CN107248457A - 一种具有笼状NiCo2S4@碳球电极材料的制备方法 - Google Patents

一种具有笼状NiCo2S4@碳球电极材料的制备方法 Download PDF

Info

Publication number
CN107248457A
CN107248457A CN201710620089.5A CN201710620089A CN107248457A CN 107248457 A CN107248457 A CN 107248457A CN 201710620089 A CN201710620089 A CN 201710620089A CN 107248457 A CN107248457 A CN 107248457A
Authority
CN
China
Prior art keywords
caged
nico
preparation
carbon ball
distilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710620089.5A
Other languages
English (en)
Other versions
CN107248457B (zh
Inventor
徐靖才
王攀峰
洪波
王新庆
彭晓领
金红晓
金顶峰
李静
杨艳婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
徐靖才
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐靖才 filed Critical 徐靖才
Priority to CN201710620089.5A priority Critical patent/CN107248457B/zh
Publication of CN107248457A publication Critical patent/CN107248457A/zh
Application granted granted Critical
Publication of CN107248457B publication Critical patent/CN107248457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种具有笼状NiCo2S4@碳球电极材料的制备方法,它涉及一种纳米NiCo2S4负载笼状碳球的制备方法,包括步骤:将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按照 Ni2+/Co2+摩尔比为1:2溶于二甘醇和蒸馏水的混合液中搅拌均匀,再加入一定量的葡萄糖和硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.1~1MPa;将反应釜放进烘箱中,在温度为150~200℃下反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。本发明方法为一步合成直接得到产物的制备方法,具有操作简单、环境友好、耗能低和成本低等优点;所获得的笼状NiCo2S4@碳球材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。

Description

一种具有笼状NiCo2S4@碳球电极材料的制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种纳米NiCo2S4负载笼状碳球的制备方法。
背景技术
近年来,超级电容器因其具有高功率密度、充电短时间和循环寿命长等诸多优点而受到广泛关注。电极材料是影响超级电容器性能的关键因素,以RuO2等贵金属氧化物因其赝电容原理有较大的比电容值,但昂贵的价格和毒性限制了其商业化应用。一些廉价金属硫化物代替贵金属作为超级电容器电极材料成为研究热点。NiCo2S4是一种典型的尖晶石结构复合金属硫化物,存在Co3+/Co2+及Ni3+/Ni2+氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的电极材料,因此不同结构、形态、尺寸的NiCo2S4的制备受到了众多研究人员的关注(如Chen等, Nanoscale, 2013,5(19),8879;Wan等, Crystengcomm, 2013,15(38),7649; Chen等, ACS Nano, 2014,8(9),9531;Zhang等, Nanoscale, 2014,6(16),9824; Pu等, ACS Sustain. Chem. Eng. 2014,2(4),809; Zhu等, J. Power. Sources. 2015,273,584)。然而NiCo2S4作为电极材料运用于超级电容器的时候,往往存在一个问题—材料的电阻过大,导电性偏低,导致超级电容器在大电流密度下充循环冲放电不够稳定。因而,需要以一定的方式将碳材料加入到NiCo2S4电极材料中,来提高电极材料的导电性,以达到增强其电化学性能的目的。如Peng等用原位法制备NiCo2S4/石墨烯复合材料(Chemical Communications, 2013,49(86),10178); Xiao等在碳纤维上生长NiCo2S4纳米管(Nano Letter, 2014,14(2), 831); Wu等一步合成了NiCo2S4/氧化石墨复合材料(J Mater. Chem. A, 2014,2(48),20990); Ding等制备了NiCo2S4/碳布复合材料(RSC Advances, 2015,5(60),48631);中国专利公开了一种电沉积发制备NiCo2S4/碳纳米管(ZL 2015104733326)等。然而,尽管碳纳米管、石墨烯、碳纤维和碳布等结合NiCo2S4复合的电极材料具有较高的导电性和优异的超级电容性能,但这些碳纳米材料制备困难、价格昂贵,难以商业化大规模生产。
发明内容
本发明的目的是提供一种具有笼状NiCo2S4@碳球电极材料的制备方法,该方法可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种具有笼状NiCo2S4@碳球电极材料的制备方法,其特征在于,具体包括以下步骤:一、将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按照 Ni2+/Co2+摩尔比为1:2溶于二甘醇和蒸馏水的混合液中搅拌均匀,再加入一定量的葡萄糖和硫代乙酰胺继续搅拌得到混合溶液;二、将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.1~1MPa;将反应釜放进烘箱中,在温度为150~200℃下反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
本发明优点:具有笼状NiCo2S4@碳球电极材料结合了碳材料和笼状球形胶体的特点,具有导电性好、几何形貌规则、流动性好、孔道和尺寸可控等独特的性能;本发明方法为一步合成直接得到产物的制备方法,具有操作简单、环境友好、耗能低和成本低等优点;所获得的笼状NiCo2S4@碳球材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
本发明采用X射线衍射技术(XRD)分析本发明制备的NiCo2S4@碳球材料的物相,采用透射电子显微镜(TEM)表征本发明制备的NiCo2S4@碳球材料的微观结构,采用电化学工作站来测试本发明制备的NiCo2S4@碳球材料的电化学性能,可知本发明成功制备出了具有较高的比电容值和良好的电化学性能稳定性的NiCo2S4@碳球电极材料。
附图说明
图1是实施方式一制备的NiCo2S4@碳球材料的XRD曲线图,证实制备的NiCo2S4@碳球材料含有NiCo2S4物相和碳物相。
图2是实施方式一制备的NiCo2S4@碳球材料的TEM图,通过图2可知本发明制备的NiCo2S4@碳球材料形成了笼状球形的结构。
图3是实施方式一制备的NiCo2S4@碳球电极材料的恒流放电曲线图,通过图3可知本发明制备的NiCo2S4@碳球电极材料在电流密度为1A/g下的比电容值为1418.3F/g。
具体实施方式
下面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
具体实施方式一:一种具有笼状NiCo2S4@碳球电极材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于25ml二甘醇和25ml蒸馏水的混合液中搅拌均匀,再加入0.27g葡萄糖和4.5 mmol 硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.1MPa;将反应釜放进烘箱中,在温度为180℃下反应12h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
具体实施方式二:一种具有笼状NiCo2S4@碳球电极材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于10ml二甘醇和40ml蒸馏水的混合液中搅拌均匀,再加入1.08g葡萄糖和18 mmol 硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.5MPa;将反应釜放进烘箱中,在温度为200℃下反应8h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
具体实施方式三:一种具有笼状NiCo2S4@碳球电极材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于20ml二甘醇和30ml蒸馏水的混合液中搅拌均匀,再加入0.54g葡萄糖和9 mmol 硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到1MPa;将反应釜放进烘箱中,在温度为150℃下反应16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
具体实施方式四:一种具有笼状NiCo2S4@碳球电极材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于30ml二甘醇和20ml蒸馏水的混合液中搅拌均匀,再加入1.08g葡萄糖和9 mmol 硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.8MPa;将反应釜放进烘箱中,在温度为180℃下反应10h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
具体实施方式五:一种具有笼状NiCo2S4@碳球电极材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于25ml二甘醇和25ml蒸馏水的混合液中搅拌均匀,再加入0.54g葡萄糖和9 mmol 硫代乙酰胺继续搅拌得到混合溶液;将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到1MPa;将反应釜放进烘箱中,在温度为160℃下反应14h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。

Claims (3)

1.一种具有笼状NiCo2S4@碳球电极材料的制备方法,其特征在于,由以下步骤组成:一、将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按照 Ni2+/Co2+摩尔比为1:2溶于二甘醇和蒸馏水的混合液中搅拌均匀,再加入一定量的葡萄糖和硫代乙酰胺继续搅拌得到混合溶液;二、将所述混合溶液移入反应釜,置换N2,置换之后将N2的压强调到0.1~1MPa;将反应釜放进烘箱中,在温度为150~200℃下反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到笼状NiCo2S4@碳球电极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的二甘醇和蒸馏水的混合液中,二甘醇和蒸馏水的体积比为1:1~1:4。
3.根据权利要求1所述的制备方法,其特征在于,所述的硫代乙酰胺的浓度为0.05~0.4mol/L,硫代乙酰胺与Ni2+和Co2+的总的物质的量的比为1:1~3:1。
CN201710620089.5A 2017-07-26 2017-07-26 一种具有笼状NiCo2S4@碳球电极材料的制备方法 Active CN107248457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710620089.5A CN107248457B (zh) 2017-07-26 2017-07-26 一种具有笼状NiCo2S4@碳球电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710620089.5A CN107248457B (zh) 2017-07-26 2017-07-26 一种具有笼状NiCo2S4@碳球电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN107248457A true CN107248457A (zh) 2017-10-13
CN107248457B CN107248457B (zh) 2018-11-13

Family

ID=60012987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710620089.5A Active CN107248457B (zh) 2017-07-26 2017-07-26 一种具有笼状NiCo2S4@碳球电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107248457B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511701A (zh) * 2018-02-02 2018-09-07 东华大学 一种用作锂硫电池正极的镍钴硫空心球、制备方法及应用
CN109621997A (zh) * 2019-01-10 2019-04-16 兰州大学 NiCo2S4/C微球纳米复合材料、其制备方法以及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240972A (zh) * 2014-09-11 2014-12-24 江苏大学 一种多孔片状NiCo2O4/石墨烯复合电容材料的制备方法
CN104979551A (zh) * 2015-07-17 2015-10-14 武汉大学 一种碳纳米球/NiCo2O4复合材料及其制备方法与应用
CN105129871A (zh) * 2015-07-31 2015-12-09 徐靖才 一种NiCo2S4/碳纳米管复合材料的制备方法
CN105244177A (zh) * 2015-10-28 2016-01-13 扬州大学 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
CN105551812A (zh) * 2016-01-19 2016-05-04 南京理工大学 一种NiCo2S4超级电容器材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240972A (zh) * 2014-09-11 2014-12-24 江苏大学 一种多孔片状NiCo2O4/石墨烯复合电容材料的制备方法
CN104979551A (zh) * 2015-07-17 2015-10-14 武汉大学 一种碳纳米球/NiCo2O4复合材料及其制备方法与应用
CN105129871A (zh) * 2015-07-31 2015-12-09 徐靖才 一种NiCo2S4/碳纳米管复合材料的制备方法
CN105244177A (zh) * 2015-10-28 2016-01-13 扬州大学 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
CN105551812A (zh) * 2016-01-19 2016-05-04 南京理工大学 一种NiCo2S4超级电容器材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511701A (zh) * 2018-02-02 2018-09-07 东华大学 一种用作锂硫电池正极的镍钴硫空心球、制备方法及应用
CN108511701B (zh) * 2018-02-02 2020-08-11 东华大学 一种用作锂硫电池正极的镍钴硫空心球、制备方法及应用
CN109621997A (zh) * 2019-01-10 2019-04-16 兰州大学 NiCo2S4/C微球纳米复合材料、其制备方法以及其应用
CN109621997B (zh) * 2019-01-10 2021-06-22 兰州大学 NiCo2S4/C微球纳米复合材料、其制备方法以及其应用

Also Published As

Publication number Publication date
CN107248457B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
Xu et al. NiCoP@ CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Wang et al. Enhancing the performance of a battery–supercapacitor hybrid energy device through narrowing the capacitance difference between two electrodes via the utilization of 2D MOF-Nanosheet-derived Ni@ nitrogen-doped-carbon Core–Shell rings as both negative and positive electrodes
Aadil et al. Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities
Kuang et al. Mesoporous MnCo2O4. 5 nanoneedle arrays electrode for high-performance asymmetric supercapacitor application
Shang et al. Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors
Krishnan et al. Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability
CN105129871B (zh) 一种NiCo2S4/碳纳米管复合材料的制备方法
Mishra et al. 2H–MoS2 nanoflowers based high energy density solid state supercapacitor
Fu et al. Carbon cloth supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors
Luo et al. Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors
Hua et al. Facile synthesis of new-type MnOOH/NiAl-layered double hydroxide nanocomposite for high-performance supercapacitor
Xu et al. Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors
Xu et al. Hierarchical MnO2 nanosheets on electrospun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors
CN105161313B (zh) 一种钴酸镍/碳纳米管复合材料的制备方法
Li et al. Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes
Zhang et al. 3D carbon coated NiCo2S4 nanowires doped with nitrogen for electrochemical energy storage and conversion
Li et al. Facile synthesis of a Ni-based NiCo2O4-PANI composite for ultrahigh specific capacitance
Zhao et al. Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors
CN104021948A (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
Liu et al. The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors
Mu et al. Three dimensional bimetallic phosphides nanoneedle arrays as electrode materials for symmetric all-solid-state supercapacitor
Beka et al. MWCNT/NiCo2S4 as core/shell hybrid nanostructure for high performance supercapacitor
Chen et al. Unique hollow-concave CoMoSx boxes with abundant mesoporous structure for high-performance hybrid supercapacitors
Pai et al. High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180927

Address after: 310018 China Metrology University, 258 Xiyuan street, Xiasha, Jianggan District, Hangzhou, Zhejiang

Applicant after: CHINA JILIANG UNIVERSITY

Address before: 310018 No. 258, Xue Yuan Street, Xiasha, Jianggan District, Hangzhou, Zhejiang.

Applicant before: Xu Jingcai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant