离法的一种新型快速成型技术。3DP的发展为复合缓释微球支架的制备提供了新的选择。它制备支架的过程,与其他快速成型技术不同之处在于其成型腔内温度被控制在-30℃左右,喷头挤出的溶液在低温下快速凝结,并且喷头在计算机控制下按程序运动,打印层通过层层叠加最终使支架成型为三维结构,最后,冻结的支架经过冷冻干燥去除溶剂后成型为三维多孔支架。与其他常用的快速成型技术相比,LDM在处理材料过程中对材料的性质和结构没有损坏,属于绿色制造的范围。
目前,有研究者尝试利用3D打印技术,通过程序设计,打印过程中把药物包裹在药片内,可以实现多种药物同时给药,但是这种方法适于大剂量给药。有研究者活性生长因子吸附在LDM打印三维支架上,结果表明活性生长因子会很快缓释,使支架失去长期诱导组织再生能力。利用LDM成型支架过程不需要加热的特点,研究者尝试把活性分子直接和溶液混合后打印,而这会造成活性分子的突释,并且依然难以解决长期稳定释放的问题。
发明内容
本发明的目的在于提供一种复合负载生长因子微球的3D打印支架及其制备方法,旨在解决现有LDM成型支架难以解决生长因子长期稳定释放的问题。
本发明是这样实现的,一种复合负载生长因子微球的3D打印支架的制备方法,包括以下步骤:
提供负载生长因子的复合微球和合成生物材料溶液,将所述负载生长因子的复合微球加入所述合成生物材料溶液,搅拌均匀形成合成生物材料/微球溶液;
使用LDM***的Cark软件设计三维复合材料支架的打印参数,依次连接料罐、送料管、喷头,将所述合成生物材料/微球溶液倒入料罐内;待成型室温度降至-25~-35℃时,启动温控、数控,使用所述Cark软件设置造型参数开始打印造型,层层叠加形成一个三维冻结支架;将所述三维冻结支架取出后进行冷冻干燥处理,得到复合负载生长因子微球的3D打印支架。
以及,一种由上述方法制备获得的复合负载生长因子微球的3D打印支架,所述复合负载生长因子微球的3D打印支架为合成生物材料和负载生长因子的复合微球制成的三维多孔支架。
本发明提供的复合负载生长因子微球的3D打印支架的制备方法,所述负载生长因子的复合微球为生物因子的缓释提供了一层基本保障;进一步的,将负载生长因子的复合微球与合成生物材料溶液混合后,采用LDM技术制备三维多孔复合支架,使支架具有可控的一级孔径尺寸和结构,不仅赋予所述支架具有优异的力学性能支撑,而且所述负载生长因子的复合微球在所述合成生物材料中整体均匀分散,同时所述合成生物材料对所述负载生长因子的复合微球进行局部包裹,为生长因子的突释设置了通行障碍,从而为生长因子的稳定长期缓释提供了双层保障。此外,本发明通过LDM技术精确控制支架一级孔隙的尺寸,赋予所制备支架中尺寸在10-50μm左右的相互连通的次级孔隙,从而为生长因子的稳定缓慢持久释放提供了有效的通道。
本发明提供的复合负载生长因子微球的3D打印支架,不仅具有良好的力学性能,而且所述合成生物材料对所述负载生长因子的复合微球进行局部包裹,为生长因子的突释设置了双层通行障碍,从而赋予所述复合负载生长因子微球的3D打印支架优异的稳定缓释性能。
附图说明
图1是本发明实施例提供的制备负载TGF-β1的ColI/CS复合微球的流程示意图;
图2是本发明实施例提供的复合负载生长因子微球的3D打印支架的制备方法的流程示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种复合负载生长因子微球的3D打印支架的制备方法,包括以下步骤:
S01.提供负载生长因子的复合微球和合成生物材料溶液,将所述负载生长因子的复合微球加入所述合成生物材料溶液,搅拌均匀形成合成生物材料/微球溶液;
S02.使用LDM***的Cark软件设计三维复合材料支架的打印参数,依次连接料罐、送料管、喷头,将所述PLCL/微球溶液倒入料罐内;待成型室温度降至-25~-35℃时,启动温控、数控,使用所述Cark软件设置造型参数开始打印造型,层层叠加形成一个三维冻结支架;将所述三维冻结支架取出后进行冷冻干燥处理,得到复合负载生长因子微球的3D打印支架。
上述步骤S01中,本发明实施例中,所述负载生长因子的复合微球中的微球为天然材料制成的微球层,从而能够保证所述3D支架的生物相容性。优选的,所述天然材料包括天然高分子蛋白和多糖。具体优选的,所述天然材料包括胶原蛋白(ColI)、硫酸软骨素(CS)、壳聚糖(CH)、丝素(SF)、透明质酸(HA)、海藻酸钠(SA)中的一种或两种。进一步的,生长因子与微球结合形成负载生长因子的复合微球,赋予良好的缓释性能。其中,所述生长因子包括但不限于转化生长因子(TGF)、骨形态发生蛋白(BMP)、***(IGF)。更进一步地,当采用两种所述天然材料时,一种天然材料与所述生长因子混合形成微球,另一种天然材料可交联在微球表面形成网络结构,进一步提高了缓释效果。
本发明实施例所述负载生长因子的复合微球中的微球可采用多种方法制备获得,包括电喷法、水包油法。作为一个具体实施例,结合图1,所述负载生长因子的复合微球可以通过下述方法制备获得:以0.5mol/L的稀醋酸为溶剂,配置浓度为13mg/mL的ColI溶液,然后按10μg/L的量加入TGF-β1并搅拌混匀,得到ColI/TGF-β1溶液;把ColI/TGF-β1溶液加入针管后,在27G的针头上连接高压发生器的正极,设置推进速率为26mL/h,电压为18kV,ColI/TGF-β1溶液被推进泵挤出后,在高压静电作用下向下方喷射;液滴用质量体积比为0.1%的CS溶液接收,形成负载TGF-β1的ColI/CS微球;将负载TGF-β1的ColI/CS微球移出后,用浓度为0.25%的戊二醛交联30min,微球取出洗去残留GA后冷冻干燥,得到负载TGF-β1的ColI/CS复合微球。由此得到的负载生长因子的复合微球,将TGF-β1与ColI溶液混合后喷入CS溶液中形成负载TGF-β1的ColI/CS微球,将活性生长因子(TGF-β1)的微球外壳包裹一层CS网络结构,为TGF-β1的稳定缓释提供第一层保障,具有良好的球状形态和结构,且缓释性能较好,降解时间可长达8周。当然,应当理解,这只是制备一种具体的负载生长因子的复合微球的其中一种方法,并不用于限定本发明。
本发明实施例所述负载生长因子的复合微球具有良好的球状形态和结构,且缓释性能较好。但是,若以所述述负载生长因子的复合微球作为支架材料主体制备生物支架,则所得到的生物支架由于缺乏足够的力学性能,难以和周围缺损组织良好整合,因此可利用性差。有鉴于此,本发明实施例将所述负载生长因子的复合微球和合成生物材料溶液混合制备支架,提高上述复合微球制备的生物支架的力学性能。
优选的,所述合成生物材料/微球溶液中,所述负载生长因子的复合微球的质量浓度为0.001-1000mg/mL,具体根据不同生长因子的性质和使用对象进行调节。
优选的,所述合成生物材料溶液的质量浓度百分比优选为8-20wt%,从而可以保证合适的粘度、使得LDM打印能够顺利成型。进一步优选的,所述合成生物材料为左旋乳酸-己内酯共聚物(PLCL)、乳酸-羟基乙酸共聚物(PLGA)、聚乳酸(PLA)、聚左旋乳酸(PLLA)、聚羟基脂肪酸(PHA)、聚羟基乙酸或聚乙交酯(PGA)、聚乙烯醇(PVA)的至少一种。作为一个具体实施例,以1,4-二氧六烷(DIO)为溶剂,配制浓度为13wt%的PLCL溶液。
作为优选实施例,在将所述负载生长因子的复合微球加入所述合成生物材料溶液前,将所述负载生长因子的复合微球进行过筛处理,筛目为10-60目,以便LDM打印能够顺利进行。
上述步骤S02中,采用计算机辅助建模、分层及堆积。具体的,利用LDM***的Cark软件,设计支架的打印参数。然后,依次连接料罐、送料管、喷头,将所述PLCL/微球溶液倒入料罐内,冰箱制冷,准备成型。待成型室温度降至-25~-35℃左右,启动温控、数控,开始造型。在软件控制下,喷嘴软件设置的运动轨迹及造型参数在X、Y轴上进行扫描并挤压喷出溶液,溶液在成型室内的低温下,迅速凝固。当第一层打印结束,成型平台在Z轴上下降一定高度,喷嘴继续进行打印新的一层,层层叠加形成一个三维冻结支架。成型后处于冻结状态的支架迅速取出后放置进冷冻干燥机中,固化的有机溶剂如1,4-二氧六环(DIO)升华,与支架发生气固相分离,从而去除有机溶剂,复合负载TGF-β的3D打印支架最终成型。其中,冷冻干燥的时间为70-80h,优选为72h。以PLCL的DIO、图1制备的负载TGF-β1的ColI/CS复合微球为例,制备复合负载生长因子微球的3D打印支架的流程示意图如图2所示。
作为一个优选实施例,所述造型参数设置为:支架规格为23.6×23.6×23.6cm3,成型温度在-30℃左右,喷嘴直径0.6mm,喷丝间距0.8mm,扫描速度22mm/s,喷头速度1.0~2.0mm/s。
本发明实施例为保证生长因子长期稳定缓释,除了将生长因子包裹于微球内外,还进步一包裹支架材料,从而形成多重保护,具有长期稳定的缓释行为。具体的,在复合负载生长因子微球的3D打印支架成型后生长因子的复合微球均匀分布在合成生物材料内,为生长因子的突释设置了通行障碍,从而为生长因子的稳定长期缓释提供第二层的保障。此外,所述复合负载生长因子微球的3D打印支架的材料均为可降解材料,具有较高的安全性和良好的生物相容,且支架结构具有可控的孔径和孔隙结构。
本发明实施例提供的复合负载生长因子微球的3D打印支架的制备方法,所述负载生长因子的复合微球为生物因子的缓释提供了一层基本保障;进一步的,将负载生长因子的复合微球与合成生物材料溶液混合后,采用LDM技术制备三维多孔复合支架,使支架具有可控的一级孔径尺寸和结构,不仅赋予所述支架具有优异的力学性能支撑,而且所述负载生长因子的复合微球在所述合成生物材料中整体均匀分散,同时所述合成生物材料对所述负载生长因子的复合微球进行局部包裹,为生长因子的突释设置了通行障碍,从而为生长因子的稳定长期缓释提供了双层保障。此外,本发明通过LDM技术精确控制支架一级孔隙的尺寸,赋予所制备支架中尺寸在10-50μm左右的相互连通的次级孔隙,从而为生长因子的稳定缓慢持久释放提供了有效的通道。
以及,本发明实施例还提供了一种由上述方法制备获得的复合负载生长因子微球的3D打印支架,所述复合负载生长因子微球的3D打印支架为合成生物材料和负载生长因子的复合微球制成的三维多孔支架。
作为一个具体实施例,一种由上述方法制备获得的复合负载生长因子微球的3D打印支架,所述复合负载生长因子微球的3D打印支架为PLCL和负载TGF-β1的ColI/CS复合微球制成的单位多孔支架,其中,所述负载TGF-β1的ColI/CS复合微球包括TGF-β1与ColI形成的混合微球,以及所述混合微球表面包裹的CS,且所述CS与所述ColI交联结合形成表面网络结构。优选的所述复合负载生长因子微球的3D打印支架的CS网络结构、以及PLCL的整体均匀分散和局部包裹,为生长因子TGF-β1的突释设置了双层通行障碍,从而赋予所述复合负载生长因子微球的3D打印支架优异的稳定缓释性能。
本发明实施例提供的复合负载生长因子微球的3D打印支架,不仅具有良好的力学性能,而且所述合成生物材料对所述负载生长因子的复合微球进行局部包裹,为生长因子的突释设置了双层通行障碍,从而赋予所述复合负载生长因子微球的3D打印支架优异的稳定缓释性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种复合负载生长因子微球的3D打印支架的制备方法,包括以下步骤:
提供负载生长因子的复合微球和合成生物材料溶液,将所述负载生长因子的复合微球加入所述合成生物材料溶液,搅拌均匀形成合成生物材料/微球溶液;
使用LDM***的Cark软件设计三维复合材料支架的打印参数,依次连接料罐、送料管、喷头,将所述合成生物材料/微球溶液倒入料罐内;待成型室温度降至-25~-35℃时,启动温控、数控,使用所述Cark软件设置造型参数开始打印造型,层层叠加形成一个三维冻结支架;将所述三维冻结支架取出后进行冷冻干燥处理,得到复合负载生长因子微球的3D打印支架。
2.如权利要求1所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述合成生物材料/微球溶液中,所述负载生长因子的复合微球的质量浓度为0.001-1000mg/mL。
3.如权利要求1所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述合成生物材料溶液的质量浓度百分比为8-20wt%。
4.如权利要求1-3任一所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,在将所述负载生长因子的复合微球加入所述合成生物材料溶液前,将所述负载生长因子的复合微球进行过筛处理,筛目为10-60目。
5.如权利要求1-3任一所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述负载生长因子的复合微球中的微球为天然材料制成的微球。
6.如权利要求5所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述天然材料包括天然高分子蛋白和多糖。
7.如权利要求6所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述天然材料包括胶原蛋白、硫酸软骨素、壳聚糖、丝素、透明质酸、海藻酸钠中的一种或两种。
8.如权利要求1-3任一所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述生长因子包括TGF、BMP、IGF。
9.如权利要求1-3任一所述的复合负载生长因子微球的3D打印支架的制备方法,其特征在于,所述合成生物材料包括PLCL、PLGA、PLLA、PLA、PHA、PGA、PVA。
10.一种由权利要求1-9任一所述方法制备获得的复合负载生长因子微球的3D打印支架,所述复合负载生长因子微球的3D打印支架为合成生物材料和负载生长因子的复合微球制成的三维多孔支架。
CN201610969574.9A 2016-10-28 2016-10-28 复合负载生长因子微球的3d打印支架及其制备方法 Pending CN107308502A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610969574.9A CN107308502A (zh) 2016-10-28 2016-10-28 复合负载生长因子微球的3d打印支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610969574.9A CN107308502A (zh) 2016-10-28 2016-10-28 复合负载生长因子微球的3d打印支架及其制备方法

Publications (1)

Publication Number Publication Date
CN107308502A true CN107308502A (zh) 2017-11-03

Family

ID=60185453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610969574.9A Pending CN107308502A (zh) 2016-10-28 2016-10-28 复合负载生长因子微球的3d打印支架及其制备方法

Country Status (1)

Country Link
CN (1) CN107308502A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107982579A (zh) * 2017-11-21 2018-05-04 上海纳米技术及应用国家工程研究中心有限公司 3d打印载药型纳米复合人工骨的制备方法及其产品和应用
CN108030573A (zh) * 2017-12-15 2018-05-15 中国科学院深圳先进技术研究院 负载载药微球的复合多孔支架及其制备方法和应用
CN108079371A (zh) * 2018-01-10 2018-05-29 深圳市第二人民医院 缓释Kartogenin的三维支架及其制备方法
CN108379659A (zh) * 2018-05-06 2018-08-10 西北工业大学 一种细胞密度多梯度人工软骨制备方法
CN108744065A (zh) * 2018-08-03 2018-11-06 广州博敏科技有限公司 一种组织修复支架及其制备方法和应用
CN109330743A (zh) * 2018-09-21 2019-02-15 深圳市晶莱新材料科技有限公司 一种3d打印组织工程支架及其制备方法
CN109646715A (zh) * 2019-01-25 2019-04-19 上海交通大学医学院附属第九人民医院 电纺3d打印制备含细胞因子微球的多层软骨复合体
CN109837215A (zh) * 2019-01-25 2019-06-04 上海交通大学医学院附属第九人民医院 熔融电纺三维打印制备的腱骨联合三相支架
CN110433331A (zh) * 2019-08-26 2019-11-12 四川大学 一种生物活性支架及其制备方法
CN112494728A (zh) * 2020-12-03 2021-03-16 广东省医疗器械研究所 微球基支架及其制备方法和应用
CN112755253A (zh) * 2020-12-03 2021-05-07 广东省医疗器械研究所 微球水凝胶支架及其制备方法和应用
CN113858610A (zh) * 2021-09-06 2021-12-31 江苏卓见医疗用品有限公司 一种医用纤维状表面敷料及其制备方法与应用
CN114796617A (zh) * 2022-05-25 2022-07-29 中山大学 一种复合3d打印墨水及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886076A (zh) * 2012-09-27 2013-01-23 深圳清华大学研究院 骨修复多孔支架及其快速成型方法
CN104623737A (zh) * 2014-12-31 2015-05-20 深圳清华大学研究院 一种可实现脉冲式缓释的个性化组织修复支架及其制备方法
CN105031718A (zh) * 2015-08-27 2015-11-11 华南理工大学 基于3D-Bioplotter打印技术的骨修复多孔复合支架及其制备方法
CN105727368A (zh) * 2016-01-08 2016-07-06 深圳市第二人民医院 一种三维复合材料支架及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886076A (zh) * 2012-09-27 2013-01-23 深圳清华大学研究院 骨修复多孔支架及其快速成型方法
CN104623737A (zh) * 2014-12-31 2015-05-20 深圳清华大学研究院 一种可实现脉冲式缓释的个性化组织修复支架及其制备方法
CN105031718A (zh) * 2015-08-27 2015-11-11 华南理工大学 基于3D-Bioplotter打印技术的骨修复多孔复合支架及其制备方法
CN105727368A (zh) * 2016-01-08 2016-07-06 深圳市第二人民医院 一种三维复合材料支架及其制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107982579A (zh) * 2017-11-21 2018-05-04 上海纳米技术及应用国家工程研究中心有限公司 3d打印载药型纳米复合人工骨的制备方法及其产品和应用
CN108030573A (zh) * 2017-12-15 2018-05-15 中国科学院深圳先进技术研究院 负载载药微球的复合多孔支架及其制备方法和应用
CN108030573B (zh) * 2017-12-15 2020-06-05 中国科学院深圳先进技术研究院 负载载药微球的复合多孔支架及其制备方法和应用
CN108079371A (zh) * 2018-01-10 2018-05-29 深圳市第二人民医院 缓释Kartogenin的三维支架及其制备方法
CN108379659A (zh) * 2018-05-06 2018-08-10 西北工业大学 一种细胞密度多梯度人工软骨制备方法
CN108744065B (zh) * 2018-08-03 2021-08-31 广州博敏科技有限公司 一种组织修复支架及其制备方法和应用
CN108744065A (zh) * 2018-08-03 2018-11-06 广州博敏科技有限公司 一种组织修复支架及其制备方法和应用
CN109330743A (zh) * 2018-09-21 2019-02-15 深圳市晶莱新材料科技有限公司 一种3d打印组织工程支架及其制备方法
CN109646715A (zh) * 2019-01-25 2019-04-19 上海交通大学医学院附属第九人民医院 电纺3d打印制备含细胞因子微球的多层软骨复合体
CN109837215A (zh) * 2019-01-25 2019-06-04 上海交通大学医学院附属第九人民医院 熔融电纺三维打印制备的腱骨联合三相支架
CN110433331A (zh) * 2019-08-26 2019-11-12 四川大学 一种生物活性支架及其制备方法
CN110433331B (zh) * 2019-08-26 2021-08-24 四川大学 一种生物活性支架及其制备方法
WO2021035842A1 (zh) * 2019-08-26 2021-03-04 四川大学 一种生物活性支架及其制备方法
CN112494728A (zh) * 2020-12-03 2021-03-16 广东省医疗器械研究所 微球基支架及其制备方法和应用
CN112755253A (zh) * 2020-12-03 2021-05-07 广东省医疗器械研究所 微球水凝胶支架及其制备方法和应用
CN113858610A (zh) * 2021-09-06 2021-12-31 江苏卓见医疗用品有限公司 一种医用纤维状表面敷料及其制备方法与应用
CN113858610B (zh) * 2021-09-06 2024-04-19 江苏卓见医疗用品有限公司 一种医用纤维状表面敷料及其制备方法与应用
CN114796617A (zh) * 2022-05-25 2022-07-29 中山大学 一种复合3d打印墨水及其应用

Similar Documents

Publication Publication Date Title
CN107308502A (zh) 复合负载生长因子微球的3d打印支架及其制备方法
Hutmacher et al. Scaffold design and fabrication
Yadav et al. Chitosan-based 3D-printed scaffolds for bone tissue engineering
Bhamidipati et al. The future of carbon dioxide for polymer processing in tissue engineering
Walker et al. Processing and production of bioresorbable polymer scaffolds for tissue engineering
Wu et al. polymeric-based 3D printing for tissue engineering
US6471993B1 (en) Three-dimensional polymer matrices
CN103057123B (zh) 一种三维生物打印***及基于三维生物打印***制备神经再生植入体的方法
Zhang et al. A review of preparation methods of porous skin tissue engineering scaffolds
Liu et al. Multinozzle low‐temperature deposition system for construction of gradient tissue engineering scaffolds
TWI264301B (en) Multi-channel bioresorbable nerve regeneration conduit and preparation method for the same
CN105457101B (zh) 一种三层结构小口径血管支架的制备方法
Bártolo et al. Advanced processes to fabricate scaffolds for tissue engineering
Zhang et al. 3D printing method for bone tissue engineering scaffold
Liu et al. Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology
Koyyada et al. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications
Meng et al. Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications
CN108992212B (zh) 骨-软骨一体修复支架及其制备方法
CN106390208A (zh) 一种含多级孔结构的三维立体支架材料及制备与应用
Kovylin et al. Modern porous polymer implants: synthesis, properties, and application
Karande et al. Function and requirement of synthetic scaffolds in tissue engineering
Safinsha et al. Composite scaffolds in tissue engineering
Ansari et al. A review of bone regeneration mechanisms and bone scaffold fabrication techniques (conventional and non-conventional)
Kozan et al. Porous biomaterial scaffolds for skeletal muscle tissue engineering
CN108744065A (zh) 一种组织修复支架及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171103

RJ01 Rejection of invention patent application after publication