CN107267953B - 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法 - Google Patents

一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法 Download PDF

Info

Publication number
CN107267953B
CN107267953B CN201710350348.7A CN201710350348A CN107267953B CN 107267953 B CN107267953 B CN 107267953B CN 201710350348 A CN201710350348 A CN 201710350348A CN 107267953 B CN107267953 B CN 107267953B
Authority
CN
China
Prior art keywords
doped diamond
boron
hollow ball
porous
porous boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710350348.7A
Other languages
English (en)
Other versions
CN107267953A (zh
Inventor
李明吉
王雪峰
李红姬
李翠平
孙大智
杨保和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201710350348.7A priority Critical patent/CN107267953B/zh
Publication of CN107267953A publication Critical patent/CN107267953A/zh
Application granted granted Critical
Publication of CN107267953B publication Critical patent/CN107267953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法。制备步骤如下:1)利用热丝CVD法在钽片上沉积掺硼金刚石膜,在腔室通入氢气,碳源和硼源,开灯丝电源,加偏压,调节压强和控制温度、时间;2)采用射频磁控溅射仪在掺硼金刚石膜上镀镍,向真空室通入氩气,开启溅射电源,调节压强和功率;3)利用直流电弧等离子体喷射CVD设备对掺硼金刚石进行刻蚀,通入氢气和氩气,开磁场控制电源,调腔压和泵压,控制温度和时间,制备出多孔掺硼金刚石;4)利用水热法制备碳空心球/多孔掺硼金刚石复合电极。将多孔掺硼金刚石投入β‑环糊精和F‑127混合悬浊液中,进行水热处理,取出后冷冻干燥,马弗炉中退火即制备复合电极。

Description

一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备 方法
技术领域
本发明属于薄膜电子材料领域,公开了一种电化学传感器电极及其制备方法,具体涉及掺硼金刚石,碳空心球与复合物的制备及其在电化学传感器中的应用。
背景技术
电化学传感器因灵敏度高、响应速度快、成本低而开始广泛应用到化工、食品及医疗等各个领域中。电化学传感器的关键部件是传感器电极,而目前传感器电极存在的问题是因敏感膜与固体电极的膜基结合力弱而稳定性差,因电势窗口狭窄而不能检测响应在高电位处的物质及不能实现多物质同时检测,因背景电流大而无法进一步优化检测限而实现恒量检测。
掺硼金刚石(Boron-doped diamond BDD)薄膜作为电极材料,它拥有耐腐蚀性、宽电势窗、低背景电流和接近导体的电导率。碳空心球密度较小、比表面积大、稳定性比较好并且可以对中空结构进行填充,具有强吸附性和催化作用等特点。将掺硼金刚石与碳空心球复合作为传感器电极,目前还没有相关报道。
发明内容
本发明的目的是针对目前传感器存在的问题,提供一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,实现同时检测包括抗坏血酸、多巴胺和尿酸在内的各种物质,实现降低检测限,提高灵敏度的目的。
本发明的技术方案
一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,步骤如下:
(1)利用热丝化学气相沉积(CVD)法在钽片上沉积掺硼金刚石膜,其中碳源为甲烷,硼源为硼酸三甲酯,用乙醇溶解后由氢气代入,硼源、氢气及甲烷的流量分别为6mL/min、300mL/min和6mL/min,反应室压强35~39Torr,基底温度800℃~1000℃,生长时间45~72h;
(2)利用射频磁控溅射仪在掺硼金刚石膜上溅射一层镍颗粒,先后启动一级泵和二级泵,使反应室真空度达到10-4Pa,通入纯度为99.999%的氩气,流量为15mL/min,调节分子泵保持腔室压强为1~2Pa。开射频源,预热5~10min,调节功率为120~150W,溅射时间为30~50s。
(3)采用直流电弧等离子体喷射CVD设备,对步骤(2)中制备的镍与掺硼金刚石复合膜进行等离子体刻蚀,样品距离等离子喷射口2~4cm,等离子体气氛为1.5L/min的氢气和1.5L/min的氩气,保持腔压2800~3000Pa,泵压13000~13500Pa,开始调磁场控制电压至6V,启动后弧电压为52V,弧电流95.6A。温度700~800℃,时间为2~5min,由此获得多孔掺硼金刚石膜;
(4)制备线性聚合物和环状聚合物的混合悬浮液。线性聚合物可以采用聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物(F127),环状聚合物可以采用α-环糊精或β-环糊精。
(5)将步骤(3)中得到的多孔掺硼金刚石放入步骤(4)中制备的线性聚合物和环状聚合物的混合悬浮溶液中搅拌6~24个小时;
(6)将步骤(5)中得到的多孔掺硼金刚石及线性聚合物和环状聚合物的混合悬浮液转移到消解罐内密封好,在200℃进行水热处理6~12小时,降至常温后取出多孔金刚石膜进行冷冻干燥,设置温度为-53~-50℃、压强为10-15Pa,干燥时间为30-60min。
(7)把步骤(6)中制备的碳空心球/多孔掺硼金刚石复合膜放入马弗炉中450~550℃碳化30min~60min,即得碳空心球与多孔掺硼金刚石复合膜。
(8)将碳空心球/多孔掺硼金刚石复合膜作为工作电极,铂片作为对电极,饱和甘汞电极作为参比电极,构造三电极体系,把电极***待测物相关溶液中,连接电化学工作站,利用差分脉冲伏安法设置电位范围为-0.4一0.6V,电位增量为0.001一0.05V,振幅设置为0.01一0.05V,脉冲宽度设置0.005一0.025s,,脉冲周期设置0.01一0.5s,以测试电极的电化学传感性能。
本发明的优点和有益效果:
(1)提供了多孔掺硼金刚石电极的制备方法。
(2)提供了结合力强的碳空心球/多孔金刚石复合膜电极的制备方法。
(3)可同时快速检测血清中抗坏血酸、多巴胺、尿酸等三种物质。
(4)传感器的检测线性范围宽,灵敏度高,检测限低。
(5)传感器的再现性、重复性、稳定性好,寿命长。
附图说明
图1为本发明制备的掺硼金刚石扫描电子显微镜照片;
图2为本发明制备的多孔掺硼金刚石的扫描电子显微镜照片;
图3为本发明制备的碳空心球/多孔掺硼金刚石复合膜电极的扫描电子显微镜照片;
图4为用本发明制备的由碳空心球/多孔掺硼金刚石复合膜电极作为工作电极,饱和甘汞电极为参比电极,铂片为对电极构建的三电极***,在抗坏血酸、多巴胺、尿酸混合溶液中获得的差分脉冲伏安曲线(a)、尿酸的差分脉冲伏安曲线(b)、与尿酸对应的工作曲线(c)和不同的pH值与峰电流的关系曲线(d)。
具体实施方式
下面结合附图对本发明的实施做详细的说明。本实施例在以本发明的技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
步骤1、采用热丝CVD法制备掺硼金刚石,首先,将反应室内部清洗干净,并挂好6根18.5cm的钽丝。依次用超纯水,丙酮,无水乙醇超声清洗钽片至金属光泽。用酒精配制金刚石粉悬浮液,并将清洗好的钽片放入金刚石粉悬浮液中,超声处理2h。将处理好的钽片放到铜台上距离钽丝1cm,关闭腔室。开机械泵,反应室压强到5Pa以下开始通入甲烷和氢气,流量分别为6mL/min和300mL/min,气压上升至16Torr时,打开灯丝电流至138A,保持30min,并使气压稳定在37.7Torr,打开偏压电源,缓慢降低铜台,增加偏压,加偏压电源的电流为10A,有辉光后继续降铜台加偏压至200V,并观察基底温度在850℃以上。30min后开始通入硼源流量为25mL/min,生长时间48h。
步骤2、利用射频磁控溅射仪在掺硼金刚石膜上溅射一层镍颗粒。其中镍靶材纯度为99.99%,厚度5mm,直径100mm,靶的轴线和样品架之间的距离为100mm。先后启动一级泵和二级泵,使反应室真空度达到10-4Pa,然后通入纯度为99.999%的氩气,流量为15mL/min调节分子泵保持压强为1Pa。开射频源,预热5min,调节功率为150W,开挡板进行预溅射5min,调样品与靶材正对,进行正式溅射,时间为30s。
步骤3、采用直流电弧等离子体喷射CVD设备将镀镍的掺硼金刚石刻蚀成多孔结构,将镀镍的掺硼金刚石置于直流电弧等离子体喷射CVD设备的样品台上,调节样品台高度,使其距离等离子体喷射口3cm。关闭反室开始抽真空,当腔压和泵压显示均为-100时通入流量均为1.500L/min的氢气和氩气。保持腔压3000Pa,泵压13000Pa,开始调磁场控制电压至6V,启动后弧电压为52V,弧电流95.6A,基底温度700℃,刻蚀时间2.5min。
步骤4、用40mL超纯水溶解1.2g的β-环糊精并进行搅拌,用40mL超纯水超声溶解0.4g F-127的悬浮液,待F-127溶解完毕缓慢倒入一半至搅拌中的β-环糊精溶液中,30min后将剩余的F-127溶液全部倒入,将多孔掺硼金刚石放入悬浮溶液中搅拌12个小时。将浸泡的多孔掺硼金刚石及F127/环糊精悬浮液转移到消解罐内密封好,使其在200℃反应6小时,降至常温后取出多孔掺硼金刚石膜进行冷冻干燥,冷冻干燥温度控制在-50℃、压强为12Pa,然后放入马弗炉中设置温度500℃,开始计时进行碳化30min,即得碳空心球/多孔掺硼金刚石复合膜。
步骤5、配制底液pH值为6~9的0.1mol/L磷酸缓冲溶液,抗坏血酸、多巴胺、尿酸浓度分别为600μmol/L,1μmol/L,8μmol/L。利用差分脉冲伏安法来检测,电位设置范围-0.4~0.6V,电位增量0.004V,振幅0.05V,脉冲宽度0.05s,脉冲周期0.5s。所得曲线横坐标为峰电位是定性指标,纵坐标为电流是定量指标。通过图4(d)比较不同pH值下获得的峰电流的大小,可以确定适合本实例电极的最优pH值7。
步骤6、以pH值为7的磷酸缓冲液配制抗坏血酸、多巴胺、尿酸的混合液,浓度分别为600μmol/L,1μmol/L,8μmol/L。利用步骤5中相同参数设置的差分脉冲伏安法进行测试,由于电极对每种待测物的响应不同,会出现三种不同电位的峰。从同时检测曲线图4a可知,抗坏血酸、多巴胺、尿酸的峰电位依次为-0.088V,0.136V,0.28V。利用步骤5中相同参数设置的差分脉冲伏安法进行测试不同浓度的尿酸溶液与标准液得关系曲线如图4b,拟合的线性回归方程为IUA(A)=1.22333E-7+0.13303[UA](mol/L)(图4c),灵敏度为10-7A,检测限可达到0.2μM。同理,配制其它分析物种的一组标准溶液,可获得线性回归方程、灵敏度及检测限。
实施例2
步骤1、采用热丝CVD法制备掺硼金刚石,首先,将反应室内部清洗干净,并挂好6根18.5cm的钽丝。依次用超纯水,丙酮,无水乙醇超声清洗钽片至金属光泽。用酒精配制金刚石粉悬浮液,并将清洗好的钽片放入金刚石粉悬浮液中,超声处理2h。将处理好的钽片放到铜台上距离钽丝1cm,关闭腔室。开机械泵,反应室压强到5Pa以下开始通入甲烷和氢气,流量分别为6mL/min和300mL/min,气压上升至16Torr时,打开灯丝电流至138A,保持30min,并使气压稳定在37Torr,打开偏压电源,缓慢降低铜台,增加偏压,加偏压电源的电流为10A,有辉光后继续降铜台加偏压至200V,并观察基底温度在900℃。30min后开始通入硼源流量为25mL/min,生长时间45h。
步骤2、利用射频磁控溅射仪在掺硼金刚石膜上溅射一层镍颗粒。其中镍靶材纯度为99.99%,厚度5mm,直径100mm,靶的轴线和样品架之间的距离为100mm。先后启动一级泵和二级泵,使反应室真空度达到10-4Pa,然后通入纯度为99.999%的氩气,流量为15mL/min调节分子泵保持压强为1.5Pa。开射频源,预热5min,调节功率为100W,开挡板进行预溅射5min,调样品与靶材正对,进行正式溅射,时间为40s。
步骤3、采用直流电弧等离子体喷射CVD设备将镀镍的掺硼金刚石刻蚀成多孔结构,将镀镍的掺硼金刚石置于直流电弧等离子体喷射CVD设备的样品台上,调节样品台高度,使其距离等离子体喷射口3cm。关闭反室开始抽真空,当腔压和泵压显示均为-100时通入流量均为1.500L/min的氢气和氩气。保持腔压2800Pa,泵压13200Pa,开始调磁场控制电压至6V,启动后弧电压为52V,弧电流95.6A,基底温度800℃,刻蚀时间2min。
步骤4、用40mL超纯水溶解1.2g的β-环糊精并进行搅拌,用40mL超纯水超声溶解0.4g F-127的悬浮液,待F-127溶解完毕缓慢倒入一半至搅拌中的β-环糊精溶液中,30min后将剩余的F-127溶液全部倒入,将多孔掺硼金刚石放入悬浮溶液中搅拌6个小时。将浸泡的多孔掺硼金刚石及F127/环糊精悬浮液转移到消解罐内密封好,使其在200℃反应6小时,降至常温后取出多孔掺硼金刚石膜进行冷冻干燥,冷冻干燥温度控制在-50℃、压强为10Pa,然后放入马弗炉中设置温度450℃,开始计时进行碳化40min,即得碳空心球/多孔掺硼金刚石复合膜。
步骤5、配制底液pH值为6~9的0.1mol/L磷酸缓冲溶液,抗坏血酸、多巴胺、尿酸浓度分别为600μmol/L,1μmol/L,8μmol/L。利用差分脉冲伏安法来检测,电位设置范围-0.3~0.5V,电位增量0.002V,振幅0.03V,脉冲宽度0.04s,脉冲周期0.5s。所得曲线横坐标为峰电位是定性指标,纵坐标为电流是定量指标。通过比较不同pH值下获得的峰电流的大小,可以确定适合本实例电极的最优pH值为7。
步骤6、以pH值为7的磷酸缓冲液配制抗坏血酸、多巴胺、尿酸的混合液,浓度分别为600μmol/L,1μmol/L,8μmol/L。利用步骤5中相同参数设置的差分脉冲伏安法进行测试,由于电极对每种待测物的响应不同,会出现三种不同电位的峰,同时检测抗坏血酸、多巴胺、尿酸的峰电位依次为-0.090V,0.132V,0.278V。利用步骤5中相同参数设置的差分脉冲伏安法测试不同浓度的尿酸溶液,拟合的线性回归方程为IUA(A)=1.34376E-7+0.15403[UA](mol/L),灵敏度为10-7A,检测限可达到0.3μM。
实施例3
步骤1、采用热丝CVD法制备掺硼金刚石,首先,将反应室内部清洗干净,并挂好6根18.5cm的钽丝。依次用超纯水,丙酮,无水乙醇超声清洗钽片至金属光泽。用酒精配制金刚石粉悬浮液,并将清洗好的钽片放入金刚石粉悬浮液中,超声处理2h。将处理好的钽片放到铜台上距离钽丝1cm,关闭腔室。开机械泵,反应室压强到5Pa以下开始通入甲烷和氢气,流量分别为6mL/min和300mL/min,气压上升至16Torr时,打开灯丝电流至138A,保持30min,并使气压稳定在39Torr,打开偏压电源,缓慢降低铜台,增加偏压,加偏压电源的电流为10A,有辉光后继续降铜台加偏压至200V,并观察基底温度在950℃以上。30min后开始通入硼源流量为25mL/min,生长时间72h。
步骤2、利用射频磁控溅射仪在掺硼金刚石膜上溅射一层镍颗粒。其中镍靶材纯度为99.99%,厚度5mm,直径100mm,靶的轴线和样品架之间的距离为100mm。先后启动一级泵和二级泵,使反应室真空度达到10-4Pa,然后通入纯度为99.999%的氩气,流量为15mL/min调节分子泵保持压强为2Pa。开射频源,预热5min,调节功率为100W,开挡板进行预溅射5min,调样品与靶材正对,进行正式溅射,时间为50s。
步骤3、采用直流电弧等离子体喷射CVD设备将镀镍的掺硼金刚石刻蚀成多孔结构,将镀镍的掺硼金刚石置于直流电弧等离子体喷射CVD设备的样品台上,调节样品台高度,使其距离等离子体喷射口3cm。关闭反室开始抽真空,当腔压和泵压显示均为-100时通入流量均为1.500L/min的氢气和氩气。保持腔压2700Pa,泵压12700Pa,开始调磁场控制电压至6V,启动后弧电压为52V,弧电流95.6A,基底温度700℃,刻蚀时间4min。
步骤4、用40mL超纯水溶解1.2g的β-环糊精并进行搅拌,用40mL超纯水超声溶解0.4g F-127的悬浮液,待F-127溶解完毕缓慢倒入一半至搅拌中的β-环糊精溶液中,30min后将剩余的F-127溶液全部倒入,将多孔掺硼金刚石放入悬浮溶液中搅拌24个小时。将浸泡的多孔掺硼金刚石及F127/环糊精悬浮液转移到消解罐内密封好,使其在200℃反应8小时,降至常温后取出多孔掺硼金刚石膜进行冷冻干燥,冷冻干燥温度控制在-52℃、压强为15Pa,然后放入马弗炉中设置温度550℃,开始计时进行碳化30min,即得碳空心球/多孔掺硼金刚石复合膜。
步骤5、配制底液pH值为6~9的0.1mol/L磷酸缓冲溶液,抗坏血酸、多巴胺、尿酸浓度分别为600μmol/L,1μmol/L,8μmol/L。利用差分脉冲伏安法来检测,电位设置范围-0.4~0.5V,电位增量0.001V,振幅0.02V,脉冲宽度0.04s,脉冲周期0.4s。所得曲线横坐标为峰电位是定性指标,纵坐标为电流是定量指标。通过比较不同pH值下获得的峰电流的大小,可以确定适合本实例电极的最优pH值7。
步骤6、以pH值为7的磷酸缓冲液配制抗坏血酸、多巴胺、尿酸的混合液,浓度分别为600μmol/L,1μmol/L,8μmol/L。利用步骤5中相同参数设置的差分脉冲伏安法进行测试,由于电极对每种待测物的响应不同,会出现三种不同电位的峰,同时检测抗坏血酸、多巴胺、尿酸的峰电位依次为-0.089V,0.142V,0.267V。利用步骤5中相同参数设置的差分脉冲伏安法进行测试不同浓度的尿酸溶液,拟合的线性回归方程为IUA(A)=1.42356E-7+0.16472[UA](mol/L),灵敏度为10-7A,检测限可达到0.4μM。

Claims (5)

1.一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,其特征在于采用热丝化学气相沉积(HFCVD)法,射频磁控溅射仪和直流电弧等离子体喷射CVD设备,步骤如下:
(1)利用热丝化学气相沉积(HFCVD)法在钽片上沉积掺硼金刚石膜,其中碳源为甲烷,硼源为硼酸三甲酯,由氢气代入,硼源、氢气及甲烷的流量分别为6mL/min、300mL/min和6mL/min,反应室压强35~39Torr,生长时间48~72h;
(2)利用射频磁控溅射仪在掺硼金刚石膜上溅射一层镍颗粒,先后启动一级泵和二级泵,使反应室真空度达到10-4Pa,通入氩气,调节分子泵保持腔室压强为1~2dPa;开射频源,预热5~10min,调节功率为120~150W;
(3)采用直流电弧等离子体喷射CVD设备,对步骤(2)中制备的镍与掺硼金刚石膜进行等离子刻蚀,等离子体气体为氢气和氩气,保持腔压2800~3000Pa,泵压13000~13500Pa,开始调磁场控制电压至6V,启动后弧电压为52V,弧电流95.6A;
(4)采用水热合成法制备碳空心球,制备线性聚合物和环状聚合物的混合悬浮液,将步骤(3)中得到的多孔掺硼金刚石放入线性聚合物和环状聚合物的混合悬浮溶液中搅拌6~24h;
(5)将浸泡的多孔掺硼金刚石及线性聚合物和环状聚合物的混合悬浮液转移到消解罐内密封好进行水热反应,在200℃反应6~12小时,降至常温后取出多孔金刚石膜后进行冷冻干燥,然后放入马弗炉中进行碳化,即得碳空心球与多孔掺硼金刚石复合膜。
2.根据权利要求1所述一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,其特征在于:步骤(1)所述利用热丝CVD法制备掺硼金刚石膜的基底温度800℃~1000℃。
3.根据权利要求1所述一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,其特征在于:步骤(2)所述氩气纯度为99.999%,流量为15mL/min。
4.根据权利要求1所述一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,其特征在于:步骤(3)所述利用直流电弧等离子体喷射CVD刻蚀掺硼金刚石膜的时间为2~5min。
5.根据权利要求1所述一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法,其特征在于:步骤(5)所述多孔掺硼金刚石在马弗炉中碳化温度为450~550℃,碳化时间30~60min。
CN201710350348.7A 2017-05-18 2017-05-18 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法 Active CN107267953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710350348.7A CN107267953B (zh) 2017-05-18 2017-05-18 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710350348.7A CN107267953B (zh) 2017-05-18 2017-05-18 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法

Publications (2)

Publication Number Publication Date
CN107267953A CN107267953A (zh) 2017-10-20
CN107267953B true CN107267953B (zh) 2019-05-03

Family

ID=60065525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710350348.7A Active CN107267953B (zh) 2017-05-18 2017-05-18 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法

Country Status (1)

Country Link
CN (1) CN107267953B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521657B (zh) * 2020-05-11 2021-07-27 中南大学 一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制备方法和应用
CN113088921B (zh) * 2021-04-13 2023-03-24 昆明理工大学 一种多孔金刚石膜/三维碳纳米线网络复合材料的制备方法及其产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201015270D0 (en) * 2010-09-14 2010-10-27 Element Six Ltd Diamond electrodes for electrochemical devices
CN104233216B (zh) * 2014-10-09 2016-04-20 南京航空航天大学 一种表面具有纳米结构阵列钛基掺硼金刚石电极的制备方法
CN106435518B (zh) * 2016-10-21 2018-07-17 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN105887038A (zh) * 2016-04-15 2016-08-24 天津理工大学 一种掺硼金刚石刻蚀的方法

Also Published As

Publication number Publication date
CN107267953A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Zhou et al. Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique
Keeley et al. Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films
Yang et al. Electrochemistry of nanocrystalline 3C silicon carbide films
CN108172852A (zh) 一种微生物燃料电池阳极、其制备方法及微生物燃料电池
CN107267953B (zh) 一种碳空心球与多孔掺硼金刚石复合膜传感器电极的制备方法
Rezugina et al. Ni-YSZ films deposited by reactive magnetron sputtering for SOFC applications
CN104237345A (zh) 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用
Liu et al. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection
CN111707724A (zh) 直立石墨烯葡萄糖酶工作电极、制备方法及生物传感器
CN103572237B (zh) 一种硼掺杂类金刚石薄膜电极的制备方法
CN101975545A (zh) 一种检测金属表面膜层的方法及电解氧化装置
Song et al. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection
CN110629203B (zh) 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用
CN106832937A (zh) 一种利用原子层沉积技术修饰碳纳米管制备耐高压复合材料及方法
CN110987711B (zh) 一种锂离子电池正极材料的成分测试分析方法
Meijs et al. Diamond/porous titanium nitride electrodes with superior electrochemical performance for neural interfacing
CN106841344A (zh) 一种孔状单壁碳纳米管及其修饰电极的制备和应用
Zhou et al. Poly (N‐isopropylacrylamide) Interfaces with Dissimilar Thermo‐responsive Behavior for Controlling Ion Permeation and Immobilization
Yang et al. Highly sensitive non-enzymatic hydrogen peroxide monitoring platform based on nanoporous gold via a modified solid-phase reaction method
JP2012188688A (ja) ダイヤモンドライクカーボン薄膜の製造方法及び該薄膜が金属基板上に形成された電極材料
CN113774447A (zh) 一步电沉积制备的卟啉基共价有机骨架固相微萃取涂层及其应用
Wang et al. Sensitive Electrochemical Determination of Hyperin Based on Electrochemically Activated ZrO2 Nanoparticles-Modified Carbon Paste Electrode
Pi et al. The gas-sensing performance of a core–shell SnO 2-based chemiresistive MEMS sensor for H 2 S detection under vacuum
CN113533471B (zh) 一种硼掺杂石墨烯-SnO2传感电极的制备及水杨酸检测中的应用
CN110967384A (zh) 一种超低浓度双氧水传感器透明电极的简便制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant