CN107285770B - 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法 - Google Patents

一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法 Download PDF

Info

Publication number
CN107285770B
CN107285770B CN201710683366.7A CN201710683366A CN107285770B CN 107285770 B CN107285770 B CN 107285770B CN 201710683366 A CN201710683366 A CN 201710683366A CN 107285770 B CN107285770 B CN 107285770B
Authority
CN
China
Prior art keywords
obtains
purity
ceramic powder
ceramics
zirconic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710683366.7A
Other languages
English (en)
Other versions
CN107285770A (zh
Inventor
归冬云
祝文军
孟川民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN201710683366.7A priority Critical patent/CN107285770B/zh
Publication of CN107285770A publication Critical patent/CN107285770A/zh
Application granted granted Critical
Publication of CN107285770B publication Critical patent/CN107285770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种纯度高形貌均匀的锆酸镧钆陶瓷粉体制备方法,其特征是:(1)将Gd(NO3)3·6H2O、La(NO3)3·6H2O、ZrOCl2·8H2O分别溶解于水中,按Gd3+、La3+与Zr4+的摩尔比为1:1:2配制成混合盐溶液滴定到氨水中得到混合液;(2)混合液陈化后抽滤、洗涤,得到胶状沉淀物,胶状沉淀物分散于乙醇中得到白色浆体;(3)白色浆体移入反应釜中处理后抽滤、洗涤,得到白色沉淀物,干燥后得前驱块体,研磨后得前驱体粉体;(4)前驱体粉体煅烧后研磨得到GdLaZr2O7陶瓷粉体。然后:(a)将陶瓷粉体压片后,经冷等静压处理得到陶瓷素坯;(b)将陶瓷素坯进行真空烧结,得到陶瓷体;(c)将陶瓷体空气中退火,表面抛光,得到纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。

Description

一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
技术领域
本发明属于光功能透明陶瓷材料技术,具体涉及一种锆酸镧钆(化学表达式为LaGdZr2O7)粉体及其透明陶瓷制备方法。
背景技术
稀土锆酸盐材料(Ln2Zr2O7)由于具有低热导率、高熔点、高热化学稳定性、高离子导电性、宽禁带宽度等优异性能,使得它在发动机的热障涂层材料、耐火材料、固体电解质、放射性核废料的处理、光学材料等领域得到了广泛的应用。透明陶瓷作为单晶材料的替代品,往往具有高透明、高熔点、高硬度、容易做大且易成型等优势,已在科学与应用领域得到广泛关注。如:军用武器窗口、反恐防护、高能激光等;医用:光学仪器、理疗设备、安全检查等;民用:防护窗口、耐刮窗口等。基于Ln2Zr2O7材料的特殊光学性质,近年来,具有烧绿石结构的Ln2Zr2O7透明陶瓷及其在光学方面的研究引起了人们的广泛关注,如:理论计算表明,Ce激活的RE2M2O7(RE=Y,La;M=Ti,Zr,Hf)材料是一种潜在的γ射线闪烁体材料[A.Chaudhry,A.Canning,R.Boutchko,M.J.Weber,N.Grnbech-Jensen,S.E.Derenzo,J.Appl.Phys.,2011,109:083708];LaYZr2O7透明陶瓷具有高的折射率(在633nm处的折射率为2.07),可用作光学摄像管的镜头等[H.-L.Yi,Z.-J.Wang et al.,Ceram.Int.,2016,42:2070–2073]。
另外,Ln2Zr2O7具有较高的理论密度,表现出高的力学阻抗性能,透明的Ln2Zr2O7材料是一种在冲击波实验中具有应用潜力的窗口材料,用以提供测量冲击温度、压力、粒子速度剖面等参数的窗口。冲击波实验中的窗口材料要求具有一定的透明度,并且在高速冲击下都能够保持良好的透明性。除此之外,该窗口材料还要求具有较高的力学阻抗,以实现与高密度样品的冲击阻抗匹配。但是国内外制备高透明高阻抗透明陶瓷的成功案例非常有限,目前世界上能够成功制备的透明陶瓷种类屈指可数,如Al2O3、YAG、尖晶石、AlON等,这些透明陶瓷的阻抗普遍较低,难以满足冲击波实验中窗口材料的相关需求,这主要是因为透明陶瓷的制备难度较大,需要非常严格的制备工艺控制。由大原子序数元素组成的Ln2Zr2O7陶瓷具有高的理论密度与力学阻抗,同时具有高的熔点(>2000℃),可填补冲击波实验中高力学阻抗窗口材料的空白,如:La2Zr2O7-Gd2Zr2O7体系理论密度为6.01–6.72g/cm3,力学阻抗较高,高透明度的La2Zr2O7-Gd2Zr2O7材料是武器研究用的潜在窗口材料。
一般而言,Ln2Zr2O7材料熔点高,难以制成具有应用尺度的单晶体,相对而言,透明陶瓷态的Ln2Zr2O7生产成本较低,产品形状可控性好,是制备Ln2Zr2O7透明陶瓷材料的有效手段。Ln2Zr2O7材料的高熔点特性会导致烧结温度过高造成高的能源损耗和仪器损耗。根据相图原理,La2Zr2O7-Gd2Zr2O7形成固溶体后,可在一定程度上降低烧结温度。另外,研究表明,粉体的纳米化是一种提高烧结活性并降低烧结温度的有效途径。
中国专利CN102815945B公开了一种锆酸镧钆透明陶瓷材料及其制备方法,其采用甘氨酸-硝酸盐燃烧法制备锆酸镧钆透明陶瓷,但是燃烧法在有机物燃烧过程中会发生剧烈化学反应而对大气环境造成污染,另外,燃烧反应过程中膨胀严重,导致产品产量受容器体积限制严重,批量化生产难度较大。
发明内容
本发明的目的是针对透明陶瓷窗口材料体系的限制及密度普遍较低、力学阻抗普遍较小的不足,提供一种低成本易控制的制备纯度高形貌均匀的锆酸镧钆陶瓷粉体的方法。以及用该陶瓷粉体制备满足光学透过率(大于40%)要求的纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。
为了解决上述技术问题,本发明所采用的具体技术方案是:
一种纯度高形貌均匀的锆酸镧钆陶瓷粉体制备方法,其特征在于该方法依次包括以下步骤:
(1)将Gd(NO3)3·6H2O、La(NO3)3·6H2O、ZrOCl2·8H2O分别溶解于去离子水中并标定其阳离子浓度,按照Gd3+、La3+与Zr4+的摩尔比为1:1:2的配比进行量取,配制成混合盐溶液;将混合盐溶液滴定到氨水中至PH值为10~12,得到混合液;
(2)将混合液陈化20~30h后进行抽滤,抽滤出的沉淀物先用去离子水洗涤3~5次,再用无水乙醇洗涤3~5次,得到胶状沉淀物,将此胶状沉淀物置于相当于胶状沉淀物1~2倍体积的无水乙醇介质中,搅拌均匀后胶状沉淀物分散于乙醇中得到白色浆体;
(3)将白色浆体移入反应釜中,于180~220℃处理20~25h,冷却后抽滤,并以无水乙醇洗涤3~5次,得到均匀的白色沉淀物,将此均匀的白色沉淀物在恒温干燥箱中于50~80℃干燥20~30h,冷却后得到前驱块体,将前驱块体研磨后,过100~400目筛,得到前驱体粉体;
(4)将前驱体粉体放入坩埚中,坩埚置于煅烧设备中于800~1400℃煅烧2~6h,冷却后研磨,过100~400目筛,就得到高纯度微观形貌均匀的GdLaZr2O7陶瓷粉体。
进一步的方案是:煅烧设备可以为中低温电炉。
进一步的方案是:恒温干燥箱可以为带鼓风装置的恒温干燥箱。
一种用本发明所述的陶瓷粉体制备透明陶瓷的方法,其特征在于该方法依次按下列步骤进行:
(a)将陶瓷粉体在5~30MPa进行压片后,经200~300MPa冷等静压处理5~15分钟后得到陶瓷素坯;
(b)将陶瓷素坯于真空烧结炉中进行烧结,烧结温度为1800~1900℃,烧结时间为6~10h,真空度为≤10-2Pa,得到陶瓷体;
(c)将陶瓷体冷却后在空气中1100~1300℃退火3~6h,冷却后经表面抛光,得到纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。
本发明中所述摩尔比是理想状态的摩尔比。实践中,温度、压力和时间等相关参数也可适当高于上限或适当低于下限。相关设备也可以采用行业中其它同类设备替换。
与现有技术相比,本发明的有益效果是:
第一:本发明的方法所提供的化学共沉淀法中结合溶剂热处理后制备的锆酸镧钆粉体纯度高(≥99%)、分散均匀、团聚弱、颗粒尺度小且分布范围窄(50~150nm)。
第二:本发明提供的锆酸镧钆透明陶瓷的烧结致密度高,可见光区的直线透过率高,经过镜面抛光后1mm厚的样品在可见光波段透过率接近55%,可满足高阻抗窗口材料的应用。
第三:本发明采用化学共沉淀法以氨水为沉淀剂合成的锆酸镧钆粉体,所制粉体烧结活性高,分散性和均匀性有很大提高,工艺流程与操作简单易控,环境友好,低有害排放,成本低,易放大,便于工业化批量生产。
第四:本发明的方法得到的粉体颗粒尺度细小,采用干压结合冷等静压技术制备成的锆酸镧钆素坯密度高,解决了传统固相法由于形成物相温度高导致在压片过程中流动性差而无法得到完整的素坯以及由于加入粘接剂促进成型而引入新的杂质等问题。
附图说明
图1是实施例1制备的锆酸镧钆粉体的扫描电镜图片。
图2是实施例1和实施例2制备的锆酸镧钆粉体的XRD图。
图3是实施例1制备的镜面抛光之后的锆酸镧钆陶瓷实物图。
图4是实施例1制备的锆酸镧钆陶瓷的直线透过率曲线。
图5是实施例2制备的锆酸镧钆陶瓷的扫描电镜图片。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:本实施例中,一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法如下:
(1)将Gd(NO3)3·6H2O、La(NO3)3·6H2O、ZrOCl2·8H2O分别溶解于去离子水中并标定其阳离子浓度,按照Gd3+、La3+与Zr4+的摩尔比为1:1:2的组成配比进行量取,配制成混合盐溶液;将混合盐溶液滴定到氨水沉淀剂溶液中至PH值为10.8,得到混合液;
(2)将混合液陈化24h后进行抽滤,抽滤出的沉淀物先用去离子水洗涤3次,再用无水乙醇洗涤3次,得到胶状沉淀物,将此胶状沉淀物置于相当于沉淀物1倍体积比的无水乙醇介质中,搅拌均匀后得到白色浆体;
(3)将白色浆体移入反应釜中在200℃处理24h,冷却后抽滤,并以无水乙醇洗涤3次,得到更均匀的白色沉淀物,将此均匀的白色沉淀沉淀物在恒温鼓风干燥箱中在60℃干燥30h,冷却后得到前驱块体,将前驱块体于研钵中研磨后,过200目筛,得到前驱体粉体;
(4)将前驱体粉体放入坩埚中,坩埚置于中低温电炉中在1150℃煅烧4h,冷却后研磨,过200目筛,得到高纯度微观形貌均匀的GdLaZr2O7陶瓷粉体;
(5)将陶瓷粉体在20MPa进行压片后,经250MPa冷等静压处理10分钟后得到陶瓷素坯;
(6)将陶瓷素坯于真空烧结炉中进行烧结,烧结参数为1800℃烧结10h,真空度为10-4~10-3Pa,得到陶瓷体。
(7)将陶瓷体冷却后在空气中1200℃退火4h,冷却,经表面抛光,得到纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。
本实施例制备的锆酸镧钆粉体的SEM图如图1所示,图中锆酸镧钆粉体分散性好,团聚弱,粉体颗粒分布均匀,粒径分布较窄(尺寸在50~150nm)。锆酸镧钆粉体物相结构测试(见图2),图中显示未检测到杂质浓度峰(杂质浓度小于1%),可知,所得目标物相为高纯的锆酸镧钆烧绿石相结构。陶瓷样品实物图(见图3A)和直线透过率曲线(见图4)可知,对于样品片直径为16mm,厚度为1mm陶瓷片在可见光波段有较好的光学透过率。说明了本实施例得到的陶瓷透明性好,密度高,实测密度为6.464gcm-3(在实验测量的误差范围之内)。
实施例2:本实施例中,一种纯度高形貌均匀的锆酸镧钆粉体及其透明陶瓷的制备方法如下:
(1)将Gd(NO3)3·6H2O、La(NO3)3·6H2O、ZrOCl2·8H2O分别溶解于去离子水中并标定其阳离子浓度,按照Gd3+、La3+与Zr4+的摩尔比为1:1:2的组成配比进行量取,配制成混合盐溶液;将混合盐溶液滴定到氨水沉淀剂溶液中至PH值为11.2,得到混合液;
(2)将混合液陈化30h后进行抽滤,抽滤出的沉淀物先用去离子水洗涤4次,再用无水乙醇洗涤3次,得到胶状沉淀物,将此胶状沉淀物置于相当于沉淀物1.5倍体积的无水乙醇介质中,搅拌均匀后得到白色浆体;
(3)将白色浆体移入反应釜中在200℃处理22h,冷却后抽滤,并以无水乙醇洗涤4次,得到更均匀的白色沉淀物,将此均匀的白色沉淀沉淀物在恒温鼓风干燥箱中在70℃干燥24h,冷却后得到前驱块体,将前驱块体于研钵中研磨后,过200目筛,得到前驱体粉体;
(4)将前驱体粉体放入坩埚中,置于中低温电炉中在1200℃煅烧4h,冷却后研磨,过200目筛,得到高纯度微观形貌均匀的GdLaZr2O7陶瓷粉体;
(5)将陶瓷粉体在16MPa进行压片后,经250MPa冷等静压处理10分钟后得到陶瓷素坯;
(6)将陶瓷素坯于真空烧结炉中进行烧结,烧结参数为1820℃烧结8h,真空度为10-4~10-2Pa,得到陶瓷体。
(7)将陶瓷体冷却后在空气中1220℃退火5h,冷却,经表面抛光,得到纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。
实施例2得到的陶瓷材料样品的实物图(见图3B)和断面显微形貌图(见图5),图中锆酸镧钆陶瓷气孔量较少,致密度高,晶粒尺寸约为10~50微米,这说明了本实施例得到的陶瓷微观结构均匀,透明度较高。锆酸镧钆粉体物相结构测试(见图2),图中显示未检测到杂质浓度峰(杂质浓度小于1%),可知,所得目标物相为高纯的锆酸镧钆烧绿石相结构。
本发明所述区间值都能实现本发明,在此不一一列举实施例。

Claims (4)

1.一种纯度高形貌均匀的锆酸镧钆陶瓷粉体制备方法,其特征在于该方法依次包括以下步骤:
(1)将Gd(NO3)3·6H2O 、La(NO3)3·6H2O、ZrOCl2·8H2O分别溶解于去离子水中并标定其阳离子浓度,按照Gd3+、La3+与Zr4+的摩尔比为1:1:2的配比进行量取,配制成混合盐溶液;将混合盐溶液滴定到氨水中至pH 值为10~12,得到混合液;
(2)将混合液陈化20~30h后进行抽滤,抽滤出的沉淀物先用去离子水洗涤3~5次,再用无水乙醇洗涤3~5次,得到胶状沉淀物,将此胶状沉淀物置于相当于胶状沉淀物1~2倍体积的无水乙醇介质中,搅拌均匀后得到白色浆体;
(3)将白色浆体移入反应釜中,于180~220℃处理20~25h,冷却后抽滤,并以无水乙醇洗涤3~5次,得到均匀的白色沉淀物,将此均匀的白色沉淀物在恒温干燥箱中于50~80℃干燥20~30h,冷却后得到前驱块体,将前驱块体研磨后,过100~400目筛,得到前驱体粉体;
(4)将前驱体粉体放入坩埚中,坩埚置于煅烧设备中于800~1400℃煅烧2~6h,冷却后研磨,过100~400目筛,得到高纯度微观形貌均匀的GdLaZr2O7陶瓷粉体。
2.根据权利要求1所述的一种纯度高形貌均匀的锆酸镧钆陶瓷粉体制备方法,其特征在于煅烧设备为中低温电炉。
3.根据权利要求1所述的一种纯度高形貌均匀的锆酸镧钆陶瓷粉体制备方法,其特征在于恒温干燥箱为带鼓风装置的恒温干燥箱。
4.一种用权利要求1所述的陶瓷粉体制备透明陶瓷的方法,其特征在于该方法依次按下列步骤进行:
(a)将陶瓷粉体在5~30 MPa进行压片后,经200~300MPa冷等静压处理5~15分钟后得到陶瓷素坯;
(b)将陶瓷素坯于真空烧结炉中进行烧结,烧结温度为1800~1900℃,烧结时间为6~10h,真空度为≤10-2Pa,得到陶瓷体;
(c)将陶瓷体冷却后在空气中1100~1300℃退火3~6h,冷却后经表面抛光,得到纯度高、阻抗高、致密度高的GdLaZr2O7透明陶瓷产品。
CN201710683366.7A 2017-08-11 2017-08-11 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法 Active CN107285770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710683366.7A CN107285770B (zh) 2017-08-11 2017-08-11 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710683366.7A CN107285770B (zh) 2017-08-11 2017-08-11 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN107285770A CN107285770A (zh) 2017-10-24
CN107285770B true CN107285770B (zh) 2019-08-06

Family

ID=60105666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710683366.7A Active CN107285770B (zh) 2017-08-11 2017-08-11 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN107285770B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455760A (zh) * 2018-12-29 2019-03-12 中国建筑材料科学研究总院有限公司 一种稀土掺杂锆酸盐介孔材料及其制备方法
CN110563035A (zh) * 2019-10-14 2019-12-13 西北工业大学深圳研究院 一种稀土锆酸盐纳米粉体及其制备方法和应用
CN110790571A (zh) * 2019-12-10 2020-02-14 湖南工学院 一种制备Gd2Zr2O7透明陶瓷的方法
CN111116199A (zh) * 2020-01-18 2020-05-08 湖南工学院 一种真空无压烧结制备Gd2Zr2O7透明陶瓷的方法
CN111646504B (zh) * 2020-05-29 2022-08-12 厦门理工学院 一种纳米锆酸镧及其制备方法
CN115340126B (zh) * 2022-09-15 2024-04-12 包头稀土研究院 稀土锆酸盐颗粒及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805126B (zh) * 2010-04-13 2011-12-21 中南大学 一种钢基体表面热障涂层及制备方法
CN102815945B (zh) * 2012-09-13 2014-09-10 中国科学院上海硅酸盐研究所 锆酸镧钆透明陶瓷材料及其制备方法
CN106348342B (zh) * 2016-09-12 2018-03-20 渤海大学 一种球形锆酸镧纳米材料的制备方法

Also Published As

Publication number Publication date
CN107285770A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107285770B (zh) 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
Wen et al. Synthesis of yttria nanopowders for transparent yttria ceramics
CN101302019B (zh) 部分液相沉淀法制备稀土掺杂的钇铝石榴石纳米粉体的方法
Li et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics
CN109574073A (zh) 一种高分散纳米氧化锆粉末的制备方法
CN106631008B (zh) 一种块状不裂高致密纳米晶锆酸钆陶瓷及其制备方法
CN100336777C (zh) 一种氧化镥基透明陶瓷的制备方法
CN111978087B (zh) 一种复合材料及其制备方法和应用
CN108249909A (zh) 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
CN108511797B (zh) 一种Li7La3Zr2O12固体电解质制备方法
CN102126857A (zh) 透明氟化钙陶瓷的制备方法
Wang et al. Highly transparent yttrium titanate (Y2Ti2O7) ceramics from co-precipitated powders
CN105461311A (zh) Sol-gel法制备NaNbO3粉体及烧结获得单晶的方法
CN109133922A (zh) 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法
Liu et al. Transmittance enhancement of La0. 4Gd1. 6Zr2O7 transparent ceramic by aqueous AM gel-casting with pretreated powder
JP2019202916A (ja) 焼結用複合酸化物粉末の製造方法及び透明セラミックスの製造方法
CN108046794B (zh) 利用共沉淀法合成粉体制备钛酸钇透明陶瓷的方法
CA2029707A1 (en) Zirconium dioxide powder, method for the production thereof, the use thereof and sintered bodies prepared therefrom
Liu et al. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd: YAG nanopowders
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
JP2019104674A (ja) 焼結用ガーネット型複合酸化物粉末の製造方法、及び透明セラミックスの製造方法
CN106518072B (zh) 一种制备高透过率NaLaS2红外透明陶瓷的方法
CN108358635A (zh) 一种磁光氧化钬透明陶瓷的制备方法
CN1594208A (zh) 一种氧化钇基透明陶瓷材料的制备方法
JP2013091585A (ja) ジルコニア粉末及びその製造方法並びにその用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant